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Resent achievements in statistical theory, namely, a possibility to reproduce almost unlimited Mayer’s activity
series based on the information about their convergence radius, on the one hand, and generalization of the lat-
tice statistics by eliminating the simplification of nearest-neighbor interactions, on the other hand, have allowed
accurate quantitative description of the condensation in lattice gases, spontaneous magnetization in ferromag-
nets, and spinodal decomposition in binarymixtures by evaluating only several irreducible cluster integrals (virial
coefficients). In particular, the results of calculations indicate qualitative and even quantitative universality in
the behavior of the mentioned lattice systems of different geometry and dimensionality at the same values of
a certain reduced temperature when that behavior is expressed in terms of some dimensionless parameters.
An additional possibility to describe the order-disorder phase transitions in some other lattice systems (e.g.,
antiferromagnets and alloys) is also discussed in the paper.

Key words: lattice model, Mayer’s expansion, cluster integral, condensation, magnetization, spinodal
decomposition

1. Introduction

One of the long-standing problems of molecular physics, physical chemistry, etc. is the theoretical
statistically-based description of phase transitions in thermodynamic systems. For many years, there have
been an extremely few achievements in this issue on the qualitative level for specific and very simplified
models of matter only [1–3]. Some recent generalizations based on the Mayer cluster expansion [4] are
also qualitative rather than quantitative: namely, studies of the so-called virial series in terms of reducible
and irreducible cluster integrals [4, 5] (virial coefficients specific for a certain interaction model) as well
as new equations of state [6–8] in terms of the same integrals have finally cleared the physical meaning of
the regimes where the virial series diverge mathematically [9–13] and established a strict mathematical
definition for the saturation point that is general for all classical fluids [5, 11, 14] and even quantum
systems [15, 16].

As to the quantitative description of phase transitions, the existing achievements remain much less
significant: in practice, any accurate cluster-based definition of the saturation point for a certain statistical
model of matter needs calculations of the corresponding cluster integrals to the orders of hundreds
or thousands that can hardly be performed even by using the modern computational techniques and
equipment.

Nevertheless, an approximate technique was proposed recently [17], which allows a pretty accurate
evaluation of the saturation point even for various real substances by using the empirical information
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on only the second virial coefficient and phase-transition activity (fugacity): in fact, the latter quantity
is directly related to the mathematical divergence of virial series and, therefore, it incapsulates the
information on the unknown high-order cluster integrals (virial coefficients) [18].

Concerning this technique, thermodynamic systems with the discrete configuration phase-space (the
so-called lattice models of matter: lattice gases, the Ising model of magnetics [19], etc.) turn out to be
of special interest in quantitative theoretical description of phase transitions based on the interaction
parameters: on the one hand, the calculation of low-order cluster integrals is not a difficult problem
(especially, for these models) and, on the other hand, the “hole-particle” symmetry of such models [20–
22] allows an exact theoretical prediction of the phase-transition activity [11, 23, 24] without any
additional empirical data.

Another reason to renew the interest of statistical theory to lattice models is an essential recent
generalization of such models due to eliminating the traditional simplification of nearest-neighbor (n.n.)
interactions that has been an almost integral part of the lattice statistics (see chapter 7 in the famous book
of T. Hill [20]) for a long time. Today, the lattice model of any physical nature can actually include pairwise
interactions on arbitrary distances between particles (in fact, the corresponding interaction potential may
even be anisotropic [21, 24, 25]), thus potentially making such a model as realistic as possible.

In this short review, we present a detailed description of the above-mentioned latest achievements
in the quantitative statistical theory of lattice systems, especially, concerning different phase transitions
in such systems of various geometry and physical nature: phenomena of condensation in lattice gases,
magnetization of ferromagnets, and spinodal decomposition in binary mixtures. First (section 2), the
theoretical background of the modern approximation technique is described as well as the new formal
mathematical relationship among physically distinct lattice models. In section 3, the results of calculations
are presented for those distinct models of various geometry. Finally, those results and further perspectives
of the approach are discussed in the last section.

2. Theoretical background

2.1. Mayer’s expansion and evaluation of cluster integrals

Mayer’s expansions [4, 5] for pressure (𝑃) and particle number density (𝜌 = 𝑁/𝑉) in powers of
activity (or, sometimes, fugacity),

𝑧 = 𝜆−3 exp
(

𝜇

𝑘B𝑇

)
,

where 𝜇 is the chemical potential and 𝜆 = ℎ/
√

2𝜋𝑚𝑘B𝑇 is the thermal wavelength, have the following
general form:

𝑃

𝑘B𝑇
=

∞∑︁
𝑛=1

𝑏𝑛𝑧
𝑛

𝜌 =

∞∑︁
𝑛=1

𝑛𝑏𝑛𝑧
𝑛


, (2.1)

which is valid for continuous systems as well as lattice models of matter in all their subcritical gaseous
regimes [5, 6, 8, 10, 11]: from dilute (ideal) gases (when 𝑧 → 0) up to the condensation point, 𝑧 = 𝑧𝑆 [𝑧𝑆
— the convergence radius for the power series in (2.1)].

For lattice models exclusively, the “hole-particle” symmetry of their partition function yields the
following “high-density” expansions for pressure and density [21, 22]:

𝑃

𝑘B𝑇
= 𝜌0

(
𝑢0
𝑘B𝑇

+ ln
𝜌0
𝜂

)
+

∑︁
𝑛⩾1

𝑏𝑛𝜂
𝑛

𝜌 = 𝜌0 −
∑︁
𝑛⩾1

𝑛𝑏𝑛𝜂
𝑛

 , (2.2)
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in powers of the “reciprocal activity”,

𝜂 =
𝜌2

0
𝑧

exp
(
2
𝑢0
𝑘B𝑇

)
, (2.3)

where 𝑢0 is the potential energy per particle in the close-packing state and 𝜌0 is the particle number
density in such close-packing state. It is obvious that the convergence radii are identical for the power
series of equations (2.1) and (2.2) (i.e., 𝜂𝑆 ≡ 𝑧𝑆 , where 𝜂𝑆 takes the meaning of the “boiling reciprocal
activity”).

Analytically, it is easy to check (no matter which certain set of power coefficients, {𝑏𝑛 (𝑇)}) that
equations (2.1) and (2.2) must always define the equal values of pressure at 𝜂𝑆 = 𝑧𝑆 [i.e., 𝑃(𝑧𝑆) ≡ 𝑃(𝜂𝑆)]
and symmetrical values of density [𝜌(𝑧𝑆) = 𝜌0− 𝜌(𝜂𝑆)] that, at subcritical temperatures [𝜌(𝑧𝑆) < 𝜌0/2],
exactly corresponds to the first-order phase transition — the jump of density at a constant pressure and
activity (chemical potential) [11].

In fact, the accuracy of equations (2.1), (2.2) explicitly depends on the accuracy of the power
coefficients, {𝑏𝑛 (𝑇)}, belonging to both equations. These coefficients are called reducible cluster inte-
grals [4, 5] and their evaluation for some more or less realistic thermodynamic system (any actual {𝑏𝑛}
set must include the infinite number of reducible cluster integrals) is the main problem in practical usage
of equations (2.1), (2.2).

As a rule, the irreducible integrals, {𝛽𝑘 (𝑇)}, (the corresponding virial coefficients) are calculated for
a given interaction model and then, based on the accurate and complete (i.e., infinite) {𝛽𝑘} set, one could
easily obtain the accurate and complete (infinite) {𝑏𝑛} set by using the following recursive algorithm [10]:

𝑏𝑛 =
𝐴𝑛,𝑛−1

𝑛2 , (2.4)

where

𝐴𝑛,𝑖 = 𝑛

𝑖∑︁
𝑘=1

𝑘

𝑖
𝛽𝑘𝐴𝑛,𝑖−𝑘 ;

𝐴𝑛,0 = 1.

In addition, the convergence radius for the power series of equation (2.1) could be defined on the
basis of the known {𝛽𝑘} set:

𝑧𝑆 = 𝜌𝑆 exp

(
−

∑︁
𝑘⩾1

𝛽𝑘𝜌
𝑘
𝑆

)
, (2.5)

where the saturation density, 𝜌𝑆 , is the minimum positive root in∑︁
𝑘⩾1

𝑘𝛽𝑘𝜌
𝑘
𝑆 = 1. (2.6)

At the moment, there is a great experience in calculations of virial coefficients up to the 7th–
16th orders for various interaction models [26–33], but the neglect of the other coefficients (of higher
orders) dramatically affects the accuracy of the corresponding equations at the vicinity of the phase-
transition point. Though, at the first glance, even the infinite {𝑏𝑛} set can be reproduced by the recursive
relation in equation (2.4) on the basis of such extremely limited {𝛽𝑘} sets, the accuracy of the resulting
{𝑏𝑛} sets in high orders is unfortunately very poor and nonsatisfactory as well as the accuracy of the
corresponding values of 𝑧𝑆 and 𝜌𝑆 in equations (2.5), (2.6). In fact, any more or less accurate cluster-based
evaluation of the saturation point requires calculations of irreducible integrals to the orders of hundreds
or thousands [34, 35] which is technically impossible today.

As to the lattice models, there is another option to define 𝑧𝑆 exactly [11] based on the above-mentioned
parameters, 𝑢0 and 𝜌0, of the lattice model [see equations (2.2), (2.3)]:

𝑧𝑆 ≡ 𝜂𝑆 = 𝜌0 exp
(
𝑢0
𝑘B𝑇

)
. (2.7)
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In turn, that 𝑧𝑆 value defines the asymptotic behavior of high-order cluster integrals in the correct {𝑏𝑛}
set [18] and, thus, allows their approximate evaluation. For example, the simplest approach to such
approximation is a trivial scaling [23] of all the “incorrect” reducible integrals (if the initial set of
the calculated irreducible integrals, {𝛽𝑘}, is limited by the maximum order of 𝑘max, the reducible
integrals, {𝑏𝑛}, calculated by using the recursive relation in equation (2.4) on the basis of that limited {𝛽𝑘}
set can be considered as correct up to the order of 𝑛max = 𝑘max + 1 only, whereas all the other integrals
of higher orders cannot be considered as correct). Namely,

𝑏true
𝑛 = 𝑏𝑛

(
𝑧𝑆

𝑧true
𝑆

)𝑛−1
, (2.8)

where 𝑏true
𝑛 is a "corrected" reducible integral (𝑛 > 𝑘max +1), 𝑏𝑛 and 𝑧𝑆 are “incorrect” values (calculated

on the basis of the limited {𝛽𝑘} set), and 𝑧true
𝑆

is the true convergence radius defined by equation (2.7).
In [17, 36], a more complex approximation technique is considered, where the transition from the

“correct” low-order integrals (𝑛 ⩽ 𝑘max + 1) to the modified high-order integrals (𝑛 ≫ 𝑘max + 1) is
additionally smoothed, although in case of lattice models, such smoothing has almost no effect on the
results [24].

2.2. Relationship among the parameters of lattice gases, ferromagnets, and binary
mixtures

In the paragraphs above, Mayer’s expansions in equations (2.1), (2.2) concern rather the lattice models
of classical fluids (the so-called lattice gases with the discrete configurational phase-space of 𝑁0 cells,
where one space cell cannot be occupied by more than a single particle) and are applicable at subcritical
regimes to describe condensation/vaporization phenomena only.

On the other hand, there exists a well-known formal relationship of such lattice-gas models with
other specific statistical models of matter: the Ising model of ferromagnets [19] and simplified models of
binary mixtures/solutions/alloys. In details, the derivation of this relationship can be found in a number
of sources [3, 20, 24] and it is based on the mathematical similarity of the partition functions for all the
mentioned models with the discrete configuration phase-space.

Unfortunately, all the mentioned lattice models of matter have traditionally involved a principal
restriction: any particle of a lattice gas (a spin of a magnet or a molecule of a mixture) can only interact
by some constant strength with its nearest neighbors in the closest cells of the space lattice (the so-called
n.n. or nearest-neighbor lattice statistics [20]), and such restriction greatly affected the actual applicability
of lattice models in describing realistic interactions.

At first, this n.n. restriction has been eliminated recently for lattice-gas models [21, 22]. Namely,
the Hill approach to lattice statistics [20] was reformulated in terms of the general pairwise interaction
potential, 𝜙

(
r𝑖 , r 𝑗

)
, depending on positions, r𝑖 and r 𝑗 , of any pair of molecules, 𝑖 and 𝑗 , anywhere

in the lattice (the 𝜙 function is positive for repulsion and negative for attraction and, in fact, it is not
required to be spherically symmetrical). Based on the 𝜙 function, the 𝑢0 parameter was introduced [see
equation (2.2)] and the radius of convergence of Mayer’s activity expansions (i.e., the phase-transition
activity), 𝑧𝑆 , was established [11] [see equation (2.7)].

Later, the same formalism was confirmed for the Ising models [24]. For a ferromagnet in an external
magnetic field of some intensity, 𝐻, all the 𝑁0 space cells are actually occupied by spins (one spin per
cell) and each spin can have only one of the two orientations: either in the direction of the external
field (parallel or formally positive spins, the number of which can be denoted as 𝑁+) or in the opposite
direction (antiparallel or negative spins, the number of which is 𝑁− = 𝑁0 −𝑁+). In the partition function,
the integration over the non-configurational phase-space yields some quantity 𝑗

𝑁0
𝑚 (i.e., 𝑗𝑚 per spin),

whereas the configuration integral (actually, some sum for the discrete configurational phase-space) may
be represented in a form mathematically analogous to that of lattice-gas models [24]. Again, depending
on the orientation of any two spins, 𝑖 and 𝑗 , at some arbitrary positions in the space lattice, r𝑖 and r 𝑗 , their
interaction energy may be described by a certain Φ

(
r𝑖 , r 𝑗

)
function formally related to the 𝜙

(
r𝑖 , r 𝑗

)
of

lattice-gas models (see table 1).
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Table 1. Relationship among the parameters of lattice-gases, the Ising model of magnetics, and the lattice
model of binary mixtures

lattice gas Ising model binary mixture

𝜙
(
r𝑖 , r 𝑗

)
4Φ

(
r𝑖 , r 𝑗

)
𝜙′ (r𝑖 , r 𝑗 ) = 𝜙𝑎𝑎 + 𝜙𝑏𝑏 − 2𝜙𝑎𝑏

𝑧 = 𝜆−3 exp
(

𝜇

𝑘B𝑇

)
𝜌0 exp

(
2𝐻+𝑢0
𝑘B𝑇

)
𝑧′ = 𝜌0 exp

(
𝑢0
𝑘B𝑇

) 𝑧𝑎 exp
(
− 𝑢𝑎

𝑘B𝑇

)
𝑧𝑏 exp

(
− 𝑢𝑏

𝑘B𝑇

)
𝑃
𝜌0

𝐻 + 𝑢0
4 − 𝐹 − 𝑘B𝑇 ln 𝑗𝑚

𝜌0
−𝑘B𝑇 ln 𝑍𝑏 = 𝑢𝑏 − 𝜇𝑏 − 𝑘B𝑇 ln 𝑗𝑏

𝜌

𝜌0
1+𝐼
2 𝑛𝑎 =

𝑁𝑎

𝑁𝑎+𝑁𝑏

As a result, the magnetic free energy per spin, 𝐹, and dimensionless intensity of magnetization,
𝐼 = (𝑁+ − 𝑁−)/(𝑁+ + 𝑁−), in the Ising problem of some geometry and dimensionality can be formally
related to the pressure and density of the corresponding lattice-gas model (see table 1).

In a mixture model, each cell is occupied by a molecule belonging to one of the two components:
𝑎 or 𝑏. There, the situation seemed to be somewhat problematic because the presence of three different
and independent interaction potentials (namely, the 𝜙𝑎𝑎

(
r𝑖 , r 𝑗

)
for 𝑎-𝑎 interactions, 𝜙𝑏𝑏

(
r𝑖 , r 𝑗

)
for

𝑏-𝑏 interactions, and 𝜙𝑎𝑏

(
r𝑖 , r 𝑗

)
for 𝑎-𝑏 interactions) essentially complicates the partition function in

comparison with the conventional n.n. models (which include only the corresponding constant energy
values of nearest-neighbor interactions).

Nevertheless, the last efforts [25] to express the mixture partition function in terms of 𝜙𝑎𝑎, 𝜙𝑏𝑏, 𝜙𝑎𝑏

in a form analogous to that of the Ising and lattice-gas models have led to a success and the above-
mentioned generalized relationship between the Ising and lattice-gas models was finally extended to the
case of mixtures.

In such formalism, the reduced interaction potential,

𝜙′ (r𝑖 , r 𝑗 ) = 𝜙𝑎𝑎 (r𝑖 , r 𝑗 ) + 𝜙𝑏𝑏 (r𝑖 , r 𝑗 ) − 2𝜙𝑎𝑏 (r𝑖 , r 𝑗 ), (2.9)

is considered as an analogue of the lattice-gas 𝜙
(
r𝑖 , r 𝑗

)
function (namely, all the cluster integrals in

equations (2.1), (2.2), (2.4), (2.5), (2.8) as well as the 𝑢0 parameter are defined by this reduced potential),
whereas the 𝜙𝑎𝑎 and 𝜙𝑏𝑏 functions remain incapsulated in the corresponding 𝑢𝑎 and 𝑢𝑏 parameters: 𝑢𝑎
is the potential energy per molecule 𝑎 when all its neighbors (in all coordination spheres) are also 𝑎

molecules; 𝑢𝑏 is the similar value at the close-packing state of 𝑏 molecules only.
Furthermore, those parameters, 𝑢𝑎, 𝑢𝑏, and per-component activities,

𝑧𝑎 = 𝜆−3
𝑎 exp

(
𝜇𝑎

𝑘B𝑇

)
,

𝑧𝑏 = 𝜆−3
𝑏 exp

(
𝜇𝑏

𝑘B𝑇

)
,

allow introducing the mixture analogue of the lattice-gas activity

𝑧′ = 𝜌0
𝑍𝑎

𝑍𝑏

exp
(
𝑢0
𝑘B𝑇

)
, (2.10)
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where
𝑍𝑎 = 𝑧𝑎 exp

(
− 𝑢𝑎

𝑘B𝑇

)
𝑍𝑏 = 𝑧𝑏 exp

(
− 𝑢𝑏

𝑘B𝑇

)  . (2.11)

As a result, the following quantity of a binary mixture:

𝑢𝑏 − 𝜇𝑏 − 𝑘B𝑇 ln 𝑗𝑏 = −𝑘B𝑇 ln 𝑍𝑏,

becomes a formal analogue of pressure in the corresponding lattice-gas model, whereas the relative
concentration (molar fraction) of the 𝑎 component,

𝑛𝑎 =
𝑁𝑎

𝑁𝑎 + 𝑁𝑏

,

is a dimensionless analogue of the lattice-gas density (see table 1).

3. Numerical application

3.1. Condensation of lattice gases

As it is mentioned above, the “low-density” expansions in equation (2.1) and “high-density” expan-
sions in equation (2.2) can be used directly in order to construct a theoretical isotherm, 𝑃 (𝜌), of some
lattice-gas model at a given temperature, 𝑇 , under the following condition: the {𝑏𝑛} set of reducible
cluster integrals is known to very high orders (to thousands) with more or less accuracy for the model at
this temperature.

Table 2. Irreducible cluster integrals for the two-dimensional square model, where each particle can
interact with four nearest neighbors (the Lee-Yang model, 𝑢0 = −2𝜀).

𝑘 𝑘𝛽𝑘𝜌
𝑘
0

1 4 𝑓 − 1

2 −12 𝑓 2 − 1

3 12 𝑓 4 + 40 𝑓 3 + 12 𝑓 2 − 1

4 −160 𝑓 5 − 220 𝑓 4 − 80 𝑓 3 − 1

5 60 𝑓 7 + 1380 𝑓 6 + 1704 𝑓 5 + 600 𝑓 4 + 40 𝑓 3 − 1

6 −1428 𝑓 8 − 10584 𝑓 7 − 13440 𝑓 6 − 5376 𝑓 5 − 588 𝑓 4 − 1

In turn, the calculation of such {𝑏𝑛 (𝑇)} set is proposed to be realized in several steps. First, a limited
set of the corresponding irreducible cluster integrals, {𝛽𝑘 (𝑇)}, is defined up to some order 𝑘max. Namely,
the irreducible integrals up to the 4th–6th orders are presented by tables 2, 3, 4, 5, 6 in a form of the
exact function, 𝛽𝑘 (𝑇), for a number of different 2D and 3D n. n. lattice models. Actually, each irreducible
integral is expressed there as a polynomial of one Mayer’s function,

𝑓 (𝑇) = exp
(

𝜀

𝑘B𝑇

)
− 1,

where 𝜀 is the depth of the "attraction well" at the first coordination sphere radius, 𝑟1 (i.e., where the
nearest-neighbor interaction potential 𝜙(𝑟1) = −𝜀).

In contrast to those n.n. models, table 7 presents the irreducible integrals for the 2D square “long-range
interaction” model with interactions in two closest coordination spheres (see figure 1) as polynomials of
two Mayer’s functions, 𝑓1 and 𝑓2 corresponding to the values of interaction energy, 𝜙1 and 𝜙2, respectively.

13501-6
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Table 3. Irreducible cluster integrals for the two-dimensional square model, where each particle can
interact with eight nearest neighbors (𝑢0 = −4𝜀).

𝑘 𝑘𝛽𝑘𝜌
𝑘
0

1 8 𝑓 − 1

2 24 𝑓 3 − 24 𝑓 2 − 1

3 12 𝑓 6 + 168 𝑓 5 − 144 𝑓 4 − 64 𝑓 3 + 24 𝑓 2 − 1

4 180 𝑓 8 + 1120 𝑓 7 − 1760 𝑓 6 − 1280 𝑓 5 + 680 𝑓 4 + 80 𝑓 3 − 1

5 180 𝑓 11 + 2820 𝑓 10 + 8460 𝑓 9 − 17580 𝑓 8 − 8940 𝑓 7 + 17520 𝑓 6 + 4728 𝑓 5 − 1320 𝑓 4 − 40 𝑓 3 − 1

6 252 𝑓 14 + 4872 𝑓 13 + 32844 𝑓 12 + 41664 𝑓 11 − 216636 𝑓 10 − 87192 𝑓 9 + 218736 𝑓 8 + 17976 𝑓 7

−78960 𝑓 6 − 9744 𝑓 5 − 96940 𝑓 4 − 81396 𝑓 3 − 166488 𝑓 2 − 15624 𝑓 − 1

Table 4. Irreducible cluster integrals for the two-dimensional triangle model, where each particle can
interact with six nearest neighbors (𝑢0 = −3𝜀).

𝑘 𝑘𝛽𝑘𝜌
𝑘
0

1 6 𝑓 − 1
2 12 𝑓 3 − 18 𝑓 2 − 1
3 36 𝑓 5 − 108 𝑓 4 − 12 𝑓 3 + 18 𝑓 2 − 1
4 120 𝑓 7 − 540 𝑓 6 + 240 𝑓 5 + 510 𝑓 4 − 1
5 420 𝑓 9 − 2520 𝑓 8 + 2790 𝑓 7 + 3180 𝑓 6 − 2304 𝑓 5 − 990 𝑓 4 − 1

After defining such a limited {𝛽𝑘 (𝑇)} set, the first approximation for the {𝑏𝑛} set is calculated by
using the recursive relation of equation (2.4) to the orders as high as possible and, additionally, the
approximate value of 𝑧𝑆 is defined by equation (2.5) on the basis of the same initial {𝛽𝑘} set.

Then, the “incorrect” reducible integrals (𝑛 > 𝑘max + 1) of that very approximate {𝑏𝑛} set are scaled
by using equation (2.8) on the basis of the calculated approximate 𝑧𝑆 and “true” convergence radius, 𝑧true

𝑆
,

exactly defined by the model parameters in equation (2.7). Finally, the resulting {𝑏true
𝑛 } set can directly

be used in calculations of pressure and density in equation (2.1) (for gaseous regimes) and equation (2.2)
(for condensed regimes).

Figure 2 clearly demonstrates the difference in accuracy of equations (2.1), (2.2) with the mentioned
{𝑏𝑛} and {𝑏true

𝑛 } sets (both sets contain 1000 integrals). There, the dashed lines show the isotherms of the
Lee-Yang model (two-dimensional square lattice gas [3]) obtained by using equation (2.1) (low-density
regimes) and equation (2.2) (high-density regimes) with the unmodified {𝑏𝑛} sets calculated on the basis
of the {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} sets at three different subcritical values of temperature (the critical temperature
𝑇𝐶 ≈ 0.5673𝜀/𝑘B for this model). In comparison with those dashed lines, the solid lines of figure 2 (the
isotherms of the same equations with the scaled {𝑏true

𝑛 } sets) are much closer to the exact solution [3]
(the circles in the figure) and, in particular, indicate almost identical pressure at the divergence regions
of equations (2.1), (2.2) — regions corresponding to the gas-liquid phase transitions at the same three

Table 5. Irreducible cluster integrals for the three-dimensional cubic model, where each particle can
interact with six nearest neighbors (𝑢0 = −3𝜀).

𝑘 𝑘𝛽𝑘𝜌
𝑘
0

1 6 𝑓 − 1
2 −18 𝑓 2 − 1
3 36 𝑓 4 + 60 𝑓 3 + 18 𝑓 2 − 1
4 −480 𝑓 5 − 450 𝑓 4 − 120 𝑓 3 − 1
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Table 6. Irreducible cluster integrals for the three-dimensional cubic model, where each particle can
interact with twenty six nearest neighbors (𝑢0 = −13𝜀).

𝑘 𝑘𝛽𝑘𝜌
𝑘
0

1 226 𝑓 − 1
2 264 𝑓 3 − 78 𝑓 2 − 1
3 804 𝑓 6 + 8280 𝑓 5 + 3312 𝑓 4 + 1324 𝑓 3 + 78 𝑓 2 − 1
4 1120 𝑓 10 + 15040 𝑓 9 + 109980 𝑓 8 + 399280 𝑓 7 + 277360 𝑓 6 − 36000 𝑓 5 − 22990 𝑓 4 + 2120 𝑓 3 − 1
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Figure 1. (Colour online) “Long-range interaction” model — the hard core interaction potential with
different interactions in the first two coordination spheres.

values of temperature.
In addition, a good agreement with exact condensation parameters [3] at various subcritical temper-

atures is demonstrated in figure 3 (see the solid lines close to each other). For comparison, the binodal of
the conventional Curie-Weiss mean-field approximation [37] (dashed line) is also presented in the figure.
The obvious consistency between the cluster expansion and exact solution testifies to the qualitative as
well as quantitative appropriateness of the described approach in subcritical regimes.

It should be noticed that, for other lattice-gas models, there exists no exact solution and, hence, this
approach can serve as a powerful analytical alternative to computer simulations.

For example, figure 4 shows the isotherms of a two-dimensional square lattice gas with the “long-
range interaction” potential including two attraction wells of different depth (𝜙1 = −𝜀, 𝜙2 = −𝜀/4), that
we hereafter call the “long-range attraction” potential. In fact, all the differences among the subcritical
isotherms of various lattice-gas models are quantitative rather than qualitative. The reader may compare
the isotherms of figure 4 with those presented in [23] for another “long-range interaction” model, where
four nearest particles are repulsed by each “central” particle (the barrier of height 𝜙1 = 𝜀 in the first
coordination sphere) and the other sixteen particles are attracted (the attraction well of double depth in
the second coordination sphere, 𝜙2 = −2𝜀): the isotherms are quite similar qualitatively.

3.2. Magnetization of ferromagnets

In accordance with table 1, the density expansion of equation (2.1) can be transformed to the following
expression for the dimensionless intensity of magnetization of the Ising model with arbitrary geometry
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Table 7. Irreducible cluster integrals for the two-dimensional “long-range interaction” model (𝑢0 =

2𝜙1 + 8𝜙2, see figure 1).

𝑘 𝑘𝛽𝑘𝜌
𝑘
0

1 4 𝑓1 + 16 𝑓2 − 1
2 (36 𝑓2 − 12) 𝑓 2

1 + 96 𝑓 2
2 𝑓1 + 72 𝑓 3

2 − 48 𝑓 2
2 − 1

3 (12 𝑓 2
2 + 24 𝑓2 + 12) 𝑓 4

1 + (192 𝑓 3
2 + 648 𝑓 2

2 − 144 𝑓2 + 40) 𝑓 3
1 + (216 𝑓 4

2 + 2112 𝑓 3
2 + 240 𝑓 2

2 − 216 𝑓2 + 12) 𝑓 2
1

+(240 𝑓 5
2 + 2400 𝑓 4

2 + 1104 𝑓 3
2 + 576 𝑓 2

2 ) 𝑓1 + 12 𝑓 6
2 + 792 𝑓 5

2 + 336 𝑓 4
2 − 272 𝑓 3

2 + 448 𝑓 2
2 − 1

4 (160 𝑓 5
2 + 800 𝑓 4

2 + 1600 𝑓 3
2 + 1280 𝑓 2

2 + 160 𝑓2 − 160) 𝑓 5
1

+(340 𝑓 6
2 + 3480 𝑓 5

2 + 12620 𝑓 4
2 + 16280 𝑓 3

2 − 1620 𝑓 2
2 + 320 𝑓2 − 220) 𝑓 4

1
+(320 𝑓 7

2 + 4960 𝑓 6
2 + 30080 𝑓 5

2 + 67200 𝑓 4
2 + 10800 𝑓 3

2 − 72000 𝑓 2
2 + 960 𝑓2 − 80) 𝑓 3

1
+(160 𝑓 8

2 + 3320 𝑓 7
2 + 28560 𝑓 6

2 + 106520 𝑓 5
2 + 55680 𝑓 4

2 − 18720 𝑓 3
2 − 1600 𝑓 2

2 + 360 𝑓2 ) 𝑓 2
1

+(880 𝑓 8
2 + 13280 𝑓 7

2 + 65840 𝑓 6
2 + 158400 𝑓 5

2 − 15840 𝑓 4
2 − 7360 𝑓 3

2 + 960 𝑓 2
2 ) 𝑓1

+980 𝑓 8
2 + 14680 𝑓 7

2 + 19160 𝑓 6
2 − 1440 𝑓 5

2 − 2800 𝑓 4
2 + 400 𝑓 3

2 − 1
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Figure 2. (Colour online) Isotherms of equation (2.1) (left-hand curves) and equation (2.2) (right-hand
curves) with the unmodified {𝑏𝑛} (dashed curves) and scaled {𝑏true

𝑛 } (solid curves) sets of 1000 reducible
cluster integrals defined on the basis of the {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} sets at various temperature values of the
two-dimensional square lattice gas (the Lee-Yang model). Circles correspond to the exact condensation
parameters [3].

and dimensionality:

𝐼 = −1 + 2
𝜌0

∞∑︁
𝑛=1

𝑛𝑏𝑛𝑥
𝑛, (3.1)

where the activity, 𝑧, is replaced by the 𝑥 variable,

𝑥 = 𝜌0 exp
(
2𝐻 + 𝑢0
𝑘B𝑇

)
,

and the 𝜌0 is now defined by the volume, 𝑣0, of a single cell of the ferromagnet: 𝜌0 = 1/𝑣0.
The physical and mathematical meaning of the reducible integrals, {𝑏𝑛 (𝑇)}, remains for the Ising

model the same as for the lattice-gas of identical geometry and dimensionality but with the “scaled”
interaction potential, 𝜙(𝑟) = 4Φ(𝑟) (see table 1).
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Figure 3. (Colour online) 𝑃(𝑇) binodal of the two-dimensional square lattice gas (the Lee-Yang model):
1 — the exact solution [3]; 2 — cluster expansions with {𝑏true

𝑛 } sets of 1000 integrals defined on the
basis of the {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} sets at various temperature values; 3 — the Curie-Weiss mean-field
approximation [37].
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Figure 4. (Colour online) Isotherms of equation (2.1) (left-hand curves) and equation (2.2) (right-hand
curves) for the 2D square “long-range attraction” lattice-gas model including two different attraction
wells in the first coordination sphere (the well depth is 𝜀) and second coordination sphere (the well depth
is 𝜀/4), respectively.

It is important to note that, at subcritical temperatures (i.e., temperatures below the Curie point), the
power series of equation (3.1) converges only at 𝑥 < 𝑥𝑆 , where 𝑥𝑆 is equal to 𝑧𝑆 defined by equation (2.7).
Moreover, the 𝑥 variable can be rewritten by using equation (2.7):

𝑥 = 𝑧𝑆 exp
(

2𝐻
𝑘B𝑇

)
. (3.2)

It is easy to see that equation (3.1) is valid only for negative magnetization (𝐼 < 0) at the correspond-
ingly negative external field (𝐻 < 0 and, hence, 𝑥 < 𝑥𝑆 = 𝑧𝑆). At a very strong negative external field
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(𝐻 → −∞), magnetization is totally negative (𝐼 → −1 at 𝑥 → 0) and its absolute value reduces when the
absolute value of 𝐻 reduces. Exactly at 𝐻 = 0 (𝑥 = 𝑧𝑆), the power series of equation (3.1) diverges from
some point, 𝐼 (−0) = −𝐼𝑚, in positive direction of 𝐼 and the value, 𝐼𝑚, has the meaning of spontaneous
magnetization.

In order to obtain the positive branch of the magnetization curve, 𝐼 (𝐻 > 0), the expansion for density
in equation (2.2) can be used:

𝐼 (𝐻 > 0) = 1 − 2
𝜌0

∞∑︁
𝑛=1

𝑛𝑏𝑛𝑦
𝑛, (3.3)

where the 𝑦 variable is reciprocal to the above-mentioned 𝑥 and corresponds to the “reciprocal activity”
of lattice gases in equation (2.3), i.e.,

𝑦 =
𝜌2

0
𝑥

exp
(
2
𝑢0
𝑘B𝑇

)
,

or, in accordance with equation (2.7),

𝑦 = 𝑧𝑆 exp
(
−2𝐻
𝑘B𝑇

)
. (3.4)

Thus, a very strong positive external field (𝐻 → ∞) corresponds to the totally positive magnetization
(𝐼 → 1 at 𝑦 → 0) and when the field reduces, the magnetization reduces too approaching some specific
value, 𝐼 (+0) = 𝐼𝑚, at 𝐻 → 0, where the expression for 𝐼 in equation (3.3) diverges in the negative
direction that corresponds to the jump (phase transition) up to the above-mentioned negative branch of
the magnetization curve.

As a result, equation (3.1) for 𝐼 (𝐻 < 0) and equation (3.3) for 𝐼 (𝐻 > 0) define the intensity of
magnetization as an odd function of 𝐻:

𝐼 (−𝐻) = −𝐼 (𝐻) .

Such absolute symmetry of equations (3.1) and (3.3) allows the practical usage of only one of them
as a general solution of the Ising problem based on Mayer’s cluster expansion. Moreover, their formally
distinct variables, 𝑥 and 𝑦, in equations (3.2) and (3.4), respectively, can actually be considered as
identical:

𝑥 ≡ 𝑦 = 𝑧𝑆 exp
(
−2 |𝐻 |
𝑘B𝑇

)
.

For example, figure 5 demonstrates the magnetization curves calculated for the two-dimensional
square Ising model with nearest-neighbor interactions at four different subcritical temperatures. When
𝐻 → 0, those curves come close to the corresponding spontaneous magnetization points of the exact
solution [38–40] known for this Ising model that, in turn, indicates the appropriateness of Mayer’s
expansion, in general, and the presented approximate approach to evaluate the large {𝑏𝑛} set, in particular.
Namely, changing the number of integrals in the

{
𝑏true
𝑛

}
set (from 100 to 10000) influences the results

almost insignificantly. As to the number of irreducible integrals, {𝛽𝑘}, used to construct the
{
𝑏true
𝑛

}
set

of arbitrary length, its influence on the results is more significant: in order to calculate the reducible
integrals for the curves of figure 5, the first five irreducible integrals are used whereas the decrease of
this number leads to more considerable deviations of curves from the mentioned exact solution.

Unfortunately, the exact parameters of spontaneous magnetization are only known for the two-
dimensional square Ising model with nearest-neighbor interactions that cannot help in testing the accuracy
of approximated Mayer’s expansion for other lattice models. Nevertheless, the usage of equation (3.3) for
a number of 2D and 3D models yields the results quite similar (at the qualitative level at least) to those
presented in figure 5 and, in detail, this similarity is considered in further sections.
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Figure 5. (Colour online) Magnetization curves of equation (3.3) (i.e., positive branches) for the two-
dimensional square Ising model (the Lee-Yang model). For each temperature, equation (3.3) included the
scaled {𝑏true

𝑛 } set of 1000 reducible cluster integrals defined on the basis of the {𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5} set.
The circles correspond to the exact solution for the spontaneous magnetization [38–40].

3.3. Spinodal decomposition in binary mixtures

In accordance with table 1, the lattice-gas expansions of equation (2.1) for pressure, 𝑃, and density,
𝜌, in powers of activity, 𝑧, turn into similar expansions of ln 𝑍𝑏 [see equation (2.11)] and 𝑛𝑎 (molar
fraction) in powers of 𝑧′ [see equation (2.10)] for a lattice model of some binary mixture. In 𝑧′, the model
parameter, 𝑢0, must now be defined as the potential energy per one mixture particle as if all the particles
interact with the reduced 𝜙′ (𝑟) potential [see equation (2.9)] no matter to which component, 𝑎 or 𝑏, those
particles actually belong.

Correspondingly, equation (2.10) for 𝑧′ can be rewritten in the following convenient form:

𝑧′ = 𝑧𝑆𝑋, (3.5)

where 𝑧𝑆 is the convergence radius [see equation (2.7)] of the activity series in powers of 𝑧′ and the
dimensionless variable,

𝑋 =
𝑍𝑎

𝑍𝑏

, (3.6)

may take the values from 0 to 1 in order to ensure the series convergence (𝑧′ < 𝑧𝑆).
As a result, Mayer’s expansions for a lattice model of binary mixtures takes the form,

ln 𝑍𝑏 = − 1
𝜌0

∑︁
𝑛⩾1

𝑏𝑛 (𝑧𝑆𝑋)𝑛

𝑛𝑎 =
1
𝜌0

∑︁
𝑛⩾1

𝑛𝑏𝑛 (𝑧𝑆𝑋)𝑛


(0 ⩽ 𝑋 < 1) . (3.7)

In the divergence region of equation (3.7) (i.e., at 𝑋 > 1), the corresponding “high-density” expansions
of equation (2.2) can be used, where 𝑃 and 𝜌 are again replaced by ln 𝑍𝑏 and 𝑛𝑎, respectively, and the
reciprocal activity of lattice-gas models [see equation (2.9)] is replaced by its analogy,

𝜂′ = 𝑧𝑆
1
𝑋
,
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Figure 6. (Colour online) Dependences of the 𝑋 = 𝑍𝑎/𝑍𝑏 parameter on the relative concentration of 𝑎
component, 𝑛𝑎, in the 3D cube-lattice model of binary mixtures at various subcritical temperatures.

for mixtures:
ln 𝑍𝑏 = − ln 𝑋 − 1

𝜌0

∑︁
𝑛⩾1

𝑏𝑛

( 𝑧𝑆
𝑋

)𝑛
𝑛𝑎 = 1 − 1

𝜌0

∑︁
𝑛⩾1

𝑛𝑏𝑛

( 𝑧𝑆
𝑋

)𝑛

(𝑋 > 1) . (3.8)

The usage of the dimensionless parameters 𝑛𝑎 (or 𝑛𝑏), 𝑍𝑏, 𝑍𝑎, as well as the dimensionless variable
𝑋 in equations (3.7), (3.8) significantly simplifies the transition from models of lattice gases to the
corresponding models of mixtures and makes the theoretical curves universal for different models: all
the specific parameters of the interaction potentials 𝜙𝑎𝑎, 𝜙𝑎𝑏, 𝜙𝑏𝑏 are actually incapsulated in the 𝑍𝑏, 𝑍𝑎

values and reduced potential, 𝜙′ (i.e., in the {𝑏𝑛} set).
In particular, figure 6 demonstrates the isothermal relation between 𝑛𝑎 and ln 𝑋 from equations (3.7),

(3.8) for the 3D cubic mixture model with the six n.n. attractions at several values of temperature. In
the calculations, the {𝑏true

𝑛 } set included 2000 reducible cluster integrals evaluated on the basis of the
first three irreducible integrals for this model (see table 5). The logarithmic dependence (i.e., using ln 𝑋

instead of 𝑋) makes the isotherms absolutely symmetrical with respect to the 𝑛𝑎 = 1/2 point.
It is important to note that each subcritical isotherm of figure 6 contains a horizontal interval (dashed

lines in the figure) corresponding to the divergence regimes of equations (3.7), (3.8) (when 𝑋 = 1). This
interval describes the two-phase states of the mixture at a given temperature, whereas the convergent
regimes of equations (3.7), (3.8) (left-hand and right-hand solid curves of each isotherm) correspond to
the concentrations of single-phase states at the same temperature.

From this point of view, any isotherm describes the increase of the 𝑛𝑎 concentration (corresponding
decrease of the 𝑛𝑏 concentration) in the mixture at constant temperature. In the low-concentration regimes,
𝑍𝑎 < 𝑍𝑏 and the 𝑎 component remains completely dissolved in the 𝑏 component. When 𝑍𝑎 reaches 𝑍𝑏,
the components tend to be separated from each other into two phases (the spinodal decomposition occurs).
Under the further increase of the 𝑛𝑎 concentration, one phase (where 𝑏 still prevails over 𝑎) decreases
and the second phase (where 𝑎 became prevailing over 𝑏) increases in bulk while 𝑍𝑎 stays equal to 𝑍𝑏.
At some concentration, 𝑛𝑎, high enough, 𝑍𝑎 becomes prevailing over 𝑍𝑏 — the first phase with the
prevailing 𝑏 component disappears and only the second phase with the prevailing 𝑎 component remains
in the system — the 𝑏 component becomes completely dissolved in the 𝑎 component.

Similarly, one can consider the process of cooling (or heating) the mixture of some constant concen-
tration, 𝑛𝑎 (see the dash-dotted line 𝐴𝐵 in figure 6). At some high temperature (see the 𝐴 point), the

13501-13



M. V. Ushcats et al.

0 0.2 0.4 0.6 0.8 1 

0 

0.2 

0.4 

0.6 

0.8 

1 

na 

Za 

0.4

 

T = 2.02e/kB 

T = 1.7e/kB 

T = 1.4e/kB 

f¢ = ¥ 

f¢ = 0 

f¢ =-e/4

f¢ =-e

 

A 

B 

Figure 7. (Colour online) Isothermal 𝑍𝑏 (solid lines) and 𝑍𝑎 (dashed lines) dependences on the 𝑎

component molar fraction (𝑛𝑎) for the two-dimensional “long-range attraction” mixture model. At each
temperature, equations (3.7), (3.8), (3.9) included the{𝑏true

𝑛 } set of 10000 reducible cluster integrals
defined on the basis of the {𝛽1, 𝛽2, 𝛽3, 𝛽4} set for that model.

mixture is in a single-phase state (where the 𝑎 component is dissolved in the 𝑏 component). Under the
cooling, the temperature can reach some low value, where the corresponding isotherm has the horizontal
interval at the given 𝑛𝑎 concentration (see the 𝐵 point in figure 6), and the spinodal decomposition occurs
in the mixture. Under a further cooling, the system remains split into the two phases (the 𝐵 point does
not change its position in the figure though it now belongs to other isotherms). Vice versa, the heating of
the mixture can move the system from the 𝐵 point, i.e., lead to the dissolution of its components.

As to the ln 𝑍𝑏 expansions of equations (3.7), (3.8), figure 7 demonstrates three isothermal 𝑍𝑏 (𝑛𝑎)
dependences (solid curves) for the 2D square “long-range attraction” model of mixture (the isotherms of
the corresponding lattice-gas model are shown in figure 4).

In case of perfect gaseous mixtures, a possible physical meaning for such 𝑍𝑏 parameter was proposed
by T. Hill [20]:

𝑍𝑏 =
𝑃𝑏

𝑃0
𝑏

,

where 𝑃𝑏 is the actual partial pressure of gaseous component 𝑏 in the mixture and 𝑃0
𝑏

is the pressure of
pure 𝑏 vapor at the same conditions. Thus, the gaseous components may be completely mixed at some low
or high concentrations (see curved intervals in figure 7) or split into two separate phases (see horizontal
intervals in figure 7) depending on temperature. At some constant concentration, 𝑛𝑎, the components
may be mixed at high temperature (see the 𝐴 point in figure 7) but separated at low temperature (see the
𝐵 point in the same figure).

As the 𝑋 variable defines the 𝑍𝑎/𝑍𝑏 ratio [see equation (3.6)], equations (3.7), (3.8) may also express
the 𝑍𝑎 (𝑋) dependence:

ln 𝑍𝑎 = ln 𝑋 − 1
𝜌0

∑︁
𝑛⩾1

𝑏𝑛 (𝑧𝑆𝑋)𝑛; 0 ⩽ 𝑋 < 1

ln 𝑍𝑎 = − 1
𝜌0

∑︁
𝑛⩾1

𝑏𝑛

( 𝑧𝑆
𝑋

)𝑛
; 𝑋 > 1


. (3.9)

As a result, the corresponding isothermal 𝑍𝑎 (𝑛𝑎) dependences (dashed curves in figure 7) are always
absolutely symmetrical to the 𝑍𝑏 (𝑛𝑎) ones.
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3.4. Universality in the behavior of different lattice models

As it is shown in previous sections, the known geometry and dimensionality of the lattice along
with a certain function, 𝜙

(
r𝑖 , r 𝑗

)
, must completely define the infinite set of reducible cluster integrals,

{𝑏𝑛 (𝑇)}, and, thus, describe the behavior of three different classes of lattice models: i) lattice gases
[see equations (2.1), (2.2)], where the 𝜙

(
r𝑖 , r 𝑗

)
has the meaning of the interaction energy per each

pair of molecules, 𝑖 and 𝑗 (the pairwise interaction potential); ii) the Ising model of ferromagnets [see
equations (3.1), (3.3)], where the interaction energy per each pair of spins, Φ

(
r𝑖 , r 𝑗

)
= 𝜙

(
r𝑖 , r 𝑗

)
/4;

iii) binary mixtures [see equations (3.7), (3.8)], where 𝜙
(
r𝑖 , r 𝑗

)
is equivalent to the reduced interaction

potential, 𝜙′
(
r𝑖 , r 𝑗

)
[see equation (2.9)].

In other words, if one studies the isotherms of some lattice gas, he or she can easily convert them to the
magnetization curves of the equivalent magnetic model as well as the 𝑍𝑏 (𝑛𝑎) [or 𝑍𝑎 (𝑛𝑎)] dependences
for the corresponding mixture model. Therefore, any observed regularity in the behavior of distinct lattice
gases would immediately mean the same regularity in the behavior of magnetics and mixtures, so let us
hereafter consider the behavior of a certain class of lattice models (say, the magnetic models) and then
expand the results to the other classes (i.e., lattice gases and mixtures).

First of all, it should be emphasized that the presented approach to the evaluation of the unlimited
{𝑏𝑛 (𝑇)} sets (see equation (2.8) and related paragraphs) is applicable at subcritical temperatures
exclusively (and, hence, for systems, where the critical point/Curie point exists). Only at subcritical
values of temperature, the attractive interactions may prevail over the repulsive ones in exp (𝜙/[𝑘B𝑇])
(in case of mixtures, the 𝑎-𝑎 and 𝑏-𝑏 attractions may prevail over the 𝑎-𝑏 one in exp {𝜙′/[𝑘B𝑇]}), the
reducible cluster integrals form a positive infinite set (in high orders at least), the corresponding power
series diverge at some 𝑧𝑆 point, equation (2.6) has a positive root, 𝜌𝑆 (𝑧𝑆) < 𝜌0/2, and the asymptotic
behavior of high-order reducible integrals can be expressed in terms of this 𝑧𝑆 [see equation (2.8)]. In
case of magnetics, it means that the spontaneous magnetization is possible [𝐼 (𝐻 → 0) = ±𝐼𝑚 ≠ 0]. In
case of lattice gases (or mixtures), there exists a jump of density (or concentration) at the 𝑧𝑆 point.

At supercritical temperatures, the {𝑏𝑛 (𝑇)} sets are sign-changing and the activity power series
are converging — the present approach becomes inapplicable to the evaluation of such {𝑏𝑛 (𝑇)} sets.
Moreover, this approach can hardly be used even at the vicinity of the critical point itself. As the value
of temperature comes close to the critical one, the behavior of cluster integrals becomes complicated
which, in turn, fatally affects the actual accuracy of the

{
𝑏true
𝑛

}
set approximated by using equation (2.8)

— in order to achieve a higher accuracy there, the initial {𝛽𝑘} sets should include much larger numbers
of irreducible integrals than those presented in tables 2, 3, 4, 5, 6, 7.

For the Lee-Yang model (see figures 2, 5), computations demonstrate that the varying of 𝑘max from 1
to 6 yields the deviations of results up to 4 ÷ 6% at the values of temperature sufficiently lower than the
critical one (𝑇 ⩽ 0.9𝑇𝐶) though, at higher values of temperature (closer to 𝑇𝐶), the deviations become
much larger (up to 10 ÷ 15%).

Unfortunately, this situation makes it difficult to determine the critical temperature for other lattice
models (for example, the 𝑇𝐶 of the “long-range attraction” model remains unknown at the moment).
Based on equations (3.1), (3.3) with the really accurate {𝑏𝑛 (𝑇)} set, the spontaneous magnetization,
𝐼𝑚, must theoretically tend to 0 exactly at 𝑇 → 𝑇𝐶 . In case of lattice gases (or mixtures), the left-hand
branch of the critical isotherm must meet the left-hand branch at 𝜌 = 𝜌0/2 (or 𝑛𝑎 = 1/2, see the lowest
isotherms in figure 7).

As the actual {𝑏𝑛 (𝑇)} sets are very approximate at the vicinity of 𝑇𝐶 , any practical evaluation of
the critical point by using the above-mentioned criterion (𝐼𝑚 → 0 at 𝑇 → 𝑇𝐶) yields the resulting
temperature considerably higher than the true 𝑇𝐶 (let us hereafter refer to such inaccurate critical
temperature as “pseudo-critical”, 𝑇0). For example, the varying of 𝑘max from 1 to 4 for 3D cubic
model with six nearest-neighbors (see table 5) changes such “pseudo-critical” temperature in the ranges
from 1.53𝜀/𝑘B to 1.51𝜀/𝑘B, whereas the numerically established critical temperature of this model
(𝑇𝐶 ≈ 1.12787891𝜀/𝑘B [41–43]) is actually 25% lower.

Despite the obvious inaccuracy of such "pseudo-critical" temperature, 𝑇0, it can easily be estimated
in calculations for various models (see Table 8), thus providing a convenient way to define the reduced
temperature, 𝑇∗ = 𝑇/𝑇0, in search for some universal parameters, because the dimensionless expressions
for 𝐼 (𝐻) in equations (3.1) and (3.3) are expected to behave similarly for different models at the same
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Table 8. Pseudo-critical temperature, 𝑇0, estimated for various models (for approximated virial series,
the value of spontaneous magnetization reaches zero at this temperature).

Model 𝑇0 (in 𝜀/𝑘B units)

2D Lee-Yang square model (4 neighbors) 0.98

2D square model (8 neighbors) 1.89

2D triangle model (6 neighbors) 1.4868

3D cubic model (6 neighbors) 1.51

3D cubic model (26 neighbors) 6.7

2D “long-range attraction” model 2.02
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Figure 8. (Colour online) Magnetization curves of various models at different values of the reduced
temperature, 𝑇∗ = 𝑇/𝑇0. The {𝑏true

𝑛 } set of equation (3.3) included 1000 reducible cluster integrals
calculated on the basis of the first three irreducible integrals for each model, {𝛽1, 𝛽2, 𝛽3}.

values of 𝑇∗: 𝐼 (𝐻 → 0) → 0 at 𝑇∗ → 1; 𝐼 (𝐻 → 0) → 1 at 𝑇∗ → 0; 𝐼 (𝐻 → ∞) → 1 at any 𝑇∗.
Indeed, the performed calculations have confirmed such qualitative and even quantitative similarity

for the models of various geometry and dimensionality with different interaction potentials (see figure 8).
In order to simplify that figure and to improve the visibility, the curves of only four models from table 8
are shown in figure 8, but, in fact, the curves of the other models well agree with the presented ones.

In terms of the reduced temperature, 𝑇∗, the loci of spontaneous magnetization points, 𝐼𝑚(𝑇), have
turned out to be also very similar for fundamentally different models of ferromagnets (see figure 9)

Some small deviations in the curves of figure 9 at the vicinity of 𝑇∗ = 1 are due to the difference in
the number of irreducible integrals used in the calculations of the curves (𝑘max = 3 for all models) and
estimations of 𝑇∗ itself (the maximum number of irreducible integrals known for each model).

As it is stated above, such quantitative universality in magnetization of fundamentally different lattice
models of ferromagnets immediately means the universality in phase-transitions of different lattice-gas
models and binary mixtures. This universality would not be surprising for mean-field approximations,
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Figure 9. (Colour online) Spontaneous magnetization curves, 𝐼𝑚 (𝑇∗), of various lattice models. All the
parameters of calculations are the same as for figure 8.

where, in fact, neither dimensionality nor interaction potential matter at a certain choice of the mean-
field model parameters. As to the considered cluster expansions, where the power coefficients (cluster
integrals) fundamentally differ depending on the mathematical form of the interaction potential as well
as the actual geometry and dimensionality of the model, the observed quantitative similarity deserves a
further attentive study and, in future, may considerably simplify the corresponding theoretical predictions
for some models remaining unexplored at the moment.

Though the presented here approach to approximate the subcritical {𝑏𝑛 (𝑇)} sets remains inapplicable
to the systems, where the first-order phase transitions cannot occur even at low temperatures (for example,
the repulsion always prevails over attraction in antiferromagnets or the 𝑎-𝑏 attraction may always prevail
over 𝑎-𝑎 and 𝑏-𝑏 ones in some mixtures/alloys), the obtained results can nevertheless be useful for
describing the so-called order-disorder phase transitions in such systems (for example, the well-known
transitions in brass as an alloy of copper and zinc).

Indeed, the degree of long-range order, 𝑠, of a certain antiferromagnet [with some hardcore inter-
action potential, Φ0(𝑟): Φ0(0) = ∞] is exactly the same as the spontaneous magnetization, 𝐼𝑚, of the
corresponding ferromagnet [with the hardcore interaction potential, Φ(𝑟), which is opposite to Φ0(𝑟) in
all the coordination spheres beginning from the first one : Φ(0) = ∞; Φ(𝑟 > 0) = −Φ0(𝑟)] at the same
temperature [20].

In other words, the temperature dependences of the long-range order degree, 𝑠(𝑇) for various anti-
ferromagnets are actually described by the curves presented in figure 9 for various ferromagnets: as the
temperature increases, the degree of long-range order decreases reaching 0 at 𝑇𝐶 (here, the 𝑇𝐶 value
should be associated with the temperature, above which no long-range order can exist). Similarly, the
same curves of figure 9 can describe the order-disorder transitions in mixtures or alloys.

4. Conclusions

Modern achievements in Mayer’s cluster expansion of the partition function have significantly ad-
vanced the statistical theory of phase-transitions — a long-standing challenging problem of statistical
mechanics and related fields (molecular physics, physical chemistry, etc.). In particular, a new approach
to approximate the unlimited set of Mayer’s cluster integrals (in practice, to the orders of thousands)
make the theoretical description of phase transitions correct qualitatively as well as quantitatively.

In particular, we can conclude about the high efficiency of such approximation approach as applied
to various statistical lattice models of matter, because the main parameter determining this approxima-
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tion — the phase-transition activity 𝑧𝑆 — can be exactly expressed analytically for these models [see
equation (2.7)].

Moreover, the recent reformulation of the mathematical relationship (see table 1) among the Ising
problem, statistical lattice models of gases and binary mixtures (alloys, solutions) has finally allowed
to eliminate the long-standing restriction traditionally inherent in such models — the simplification
of nearest-neighbor (n.n.) or next-nearest-neighbor (n.n.n.) interactions (when any system particle can
interact to others only in the closest coordination spheres with some constant energy) — thus, making the
lattice models more realistic and closer to various real systems. Due to this reformulation we may now
speak about a general “lattice statistics” instead of the old term of “nearest-neighbor lattice statistics”
(see [20]).

As a result, the phase-transitions can now be described with high accuracy for fundamentally different
systems: condensation phenomena in lattice gases (see figures 2, 4); spontaneous magnetization of
ferromagnets (see figures 5,8,9); spinodal decomposition phenomena in binary mixtures (see figures 6,
7). It is important to note that the mentioned approximation approach is based on the information about
only several low-order irreducible cluster integrals or virial coefficients (see tables 2, 3, 4, 5, 6, 7) and it
does not require any additional data (for example, empirical ones).

Another important conclusion concerns the observed universality in the behavior of different lattice
systems: when expressed in terms of some dimensionless parameters, the isotherms of lattice gases,
equilibrium curves of mixtures, and magnetization curves of ferromagnets are very similar qualitatively
and even quantitatively for the lattices of various geometry and dimensionality with different interaction
potentials at the same values of a certain reduced temperature (see figures 8, 9). This universality
deserves a further study and, potentially, it may considerably simplify theoretical predictions for some
lattice models unexplored yet.

Though, strictly saying, the discussed approach to approximate the {𝑏𝑛 (𝑇)} sets is applicable at
subcritical values of temperature only (i.e., for lattice models, where the first-order phase transitions
can occur), there is also a possibility to expand the presented results to the quantitative description
of fundamentally different phase transitions in other systems (such as the order-disorder transitions in
antiferromagnets and some specific mixtures/alloys).
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Успiхи групового пiдходу Майєра в кiлькiсному
теоретичному описi фазових перетворень для
рiзноманiтних ґратчастих моделей матерiї

М. В. Ушкац1, Л. А. Булавiн2, С. Ю. Ушкац1, Ж. Ю. Бурунiна1, О. В. Майборода1,
Н. О. Романчук1, Н. О. Шаповал1

1 Нацiональний унiверситет кораблебудування iм. адмiрала Макарова, просп. Героїв України, 9,
м. Миколаїв, 54025, Україна

2 Київський нацiональний унiверситет iм. Тараса Шевченка, просп. Академiка Глушкова, 2, м. Київ,
03680, Україна

Останнi досягнення в статистичнiй теорiї, а саме можливiсть вiдтворювати майже необмеженi ряди за сте-
пенями активностi в розкладi Майєра на основi iнформацiї про їх радiус збiжностi, з одного боку, та уза-
гальнення статистичних ґраткових моделей завдяки усуненню традицiйного спрощення взаємодiї лише
найближчих сусiдiв, з iншого боку, дозволили точно кiлькiсно описувати конденсацiю в ґраткових газах,
намагнiченiсть феромагнетикiв та спiнодальний розпад в бiнарних сумiшахшляхом визначення лише де-
кiлькох незвiдних групових iнтегралiв (вiрiальних коефiцiєнтiв). Зокрема, результати розрахункiв свiдчать
про якiсну i навiть кiлькiсну унiверсальнiсть у поведiнцi згаданих ґраткових систем рiзної геометрiї та ви-
мiрностi за однакових значень приведеної температури, якщо цю поведiнку виражати в термiнах певних
безрозмiрних параметрiв. У статтi також обговорюється додаткова можливiсть опису фазових переходiв
порядок-безлад в iнших ґраткових системах (наприклад, антиферомагнетиках i сплавах).

Ключовi слова: ґраткова модель, розклад Майєра, груповий iнтеграл, конденсацiя, намагнiчування,
спiнодальний розпад
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