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The excess entropy of restricted primitive model electrolytes is calculated using a potential based approach
through the symmetric Poisson-Boltzmann and the modified Poisson-Boltzmann theories. The theories are
utilized in conjunction with a statistical thermodynamics equation that is shown to be equivalent to thermo-
dynamic integration. Electrolyte systems having ionic valencies 1:1 and 2:2 with diameters 3 × 10−10 m and
4.25 ×10−10 m are treated over a wide range of concentrations. The exact radial distribution functions for the
model electrolytes obtained from Monte Carlo simulations in the canonical ensemble are compared with the
corresponding theoretical predictions. Furthermore, the radial distribution functions from the theories and the
simulations are used in the Laird-Haymet entropy expansion equations [ J. Chem. Phys., 1994, 100, 3775] to esti-
mate the excess entropy of the solutions. These equations take into accountmulti-particle distribution functions,
which are approximated using a “ring” term. In general, the modified Poisson-Boltzmann theory gives results
that are more consistent with the simulation data than those from the symmetric Poisson-Boltzmann theory.
The results show that the excess entropy is negative with its absolute value increasing for 1:1 electrolytes with in-
creasing concentration. The symmetric Poisson-Boltzmann values are slightly overestimated, while themodified
Poisson-Boltzmann values are slightly underestimated relative to the simulations. The curves for 1:1 electrolytes
including that from the Laird-Haymet equations are consistent with each other, while only the MPB curves for
2:2 electrolytes at 4.25 × 10−10 m are qualitative relative to the simulations up to about 1 mol/dm3. The 2:2
electrolyte curves reveal a characteristic inflection and plateau. The results obtained in the low concentration
range (< 0.01 mol/dm3) are consistent with the predictions of the Debye-Hückel limiting law.

Key words: electrolytes, restricted primitive model, entropy, thermodynamic integration, Monte Carlo
simulations, symmetric and modified Poisson-Boltzmann theories

1. Introduction

The concept of entropy is arguably one of the most intriguing ones in statistical thermodynamics.
The pioneering work in relating Clausius thermodynamic entropy 𝑆 to the probabilistic description of
the microscopic distributions of the molecules in a system was done by Boltzmann [1] reflected in his
famous equation

𝑆 = 𝑘B ln𝑊, (1)

where 𝑊 is the number of available microstates with 𝑘B being the Boltzmann’s constant. This equation
is equivalent to

𝑆 = −𝑘B
∑︁
𝑟

𝑝𝑟 ln 𝑝𝑟 , (2)
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where 𝑝𝑟 is the probability of a distribution [2]. The concept has found its way to other areas of modern
science, for example, Shannon’s entropy [3] in information theory has the same form as equation (2)
with analogous interpretation. Our interest in this work is more modest and we will be focusing on
the entropy of charged fluids. Entropy is one of the more important thermodynamic functions in such
systems, which is perhaps as significant as the osmotic and activity coefficients are in characterizing the
equilibrium propeties. A standard, traditional method of calculating entropy 𝑆 is through thermodynamic
integration (TI) [4, 5]. We will show (in the next section) that the TI is equivalent to a known equation in
statistical thermodynamics relating the excess free energy 𝐹 (ex) , the osmotic coefficient 𝜙, and the mean
activity coefficients 𝛾±. The use of the defining thermodynamic relation for the free energy then yields
the entropy.

Our second approach to estimating 𝑆 is through the radial distribution functions of the electrolytes.
The Boltzmann equation can also be expressed in terms of a partition function, and hence can be related
to the distribution of the constituent species. In the case of liquids, an early work in this respect is
due to Green [6] whose proposed equations turned out to be useful. These equations involve second
order (radial) and higher order distribution functions. Subsequently, Laird and Haymet used them to
calculate the excess entropy of hard spheres [7]. The contribution of higher order distribution functions
was approximated using a partial summation, the so-called ‘ring’ method developed by Hernando [8, 9].
Very good agreement for entropy was obtained relative to that from an exact expression emanating from
the Percus-Yevick (PY) approximation for hard spheres [5]. For electrolytes also, as in the case of hard
spheres, Laird and Haymet [10] approximated the entropy expansion up to the ‘ring’ term. Although
the equations developed by Laird and Haymet have some limitations, they represent an important step
towards using distribution functions to calculate the entropy of liquids and electrolytes. Silverstein, Dill
and Haymet investigated the solvation entropy using multi-molecular entropy expansion [11]. Lazaridis
dealt with solvation entropy, but in heterogeneous liquids and low concentrations [12]. It is also worth
noting the work of Lazaridis and Karplus [13], who, in addition to the radial distribution function, used
an indicative distribution function, which was a function of 5 angles, to describe the entropy of pure
water. Recently, Hernando and Blum proposed a new entropy component, which is related to density
fluctuations [14]. At the other end of the concentration scale, we have very dilute electrolytes. Their
chemical potential is described by the well-known Debye-Hückel limiting law (DHLL). Based on this
law, Laird and Haymet derived formulas for the limiting excess entropy and its components [10]. The
hypernetted chain (HNC) [4, 15, 16] approximation has also been used to calculate the electrolyte entropy.

In this study we will employ the symmetric Poisson-Boltzmann (SPB) and the modified Poisson-
Boltzmann (MPB) theories along with Monte Carlo (MC) simulations to evaluate the 𝜙, 𝛾±, the energy𝑈,
and hence the 𝑆. We will also use the mean spherical approximation (MSA) for comparison purposes.
With regard to the alternative approach, we will utilize the radial distribution profiles from the SPB,
MPB, and the simulations together with the LH expressions [10] to calculate 𝑆. In the rest of the paper we
will refer to the former procedure as TI and the latter as LH approximation. Symmetric valency 1:1 and
2:2 electrolytes will be treated for two different ionic sizes and for a range of concentrations. The SPB and
MPB are potential based approaches and had earlier proved to be valuable in characterizing structural and
thermodynamic properties of electrolytes and electrolyte mixtures including colloidal solutions [17–21].
The MSA, on the other hand, is a well known integral equation theory with the advantage of being
analytically tractable [5]. These theories have, however, not been previously applied to a calculation of
entropy of electrolytes. It is of interest to examine the viability of these approaches in estimating the
entropy in such systems. The SPB and MPB results will afford useful comparative assessment of the two
approaches vis-à-vis the simulations.

2. Model and methods

2.1. The model

The physical model of the electrolyte used in this work is the restricted primitive model (RPM).
The ions are depicted as equi-sized charged hard spheres in a structureless solvent approximated by a
continuum dielectric characterized by a dielectric constant 𝜀𝑟 . In the Hamiltonian, the pairwise additive
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interaction potential between two ions 𝑖 and 𝑗 separated by a distance 𝑟 is given by

𝑢𝑖 𝑗 (𝑟) =
{

∞, 𝑟 < 𝑑,

𝑒2𝑍𝑖𝑍 𝑗/(4π𝜀0𝜀𝑟𝑟), 𝑟 > 𝑑,
(3)

where 𝑍𝑖 is the valency of ion 𝑖, 𝜀0 is the vacuum permittivity, 𝑑 is the common ionic diameter, and 𝑒 is
the absolute value of the fundamental charge. We have further used symmetric 1:1 and 2:2 valencies and
𝑑 = 3×10−10 m or 4.25 ×10−10 m. The temperature 𝑇 and the relative permittivity 𝜀𝑟 were held constant
at 298.15 K and 78.5, respectively.

2.2. The equivalenceof thermodynamic integrationwith anequation in statistical ther-
modynamics

Using TI to calculate 𝑆 involves the calculation of the excess free energy 𝐹 (ex) by integrating the
energy 𝑈. In a charged fluid system in equilibrium, 𝑈 is simply the configurational potential energy. For
example, the electrical part of the free energy can be written [5, 17]

𝐹el =
∑︁
𝑖

𝑒𝑖𝜌𝑖

1∫
0

d𝜆 𝜓′
𝑖 (𝜆), (4)

where 𝜌𝑖 is the mean number density of ion species 𝑖, and

𝜓′
𝑖 = lim

2→1

[
𝜓𝑖 (𝑟12) −

𝑒𝑖

4π𝜀0𝜀𝑟𝑟12

]
, (5)

is the potential at the centre of ion 𝑖 at r1 due to all other ions, 𝜓𝑖 (𝑟12) is the mean electrostatic potential
at r2 given ion 𝑖 at r1 and 𝑒𝑖 = 𝑒𝑍𝑖 . The quantity 𝜆 is the charging parameter such that the charge of each
ion of type 𝑖 at any stage of the charging process is 𝜆𝑒𝑖 , where 0 ⩽ 𝜆 ⩽ 1 (Debye charging process).

From thermodynamics we have

1
𝛽

ln 𝛾el
𝑖 =

𝜕𝐹el

𝜕𝜌𝑖
= 𝑒𝑖

1∫
0

d𝜆 𝜓′
𝑖 (𝜆), (6)

where 𝛾el
𝑖

is the electrical part of the individual activity coefficient and 𝛽 = 1/(𝑘B𝑇). Taking 𝑖, 𝑗 = +,−,
we get from equations (4) and (6)

ln 𝛾el
± =

𝛽

𝜌

∑︁
𝑖

𝜌𝑖
𝜕𝐹el

𝜕𝜌𝑖
, (7)

with the total number density of ions 𝜌 =
∑

𝑖 𝜌𝑖 and 𝛾el
± , the electrical contribution to the mean activity

coefficient defined through

ln 𝛾el
± =

1
𝜌

∑︁
𝑖

𝜌𝑖 ln 𝛾el
𝑖 . (8)

This is indeed a general definition of the mean activity coefficient (starting from the individual activity
coefficients).

Consider now the thermodynamic expressions relating the excess osmotic coefficient 𝜙ex(= 𝜙 − 1),
the activity coefficient 𝛾𝑖 , and the excess free energy 𝐹ex

𝜙ex = − 𝛽𝐹ex

𝜌
+ 𝛽

𝜌

∑︁
𝑖

𝜌𝑖

(
𝜕𝐹ex

𝜕𝜌𝑖

)
, (9)

ln 𝛾𝑖 = 𝛽

(
𝜕𝐹ex

𝜕𝜌𝑖

)
. (10)

13801-3



S. Lamperski, L. B. Bhuiyan, C. W. Outhwaite, R. Gorniak

Equations (9) and (10) lead directly to the statistical thermodynamics equation

𝜙ex = − 𝛽𝐹ex

𝜌
+ ln 𝛾±. (11)

A similar equation has been used by Ruas et al. [22] using the binding MSA. Alternatively if the excess
properties can be written as the sum of the electrical and non-electrical parts, then equation (11) follows
from equations (7), (9) and (10).

Combining equation (11) with the thermodynamic definition of free energy, that is, 𝐹 = 𝑈 − 𝑇𝑆,
yields an expression for the excess entropy in the solution.

𝑆 (ex)

𝜌𝑘B
=

𝛽𝑈

𝜌
− ln 𝛾± + 𝜙ex. (12)

The left hand side of the above equation represents excess entropy per particle, while the first term on
the right hand side is the reduced energy per particle. This equation is just another representation of TI.
In passing, it is noted that in the MSA for a PM, the thermodynamic quantities such as 𝜙, ln 𝛾±, and 𝑈

have closed analytical forms [23–25], which is useful for a quick analysis of experimental data.

2.3. The SPB and MPB theories

The symmetric Poisson-Boltzmann and the modified Poisson-Boltzmann theories are both potential
based statistical mechanical approaches to the theory of bulk electrolytes. The details of the development
of these theories have been chronicled elsewhere in the literature [26–31]. We will restrict ourselves
here to outlining the salient features of the theories along with the relevant equations. As the term
“symmetric” indicates, the SPB originates in the efforts, initially by [26, 27] and later by Outhwaite and
co-workers [28–31], to symmetrize the radial distribution function 𝑔𝑖 𝑗 (𝑟) of the conventional non-linear
Poisson-Boltzmann (PB) theory with respect to an interchange of indices, that is, 𝑔𝑖 𝑗 (𝑟) = 𝑔 𝑗𝑖 (𝑟) for
asymmetric systems. In the SPB theory, the 𝑔𝑖 𝑗 (𝑟) reads

𝑔𝑖 𝑗 (𝑟) = 𝑔0
𝑖 𝑗 (𝑟) exp

{
− 𝛽𝑒

2

[
𝑍𝑖 (𝜓 𝑗 (𝑟) + 𝜓0

𝑗 (𝑟)) + 𝑍 𝑗 (𝜓𝑖 (𝑟) + 𝜓0
𝑖 (𝑟))

]}
. (13)

Here 𝜓𝑖 (𝑟) is the mean electrostatic potential about an ion of species 𝑖 at a distance 𝑟 , while 𝜓0
𝑖
(𝑟) =

𝜓𝑖 (𝑟; 𝑍𝑖 = 0) is the corresponding discharged potential. The discharged potentials are zero for a RPM
system so that the equation simplifies to

𝑔𝑖 𝑗 (𝑟) = 𝑔0
𝑖 𝑗 (𝑟) exp

{
− 𝛽𝑒

2
[
𝑍𝑖𝜓 𝑗 (𝑟) + 𝑍 𝑗𝜓𝑖 (𝑟)

]}
. (14)

The quantity 𝑔0
𝑖 𝑗
(𝑟) = 𝑔𝑖 𝑗 (𝑟; 𝑍 = 𝑍𝑡 = 0) is the exclusion volume term and is the radial distribution

function between the two discharged ions in a sea of fully charged ions. The SPB theory for the RPM is
completed by combining equation (14) with Poisson’s equation

∇2𝜓𝑖 (𝑟) = − 𝑒

𝜀0𝜀𝑟

∑︁
𝑗

𝑍 𝑗𝜌 𝑗𝑔𝑖 𝑗 (𝑟). (15)

The SPB has a mean field character although 𝑔0
𝑖 𝑗
(𝑟) does contain short-range hard-core effects. The

main inter-ionic correlations occur in the neglected fluctuation potential which incorporates both the
short-range and coulombic long-range contributions.

The fluctuation potentials, missing in the SPB theory, are accounted for in the MPB theory [29–31],
where the 𝑔𝑖 𝑗 (𝑟) now transforms to

𝑔𝑖 𝑗 (𝑟) = 𝑔0
𝑖 𝑗 (𝑟) exp

{
− 𝛽𝑒

2
[
𝑍𝑖𝐿𝑖 (𝑢 𝑗 ) + 𝑍 𝑗𝐿 𝑗 (𝑢𝑖)

]}
, (16)
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where

𝐿𝑖 (𝑢 𝑗 ) =
1

2𝑟 (1 + 𝜅𝑑)

𝑢 𝑗 (𝑟 + 𝑑) + 𝑢 𝑗 (𝑟 − 𝑑) + 𝜅

𝑟+𝑑∫
𝑟−𝑑

d𝑟 𝑢 𝑗 (𝑟)
 , (17)

𝜅 =

[
𝛽𝑒2

𝜀0𝜀𝑟

∑︁
𝑖

𝑍2
𝑖 𝜌𝑖

] 1
2

. (18)

Here, 𝜅 is the Debye-Hückel constant and 𝑢𝑖 (𝑟) = 𝑟𝜓𝑖 (𝑟). The equations (15)–(18) are the MPB equations
for a RPM electrolyte.

In both the SPB and MPB theories, the 𝑔0
𝑖 𝑗
(𝑟) were taken to be given by the Percus-Yevick (PY) hard

sphere radial distribution functions with Verlet-Weis (VW) corrections [32]. This has proved successful
in many previous applications of these theories to different electrolytes [33, 34].

2.4. Monte Carlo simulations

MC simulations were performed to obtain the internal energy𝑈/(𝜌𝑘B𝑇) and the osmotic coefficient 𝜙
in the canonical ensemble, while the mean activity coefficient 𝛾± was calculated in the inverse grand
canonical (IGCMC) ensemble [35], with the standard Metropolis algorithm being utilized in both cases.
Periodic boundary conditions and the minimum image convention were applied in all three directions.
In the canonical ensemble, the number of ions 𝑁 is constant, while for IGCMC it fluctuates. In both
cases equilibration runs were set between (1 − 30) × 107 steps while the production runs consisted of
(1 − 10) × 108 configurations. The interactions between ions were described by equation (3), which
includes both hard-sphere and electrostatic interactions.

The radial distribution function 𝑔𝑖 𝑗 (𝑟) can be generated using molecular computer simulations. The
results obtained are exact for the considered model and can serve as a reference point for assessing
an approximate theory. In statistical thermodynamics, 𝑔𝑖 𝑗 (𝑟) is defined as the probability of finding a
molecule 𝑗 located at a distance 𝑟 from a molecule 𝑖, called the central one. This definition is mathemat-
ically described by the equation

𝑔𝑖 𝑗 (𝑟) =
d𝑁 𝑗 (𝑟)
d𝑉 (𝑟)𝜌 𝑗

, (19)

where d𝑁 𝑗 is the average number of molecules 𝑗 in a spherical shell with radius 𝑟, thickness d𝑟 and
volume d𝑉 . In computer simulations, 𝑔𝑖 𝑗 (𝑟) is calculated from the above formula. A typical algorithm
can be found in the Frenkel and Smit textbook [36]. The calculations were carried out for a wide range
of electrolyte concentrations from 0.001 mol/dm3 to 6.76 mol/dm3. The canonical ensemble simulations
utilized 5000 ions at low concentrations with a step-length (in units scaled with respect to the side length
of the simulation box) close to unity. However, at high concentrations, these values were 2000 and 0.05,
respectively. Large numbers of ions ensured that the 𝑔𝑖 𝑗 (𝑟) functions converged to 1 at large distances,
which is a necessary condition to obtaining correct entropy data.

2.5. Laird-Haymet entropy expansions

The pair distributions 𝑔𝑖 𝑗 (𝑟)’s obtained from the MC, SPB, and MPB theories were used in the
entropy expansion, in terms of multi-particle correlations, developed initially by Hernando [8, 9] and
later by Laird and Haymet [10] to calculate the entropy. The LH formalism entails calculation of the
quantities 𝑆 (2) , 𝑆ring, both of which involve pair correlations, with the excess entropy being written as

𝑆 (ex) = 𝑆 (2) + 𝑆ring, (20)

the two terms on the right-hand side being the second and third terms in the entropy expansion. In
particular, 𝑆ring may be taken to be an indirect contribution of higher order terms.

For completeness, we quote here the specific expressions for 𝑆 (2) and 𝑆ring [10] using the present
notations:
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Figure 1. (Colour online) Radial distribution function, 𝑔𝑖 𝑗 (𝑟/𝑑) as a function of 𝑟/𝑑 for a RPM electrolyte,
𝑑 = 4.25 × 10−10 m, 𝑐 = 1.96 mol/dm3, 𝑇 = 298.15 K, and 𝜀𝑟 = 78.5. Legend: SPB (red lines), MPB
(green lines), and MC (black filled circles). Panel (a) 1:1 valency, panel (b) 2:2 valency.

𝑆 (2) = − 1
2𝜌

∑︁
𝑖

∑︁
𝑗

𝜌𝑖𝜌 𝑗

∫
dr𝑖 𝑗

[
𝑔𝑖 𝑗 (𝑟𝑖 𝑗 ) ln 𝑔𝑖 𝑗 (𝑟𝑖 𝑗 ) − 𝑔𝑖 𝑗 (𝑟𝑖 𝑗 ) + 1

]
, (21)

and
𝑆ring =

1
2𝜌(2π)3

∫
dk

[
ln |I + H̃(𝑘) | + 1

2
Tr

(
H̃2(𝑘)

)
− Tr

(
H̃(𝑘)

)]
. (22)

Here, H and I are 2×2 matrices, with the latter being the identity matrix.

H̃(𝑘)𝑖 𝑗 = 𝜌
1/2
𝑖

𝜌
1/2
𝑗

ℎ̃𝑖 𝑗 (𝑘), (23)

where ℎ̃𝑖 𝑗 (𝑘) is the Fourier transform of ℎ𝑖 𝑗 (𝑟) = 𝑔𝑖 𝑗 (𝑟) − 1, and for an isotropic, homogeneous fluid,
ℎ̃𝑖 𝑗 (𝑘) can be written as

ℎ̃𝑖 𝑗 (𝑘) = 4π
∞∫
0

d𝑟𝑟2 {𝑔𝑖 𝑗 (𝑟) − 1
} sin 𝑘𝑟

𝑘𝑟
. (24)

For numerical integration purposes, the right-hand sides of equations (21) and (22) were expanded
and cast in the following forms. For example, after expanding the right-hand side of equation (21), it can
be written as

𝑆 (2) = 𝐼1 + 𝐼2 + 𝐼3, (25)

𝐼1 = −3𝜂
∞∫
0

d𝑟∗𝑖𝑖 (𝑟∗𝑖𝑖)2 {𝑔𝑖𝑖 (𝑟∗) ln 𝑔𝑖𝑖 (𝑟∗) − 𝑔𝑖𝑖 (𝑟∗) + 1} , (26)
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Figure 2. (Colour online) Excess entropy 𝑆 (ex) as a function of the square root of electrolyte concentration
for a 1:1 valency RPM electrolyte. Legend: MPB𝑇𝐼 (solid green lines), MPB𝐿𝐻 (dashed green lines),
MC𝑇𝐼 (black filled), and MC𝐿𝐻 (black open circles). Panel (a) 𝑑 = 4.25 × 10−10 m, Panel (b) 𝑑 =

3×10−10 m. The SPB and MPB predictions are only distinguishable on the graphical scale at the highest
concentrations. The remaining RPM parameters as in figure 1.

𝐼2 = −6𝜂
∞∫
0

d𝑟∗𝑖 𝑗 (𝑟∗𝑖 𝑗 )2 {𝑔𝑖 𝑗 (𝑟∗) ln 𝑔𝑖 𝑗 (𝑟∗) − 𝑔𝑖 𝑗 (𝑟∗) + 1
}
, (27)

𝐼3 is now obtained from 𝐼1 simply by the interchange 𝑖 ↔ 𝑗 . In the above equations, 𝜂 = π
6 𝜌𝑎

3 is the
total packing fraction, and 𝑟∗ = 𝑟/𝑎. Defining further, 𝑦 = 𝑘𝑎, and 𝑀𝑖 𝑗 (𝑘) = ℎ̃𝑖 𝑗 (𝑘)/𝑎3, equation (22)
becomes

𝑆ring = 𝐼4 + 𝐼5 + 𝐼6, (28)

𝐼4 =
1

24π𝜂

∞∫
0

d𝑦𝑦2 ln

{
1 +

(
6𝜂
2π

)2
𝑀𝑖𝑖𝑀 𝑗 𝑗 +

(
6𝜂
2π

)
(𝑀𝑖𝑖 + 𝑀 𝑗 𝑗 ) −

(
6𝜂
2π

)2
𝑀2

𝑖 𝑗

}
, (29)

𝐼5 =
1

24π𝜂

∞∫
0

d𝑦𝑦2

{
1
2

(
6𝜂
2π

)2 (
𝑀2

𝑖𝑖 + 2𝑀2
𝑖 𝑗 + 𝑀2

𝑗 𝑗

)}
, (30)

and

𝐼6 = − 1
24π𝜂

∞∫
0

d𝑦𝑦2
(
6𝜂
2π

) (
𝑀𝑖𝑖 + 𝑀 𝑗 𝑗

)
. (31)
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Figure 3. (Colour online) Excess entropy 𝑆 (ex) as a function of the square root of electrolyte concentration
for a 2:2 valency RPM electrolyte, 𝑑 = 4.25 × 10−10 m. Legend: panel (a) MPB𝑇𝐼 (solid green lines),
MPB𝐿𝐻 (dashed green lines), MSA𝑇𝐼 (purple line), MC𝑇𝐼 (black filled circles), and MC𝐿𝐻 (black
open circles). Panel (b) SPB𝑇𝐼 (solid red lines), SPB𝐿𝐻 (dashed red lines), MSA𝑇𝐼 (purple line), MC𝑇𝐼

(black filled circles), and MC𝐿𝐻 (black open circles). The remaining RPM parameters as in figure 1.

The SPB, MPB, or MC results for 𝑆 (2) , 𝑆ring, and hence 𝑆 (ex) are now obtained by using the relevant
pair correlation functions 𝑔𝑖 𝑗 in the expressions for 𝐼1 − 𝐼6 with the integrals being evaluated by using
the Simpson rule. As a check on the numerics we could reproduce some of the results in table 1 of
reference [7] for a pure hard sphere fluid with the 𝑔𝑖 𝑗 given by the PY + VW theories.

Using the HNC equation, Laird and Haymet [10] showed that truncating the expansion beyond the
‘ring’ term was a viable approximation up to moderate solution concentrations. The DHLL values of
𝑆 (2) and 𝑆ring are

𝑆 (2) = − 𝜅3

32π𝜌
, (32)

and

𝑆ring = − 𝜅3

96π𝜌
(33)

with their sum giving the correct DHLL value of

𝑆 (ex) = − 𝜅3

24π𝜌
. (34)

Retention of 𝑆ring in equation (20) is thus required to give the requisite DHLL value [10]. These
DHLL expressions are linear with respect to

√
𝑐, and at a given concentration, depend only on the ionic

valency, being independent of ionic size.
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Figure 4. (Colour online) Excess entropy 𝑆 (ex) as a function of the square root of electrolyte concentration
in a 2:2 valency RPM electrolyte, 𝑑 = 3×10−10 m. Legend: panel (a) MPB𝑇𝐼 (solid green lines), MPB𝐿𝐻

(dashed green lines), MSA𝑇𝐼 (purple line), MC𝑇𝐼 (black filled circles), and MC𝐿𝐻 (black open circles).
Panel (b) SPB𝑇𝐼 (solid red lines), SPB𝐿𝐻 (dashed red lines), MSA𝑇𝐼 (purple line), MC𝑇𝐼 (black filled
circles), and MC𝐿𝐻 (black open circles). The remaining RPM parameters as in figure 1.

3. Results and discussion

In the theoretical SPB, MPB, and MSA calculations, and in the MC simulations, we have used the
following physical parameters for the RPM electrolyte. Two different values for the common diameter of
the ions were taken, 3 × 10−10 m and 4.25 × 10−10 m. Previously, we had worked with the latter value,
which to some extent takes into account the hydration of ions. However, the smaller diameter of the ion
results in an almost 3-fold reduction in the volume of the ion, which translates into a decrease in steric
interactions. To assess the effect of interionic electrostatic interactions on the entropy, we have also used
two different valencies, 1:1 and 2:2, respectively. A 2-fold increase in the charge of an ion is accompanied
by a 4-fold increase in electrostatic interactions. Thus, we have four all symmetric electrolyte models
that differ in ionic diameter and in ionic valency. In model A, the diameter was 𝑑 = 4.25 × 10−10 m and
the valency 𝑍 = ±1. In model B: 𝑑 = 4.25 × 10−10 m, 𝑍 = ±2, in C: 𝑑 = 3 × 10−10 m, 𝑍 = ± 1, and in
D: 𝑑 = 3 × 10−10 m, 𝑍 = ± 2. The theoretical calculations and the simulations were performed for 27
electrolyte concentrations ranging from 𝑐 = 0.0001 mol/dm3 to 𝑐 = 6.76 mol/dm3.

A basic quantity in our research is the radial distribution function 𝑔𝑖 𝑗 (𝑟) and so we begin this
discussion by illustrating some structural results manifest through 𝑔𝑖 𝑗 (𝑟) at some selected concentrations.
Figure 1 shows the SPB and MPB distribution functions at 𝑐 = 1.96 mol/dm3, while the symbols refer to
the MC data. The figure is for a RPM system with 𝑑 = 4.25× 10−10 m, and 1:1 valency (upper panel) and
2:2 valency (lower panel), respectively. The thickness of the ionic atmosphere is over three times the ion
diameter with the MC and MPB ionic profiles 𝑔𝑖 𝑗 (𝑟) displaying damped oscillations for both the systems.
Although the damped oscillations for the 1:1 case are relatively faint, they are quite substantial for the
higher 2:2 valency case. Such damped oscillations are typical of charged fluid systems. In electric double
layers, they can lead to overcharging of the electrode. At this high concentration, the MPB profiles are
still closely following their MC counterparts. However, the mean field SPB theory does not capture this
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Figure 5. (Colour online) Excess entropy 𝑆 (ex) as a function of the square root of an electrolyte concentra-
tion for a 1 : 1 RPM electrolyte , 𝑑 = 4.9 × 10−10 m, 𝑇 = 298 K, and 𝜀𝑟 = 78.356. Legend: SPB𝑇𝐼 (solid
red line), MPB𝑇𝐼 (solid green line), SPB𝐿𝐻 (dashed red line), MPB𝐿𝐻 (dashed green line), reference [4]
(4th column of table IV) (black stars), reference [4] (MC Widom) (red filled circles), reference [4] (HNC)
(blue squares). Panel (a) 𝑐1/2 ranges from 0.5 (mol/dm3)1/2 to 2(mol/dm3)1/2, panel (b) 𝑐1/2 ranges
from 1.35 (mol/dm3)1/2 to 2 (mol/dm3)1/2.

effect with the SPB 𝑔𝑖 𝑗 (𝑟) being monotonously decreasing and are thus not qualitative. The behaviour of
the 𝑔𝑖 𝑗 (𝑟) for the other two models involving 𝑑 = 3× 10−10 m are not shown as they show similar trends
to 𝑑 = 4.25× 10−10 m.

In figures 2–4 we show the TI results for the excess entropy 𝑆 (ex) as function of
√
𝑐 from the SPB, MPB,

MSA, and MC along with the corresponding results from the LH approximations. To avoid confusion,
we use the notation X𝑇𝐼 and X𝐿𝐻 to denote the two cases where X stands for SPB, MPB, MSA, or
MC. Figure 2 illustrates the MPB𝑇𝐼 (green curves), MPB𝐿𝐻 (green dashed curves), MC𝑇𝐼 (black filled
circles), and MC𝐿𝐻 (black open circles) for a 1:1 electrolyte at 𝑑 = 4.25 × 10−10 m (upper panel) and
𝑑 = 3× 10−10 m (lower panel). As can be seen, in either case, the curves and the symbols are remarkably
consistent with each other with hardly any visible difference among them. The corresponding SPB and
MSA curves lie on top of the MPB curves and are hence not displayed. We thus have that for the 1:1
valency (models A and C), the theories are capable of predicting the simulation data almost quantitatively
up to a fairly high concentration.

The situation changes substantially in figures 3 and 4, which show the 𝑆 (ex) for the 2:2 valencies at
𝑑 = 4.25 × 10−10 m and 𝑑 = 3 × 10−10 m, respectively. Although in figure 3 the theories are still broadly
qualitative, the SPB𝐿𝐻 and MPB𝐿𝐻 now reveal discrepancies from the simulation data, especially at
higher concentrations. With the exception of the MSA𝑇𝐼 , the theories and the MC𝑇𝐼 , MC𝐿𝐻 reveal a
plateau around 𝑐 ∼ 0.06 mol/dm3. The MSA𝑇𝐼 curve, on the other hand, decreases monotonously. Some
differences between the two sets of MC data also emerge at higher concentrations. This is possibly due
to the approximations in the LH entropy expansion scheme since the same 𝑔𝑖 𝑗 (𝑟)’s are used in the two
cases. The picture changes again in figure 4 at 𝑑 = 3×10−10 m, where the MC𝐿𝐻 shows a deep minimum
at low concentration (around 𝑐 ∼ 0.002 mol/dm3, while the MC𝑇𝐼 , SPB𝑇𝐼 , SPB𝐿𝐻 , MPB𝑇𝐼 , MPB𝐿𝐻
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Figure 6. (Colour online) Excess entropy 𝑆 (ex) , and its components, 𝑆 (2) , and, 𝑆ring, as functions of the
square root of electrolyte concentration for a 1:1 RPM electrolyte with ion diameter 𝑑 = 4.25× 10−10 m
at a low concentration regime. Legend: SPB𝐿𝐻 (dashed red lines), MPB𝐿𝐻 (dashed green lines), and
MC𝐿𝐻 (black open circles). DHLL (solid black line). The rest of the physical parameters as in figure 1.

have a shallow minimum. The MSA𝑇𝐼 continues to be monotonously decreasing as in figure 3. It is likely
that a simultaneous increase in Coulombic interactions and a decrease in steric interactions lead to a less
random distribution of particles at very low concentrations and hence to a decrease in entropy. The MPB
does not give the 𝑑 = 0 (zero ion size) limiting behaviour at low concentrations [37, 38], while for the
planar electric double layer it was suggested that the MPB decreases in accuracy as the ion diameter is
reduced [39]. Although perhaps not being the reason for the apparent “poor” behaviour for 2:2, it is an
indication that the MPB loses accuracy as ion size decreases at low concentrations.

A fundamental reason for the different dispositions of the TI and LH results for the 𝑆 (ex) for the SPB,
MPB, and MC in figures 2–4 can be traced back to the behaviour of the corresponding predicted 𝑔𝑖 𝑗 (𝑟)
vis-á-vis those of the simulations. For instance, in figure 1 at a fairly high 𝑐 = 1.96 mol/dm3, we saw
that for 1:1 valency case the SPB and the MPB profiles are quite reasonable relative to the simulations
but for 2:2 valency case there are discrepancies with the SPB, in particular, not being qualitative. Such
trends are likely to accentuate at still higher concentrations. This is manifested in the 𝑆 (ex) results in
these figures. In figure 2 (1:1 case) the MC𝑇𝐼 and MC𝐿𝐻 are virtually indistinguishable. The MPB𝐿𝐻

underestimates the simulations at very high concentrations (which may be attributed to the deviations in
the MPB profiles) and remain below the MPB𝑇𝐼 . Two other factors that are likely to impact more the 2:2
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Figure 7. (Colour online) The same as figure 6, but for a broader concentration regime. DHLL not shown
here.

valency results are:

(i) the neglect of the higher order terms beyond 𝑆ring in the LH expansion , and

(ii) the fact that the 𝑈 and 𝜙 (ex) terms in the TI expression [equation (12)]

involve only the contact values of the potential and distribution profiles, while 𝛾± are calculated using
the Güntelberg charging process [29, 30], which gives the expression somewhat of a local character. By
contrast, in evaluating the 𝑆 (ex) from the LH equations, the full range of the 𝑔𝑖 𝑗 (𝑟) is necessary. This
non-local nature is likely to lead to more errors.

We note here that at low concentrations for 2:2 valency cases in figures 3 and 4 the MC𝐿𝐻 𝑆 (ex) <
MC𝑇𝐼 𝑆

(ex) . The MPB𝐿𝐻 and MPB𝑇𝐼 follow the same trend, although differing numerically from the
simulation data. The SPB𝐿𝐻 and SPB𝑇𝐼 , on the other hand, reveal a different trend with SPB𝐿𝐻 𝑆 (ex) >
SPB𝑇𝐼 𝑆

(ex) over nearly the entire concentration region probed. The physical reason for this may well be
the effect of the missing inter-ionic correlations in the classical mean field theory.

We next compare our results with one set of results for 𝑆 (ex) for bulk electrolytes available in
the literature. Hummer and Soumpasis [4] calculated the 𝑆 (ex) for NaCl solutions using the RPM in
conjunction with HNC integral equation theory, Widom’s particle insertion MC technique, and an
entropy expansion. The physical parameters used by these authors were 𝑑 = 4.9× 10−10 m, 𝜀𝑟 = 78.356,
and 𝑇 = 298 K. In figure 5, we have plotted the entropy results at these parameters from the SPB𝑇𝐼 (solid
red line), the MPB𝑇𝐼 (solid green line), the SPB𝐿𝐻 (dashed red line), and the MPB𝐿𝐻 (dashed green
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Figure 8. (Colour online) Excess entropy 𝑆 (ex) and its components, 𝑆 (2) and 𝑆ring, as functions of
the square root of electrolyte concentration for a 2:2 RPM electrolyte, 𝑑 = 4.25 × 10−10 m, at a low
concentration regime. Legend: SPB𝐿𝐻 (dashed red lines), MPB𝐿𝐻 (dashed green lines), and MC𝐿𝐻

(black open circles). DHLL (solid black line). The rest of the physical parameters as in figure 1.

line) again as functions of
√
𝑐. The Hummer-Soumpasis results from table IV of reference [4] are shown

as: 𝑠 (2) + 𝑠 (3) (black stars), MC (Widom) (red filled circles), and HNC (blue squares). The SPB and MPB
curves compare reasonably well with the Hummer-Soumpasis data overall. The TI results from SPB and
MPB are almost quantitative with their MC values. The discrepancy between the SPB𝐿𝐻 or MPB𝐿𝐻 and
the 𝑠 (2) + 𝑠 (3) results is most likely due to the differences in the approximations involved in the entropy
expansion techniques.

In the next part of the work (figure 6–11), we examine more closely how the 𝑔𝑖 𝑗 (𝑟)’s for the four
electrolyte models (A, B, C, and D) affect the 𝑆 (ex) as a function of

√
𝑐. Some of the 𝑆 (ex) results for the

model systems were seen in the figures 2–5, but are included here for completeness. Figure 6 shows the
𝑆 (ex) and its constituent components 𝑆 (2) and 𝑆ring for model A in the low concentration range, where the
DHLL is applicable. As expected, all the DHLL curves are linear with respect to

√
𝑐. It is not surprising

that the SPB and the MPB curves together with the simulation results are also almost linear trending to
the correct low concentration DHLL behaviour. Minor noise in the MC𝐿𝐻 data points are visible in the
area of the lowest concentrations. This is presumably due to possible imprecision in our calculations.
At such low concentrations one needs to evaluate the 𝑔𝑖 𝑗 (𝑟)’s around an ion out to very large distances,
which can be challenging numerically. The magnitude of the 𝑆ring component of the 𝑆 (ex) is much smaller
than the magnitude of the 𝑆 (2) component. The lowest entropy values are predicted by the DHLL theory
followed by the MPB, MC and SPB. The results for a wider range of concentrations are shown in figure 7
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Figure 9. (Colour online) The same as figure 8, but for a broader concentration regime. DHLL not shown
here.

without DHLL. The remaining curves are no longer linear with the theories still being in good agreement
with the simulations. Starting from a value of 𝑐 ∼ 1 mol/dm3, a substantial decrease in 𝑆 (ex) and in its
components is visible, with the same ordering of the curves and symbols to the entropy as in figure 6.

In model B, the ionic valency increases relative to that in model A. The results for model B are shown
in figures 8 and 9, at low and high concentrations, respectively. Figure 8 reveals that even in the low
concentration regime, the curves, with the exception of the DHLL, are not linear. The 𝑆 (2) and 𝑆 (ex) curves
are convex, while the 𝑆ring curves are initially concave becoming more linear at higher concentrations.
The theories are qualitative with the simulations, although the MPB results tend to follow the MC data
more closely than do the corresponding SPB results. Note though that the scales in figure 8 are expanded
and the same curves appear closer together at the scales of figure 9 at low concentrations. Also in figure 9,
a sharp decrease in 𝑆 (2) , 𝑆ring, and 𝑆 (ex) is visible at low concentrations followed by an inflection point,
after which the curves become concave. The SPB curves pass through a maximum, the MC curves
have a flat plateau, and the MPB curves decrease monotonously. A similar pattern for 𝑆 (ex) for divalent
ions was observed by Laird and Haymet [10]. This behavior is somewhat similar to the dependence of
the logarithm of the activity coefficient on the square root of the concentration. At low concentrations,
electrostatic interactions dominate, which give a negative contribution to the activity coefficient, while
as the concentration increases, steric interactions start to become more relevant, which make a positive
contribution. It is not difficult to locate the boundary between the regions of dominance of electrostatic
and steric interactions. However, this is not the case with entropy, where both types of interactions lead to a
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Figure 10. (Colour online) Excess entropy 𝑆 (ex) and its components 𝑆 (2) and 𝑆ring, as functions of the
square root of electrolyte concentration for a 1:1 RPM electrolyte, 𝑑 = 3 × 10−10 m. Legend: SPB𝐿𝐻

(dashed red lines), MPB𝐿𝐻 (dashed green lines), and MC𝐿𝐻 (black open circles). DHLL (solid black
line). The rest of the physical parameters as in figure 1.

negative contribution. This blurs the boundaries between these areas so that increasing the interactions as
in model B may be helpful here. Figure 9 clearly shows three areas: predominant electrostatic interactions,
transient interactions, and predominant steric interactions.

The entropy curves for model C at low electrolyte concentrations are not shown as they are very
similar to those presented in figure 6 for model A. There are similarities also between the sets of curves
in figure 7 (model A) and in figure 10 (model C). For instance, overall the curves follow the MC data.
The MPB is semi-quantitative or better, although the SPB 𝑆ring curve deviates from the simulations at
higher concentrations displaying a slight hump. The other differences between the two models are: the
magnitudes of the 𝑆 (2) , 𝑆ring, and 𝑆 (ex) are smaller in figure 10 than in figure 7, and the 𝑆ring, and 𝑆 (ex)

curves have a slight inflection. This is likely caused by stronger electrostatic interactions as two ions can
be at closer proximity to each other.

There is a substantial change in the panorama in going from figure 9 (model B) at 𝑑 = 4.25×10−10 m
to figure 11 at 𝑑 = 3 × 10−10 m. The behaviour of the 𝑆 (ex) was explained earlier in relation to figure 4
and the TI results. Here, the MC data for both 𝑆 (2) and 𝑆ring also reveal a sharp drop at low concentrations
giving a minimum. The analogous SPB and MPB curves also show a minimum, but a much shallower
one. This behavior is again due to the increase in electrostatic interactions stemming from a reduced ion
size compared to that in model B. The increase in concentration leads to the appearance of a flat hump.
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Figure 11. (Colour online) Excess entropy 𝑆 (ex) and its components 𝑆 (2) and 𝑆ring, as functions of the
square root of electrolyte concentration for a 2:2 RPM electrolyte, 𝑑 = 3 × 10−10 m. Legend: SPB𝐿𝐻

(dashed red lines), MPB𝐿𝐻 (dashed green lines), and MC𝐿𝐻 (black open circles). DHLL (solid black
line). The rest of the physical parameters as in figure 1.
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Figure 12. (Colour online) Excess entropy 𝑆 (ex) as a function of the square root of electrolyte concentration
using the MPB𝐿𝐻 for the models A, B, C, and D.
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Figure 13. (Colour online) Comparison of the excess entropy, 𝑆 (ex) , from the SPB theory with the 𝑆 (2)

component from the MPB theory as functions of the square root of electrolyte concentration. The physical
parameters are from model A. Legend: SPB (red dashed line), MPB (dashed green line).

Subsequently, all the curves show a downward trend.
Figure 12 allows us to view the results from the point of view of steric interactions. For example,

models A and C differ in the size of the ions with model A having the larger ions. This results in the
𝑆 (ex) curves of model A are running below those in C. In the case of models B and D, the picture is
less clear. It is obscured by strong inter-ion electrostatic interactions. However, in the lower right corner
one can still observe that the curves for B begin to decline faster than those for D, which is clearly due
to greater steric interactions. The above analysis is based on the results obtained from MPB. Analogous
conclusions can be reached when analyzing the results of SPB and MC.

Finally, it is interesting to note that the inclusion of fluctuation terms in the MPB theory vis-à-vis the
ring approximation in the LH equations can have similar consequences. For example, figure 13 shows (for
model A) the 𝑆 (ex) obtained from the SPB theory and the 𝑆 (2) component obtained from the MPB theory
as functions of

√
𝑐. Note that the SPB curve includes the ring approximation rather then the fluctuation

terms, while the MPB curve includes the fluctuation terms rather then the ring approximation. Both
curves are very similar to each other.

4. Conclusions

The achievement of this paper has been an attempt to explore the statistical mechanical, potential
approaches of SPB and MPB theories to calculate the entropy of RPM electrolytes on the basis of (a)
thermodynamic integration, and (b) the LH equations [7, 10].

Although for charged fluids entropy is as important a thermodynamic variable as the osmotic and
activity coefficients are, calculation of the entropy has received relatively less attention perhaps because
of the issues involved in such calculations. From a theoretical perspective, an estimation of fluid entropy
necessitates a knowledge of the distribution functions to all orders, which is a difficult task. Besides
the thermodynamic integration, the LH entropy expansion suggests a way forward by an approximation
that partially accounts for the contribution of higher order distributions. Thus, only the second order
distribution, that is, the pair-correlation or pair distribution function, which is standard staple of any
formal theory, is needed explicitly. The earlier application of the LH procedure [10] involved an electrolyte
model with a soft repulsive core — not quite the primitive model.

The work here shows that overall for the RPM the SPB results for 𝑆 (ex) are generally qualitative with
that from the simulations at lower concentrations, while the MPB results are semi-quantitative or better.
Such trends are consistent with the SPB and MPB characterizations of thermodynamics, for instance,
osmotic and activity coefficients of primitive model electrolytes vis-à-vis the corresponding simulations
results reported earlier in the literature [18, 19]. Furthermore, the results from these potential based
theories at 𝑑 = 4.25 × 10−10 m for both 1:1 and 2:2 valencies show many similar characteristics as that
from the integral equation theory used by Laird and Haymet [10], although the electrolyte models are not
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identical. The SPB and MPB formalisms together with thermodynamic integration or LH equations are
also seen to reproduce well some excess entropy results of Hummer and Soumpasis [4] obtained using a
MC Widom particle insertion method, the HNC integral equation, and an entropy expansion.

An aspect of this work has been comparing the LH expansion results for the 𝑆 (ex) , evaluated by the
MC radial distribution functions, with that found by TI via simulation. For 1:1 electrolytes, the agreement
between the two approaches is excellent, with MC𝑇𝐼 ≃ 𝑀𝐶𝐿𝐻 . Deficiencies between the two approaches
arise, however, in the 2:2 case. For low concentrations with 𝑑 = 4.25 × 10−10 m, the LH expansion is
fairly reasonable and is qualitatively correct at the higher concentrations. With 𝑑 = 3 × 10−10 m the LH
scheme is inappropriate at low concentrations and is only qualitatively correct at higher concentrations.

The thermodynamic properties of 1:1 and 2:2 salts differ due to the strong interionic forces for
higher charges. Examples include the negative deviation of the 2:2 electrolyte mean activity coefficient
from the DHLL at high dilution, compared to the positive deviation for the 1:1 case, with an analogous
behaviour for the osmotic coefficient [40–42]. Bjerrum [43] introduced the idea of ion pairs which has
provided the inspiration for many a theoretical investigation involving ionic association [44, 45]. Support
for ion association has been given by integral equation theories, although the unmodified HNC theory
overestimates the pair and triple aggregates [46, 47]. It thus seems that ionic association is playing a
fairly significant role in the initial rapid decrease in 𝑆 (ex) at high dilution seen in figures 3 and 4, the
smaller radius leading to a deep minimum. The MPB accurately predicts the RPM 2:2 thermodynamic
and structural simulation results at 𝑑 = 4.25 × 10−10 m, with its accuracy reducing as 𝑑 decreases, as
well as those predictions related to the classical approach at low concentrations [48]. The SPB is less
successful than the MPB in predicting 𝑆 (ex) . As the MPB includes fluctuation terms, the interpretation of
ionic association can be ascribed to the addition of fluctuation terms into the mean field SPB theory. The
contribution of higher terms in the LH expansion is difficult to assess as these terms contain multi-particle
correlation functions. As indicated in the previous Section, for the 1:1 case at the treated parameters,
the comparison of the MC𝑇𝐼 and MC𝐿𝐻 data in figure 2 indicate that these higher terms make a
small or negligible contribution. Deviations occur between the simulation results for 2:2 electrolytes. At
𝑑 = 4.25×10−10 m, the MC𝑇𝐼 and MC𝐿𝐻 diverge at the higher concentrations, while with 𝑑 = 3×10−10 m,
the difference persists throughout the concentration range and can be very pronounced (figure 4). The
neglect of the higher order terms in the LH theory for 2:2 electrolytes can be interpreted as leading to an
increase in ion association, as ion size reduces, at high dilution.

Within the present formulation of the SPB theory, it might be feasible to incorporate a soft core
potential. The 𝑔0

𝑖 𝑗
would need to be replaced by the corresponding quantity for a soft potential. In case

of the MPB, however, the 𝐿𝑖 (𝑢 𝑗 ) also depends on the ion-size. Another possible extension of the present
work can be envisaged through the use of a variable dielectric constant. The dependence of the 𝜀𝑟 on
the solution concentration and/or temperature is an experimental phenomenon [44]. Some of us were
involved earlier in a thermodynamic analysis of some alkali halide solutions with a concentration or
temperature dependent 𝜀𝑟 using the SPB, MPB, and the MSA with encouraging results [19] . We hope
to build on the present study along these lines in future.
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Ентропiя електролiту в рамках обмеженої примiтивної
моделi з використанням пiдходу середнього
електростатичного потенцiалу

С. Ламперскi 1, Л. Б. Буiян2, К. В. Оутвайт3, Р. Горняк1

1 Хiмiчний факультет, Унiверситет iменi Адама Мiцкевича, вул. Познанського унiверситету, 8, 61-614
Познань, Польща

2 Лабораторiя теоретичної фiзики, Фiзичний факультет, Унiверситет Пуерто-Рiко
3 Вища школа математики та фiзики, унiверситет Шеффiлда, Шеффiлд S3 7RH, Великобританiя

Надлишкова ентропiя електролiтiв в рамках обмеженої примiтивної моделi розраховується з використа-
нням методу потенцiалу за допомогою симетричної теорiї Пуассона-Больцмана та модифiкованої теорiї
Пуассона-Больцмана. Цi теоретичнi пiдходи використовуються у поєднаннi з рiвнянням статистичної тер-
модинамiки, яке, як показано, є еквiвалентним термодинамiчному iнтегруванню. Системи електролiтiв
з iонними валентностями 1:1 i 2:2 та з дiаметрами 3 × 10−10 м i 4,25 ×10−10 м розглядаються в ши-
рокому дiапазонi концентрацiй. Точнi радiальнi функцiї розподiлу для модельних електролiтiв, отрима-
нi в результатi моделювання Монте-Карло в канонiчному ансамблi, порiвнюються з вiдповiдними тео-
ретичними передбаченнями. Крiм того, функцiї радiального розподiлу, отриманi як теоретичним чином
так i методом моделювання, використовуються в рiвняннях розкладу ентропiї Лейрда-Хаймета [J. Chem.
Phys., 1994, 100, 3775] для оцiнки надлишкової ентропiї розчинiв. Цi рiвняння враховують багаточастин-
ковi функцiї розподiлу, якi апроксимуються за допомогою “кiльцевого” доданка. Загалом, модифiкована
теорiя Пуассона-Больцмана дає результати, якi бiльш узгоджуються з даними моделювання, нiж з резуль-
тати симетричної теорiї Пуассона-Больцмана. Отриманi результати показують, що надлишкова ентропiя
є вiд’ємною, а її абсолютне значення зростає для електролiтiв 1:1 зi збiльшенням концентрацiї. Симетри-
чнi значення Пуассона-Больцмана дещо завищенi, а модифiкованi значення Пуассона-Больцмана дещо
заниженi у порiвняннi з модельними. Кривi для електролiтiв 1:1 включно з кривими, отриманими з рiв-
нянь Лейрда-Хаймета, узгоджуються одна з одною, тодi як кривi для електролiтiв 2:2 при 4, 25× 10−10 м,
отриманi в рамках модифiкованої теорiї Пуассона-Больцмана, лише якiсно узгоджуються з даними моде-
лювання до густин 1 моль/дм3. Кривi для електролiтiв 2:2 мають характерний перегин i плато. Результа-
ти, отриманi в дiапазонi низьких концентрацiй (< 0,01 моль/дм3), узгоджуються з передбаченнями закону
Дебая-Гюккеля.

Ключовi слова: електролiти, обмежена примiтивна модель, ентропiя, термодинамiчне iнтегрування,
метод Монте-Карло, симетризованi модифiкованi теорiї Пуассона-Больцмана
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