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The exact recursion relations are used to study the mixed half-integer spin-(3/2, 7/2) Blume–Capel Ising ferri-
magnetic system on the Bethe lattice. Ground-state phase diagrams are computed in the (𝐷𝐴/𝑞 |𝐽 |, 𝐷𝐵/𝑞 |𝐽 |)
plane to reveal different possible ground states of themodel. Using the thermal changes of the order-parameters,
interesting temperature dependent phase diagrams are constructed in the (𝐷𝐴/|𝐽 |, 𝑘𝑇/|𝐽 |), (𝐷𝐵/|𝐽 |, 𝑘𝑇/|𝐽 |)
planes as well as in the (𝐷/|𝐽 |, 𝑘𝑇/|𝐽 |) plane where 𝐷 = 𝐷𝐴 = 𝐷𝐵. It is revealed that the system exhibits
first- and second-order phase transitions and compensation temperatures for specific model parameter values.
Under the constraint of an external magnetic field, themodel also producesmulti-hysteresis behaviors as single,
double and triple hysteresis cycles. Particularly, the impacts of the ferrimagnetic coupling 𝐽 on the remanent
magnetization and the coercitive fields for selected values of the other physical parameters of the system are
pointed out. Our numerical results are qualitatively consistent with those reported in the literature.

Key words: recursion relations, Blume–Capel ferrimagnetic system, ground-state, Bethe lattice, hysteresis
loops

1. Introduction

A significant technological and industrial revolution that humanity has experienced in recent decades
is due to the numerous experimental research [1–4] and theoretical studies [5–8] carried out by researchers
in fundamental sciences. In condensed matter physics, most of these research has focused on studying
the thermodynamic and magnetic properties of various types of materials used in many applications
today [9–11]. Systems composed of mixed half-integer spins [5, 12–20] are of great importance in
condensed matter physics due to the various interesting magnetic properties they exhibit, including
critical behaviors, compensation properties, reentrance, and hysteresis. These properties are sought after
in these types of systems through various methods such as Monte Carlo simulation [12, 17, 19–21],
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effective field theory [6, 22], mean-field approximation [23], renormalization group method [24], exact
recursion relations [25] and so on.

The study of ferrimagnetics systems attracts an increasing attention due to their complex magnetic
properties, which are exploited in nanotechnology applications [26–28], especially in data storage de-
vices [29–33]. The case of the ferrimagnetic Blume–Capel model with mixed spin-(3/2, 7/2), which
has been the subject of several recent investigations, and has shown rich magnetic properties both in
the presence and absence of an external magnetic field. The magnetic behavior of this system has been
studied using the Monte Carlo simulation method [21, 23]. The bilinear antiferromagnetic interactions
between nearest neighbors and ferromagnetic interactions between second neighbors were considered,
revealing the presence of multiple hysteresis loops, exchange bias phenomenon, compensations, and
magnetization discontinuities in the system. Other studies have been conducted on the same model
without considering the interactions between second neighbors. For instance, the ferrimagnetic complex
[Cr(CN)4(µ-CN)2Gd(H2O)4-(bpy)]n.4nH2O.1.5nbpy was examined using the mean-field approximation
with the Bogoliubov inequality [34], showing compensation behaviors at low temperatures. The effects
of an external magnetic field on the total magnetization of this complex were also investigated using
Monte Carlo simulations [20], revealing single, double, triple and quintuple loops for different values of
the crystal field strengths in the sublattices.

While it is true that the Blume–Capel model with mixed spin-(3/2, 7/2) on a square lattice, with
only ferrimagnetic interactions between nearest neighbors, has already been sufficiently studied, yielding
interesting results, it remains important to verify and expand upon these results using other calculation
methods. Additionally, the study of phase diagrams in the planes formed by temperature and two ionic
anisotropies, as well as the effect of ferrimagnetic coupling on coercive field and remanent, which are
addressed in this work using the exact recursion relation calculations, have not yet appeared in the
literature for our model.

This article is structured as follows: section 2 is devoted to the description of the model and to the
methodology used. Results are presented and discussed in detail in section 3, followed by the conclusion
in section 4.

2. Model and formalism

In this work, we have considered the Blume–Capel model of ferrimagnetic Ising (𝐽 < 0) type with
mixed spins on the Bethe lattice consisting of a bipartite configuration of sublattices A and B of spins.
Each site of sublattice A is occupied by a spin-3/2 (spin-𝑠) with four discrete values ±3/2 and ±1/2, and
site of sublattice B is occupied by a spin-7/2 (spin-𝜎) with eight discrete values ±7/2, ±5/2, ±3/2, and
±1/2. The spins of the two sublattices alternate on the lattice, with a spin-𝑠 occupying the center. The
Hamiltonian describing this system may be written as follows:

𝐻 = −𝐽
∑︁
<𝑖, 𝑗>

𝑠𝑖𝜎𝑗 − 𝐷𝐴

∑︁
𝑖

𝑠2
𝑖 − 𝐷𝐵

∑︁
𝑗

𝜎2
𝑗 − ℎ

(∑︁
𝑖

𝑠𝑖 +
∑︁
𝑗

𝜎𝑗

)
, (2.1)

where 𝐽 represents the bilinear interaction parameter between spins of the two sublattices. 𝐷𝐴 and 𝐷𝐵

are the crystal fields acting on the sites of sublattices A and B, respectively, and ℎ is the external magnetic
field uniformly applied to the lattice.

The approach based on exact recursion relations (ERRs) used in this work is elaborately described in
reference [25]. In this approach, the partition function is defined as follows:

𝑍 =
∑︁
Conf

e−𝛽𝐻 =
∑︁
Spc

𝑃(Spc)

=
∑︁
{𝑠,𝜎}

exp
{
𝛽

[
𝐽
∑︁
<𝑖, 𝑗>

𝑠𝑖𝜎𝑗 + 𝐷𝐴

∑︁
𝑖

𝑠2
𝑖 + 𝐷𝐵

∑︁
𝑗

𝜎2
𝑗 + ℎ

(∑︁
𝑖

𝑠𝑖 +
∑︁
𝑗

𝜎𝑗

)]}
, (2.2)

where 𝑃(Spc) is considered to be an unnormalized probability distribution over spin configurations,
Spc ≡ 𝜎, 𝑠, etc. The probability distribution of spin configurations relative to a central spin 𝑠0 is
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expressed as follows:

𝑃({𝑠0}) = exp
[
𝛽
(
𝐷𝐴𝑠

2
0 + ℎ𝑠0

) ] 𝑞∏
𝑘=1

𝑄𝑛

(
𝑠0 |𝜎 (𝑘 )

1
)
. (2.3)

The function 𝑄𝑛 in equation (2.3) accounts for the interactions between the central spin and the 𝑞 nearest
neighbor spins 𝜎𝑘

1 , forming the 𝑘-th generation of spins, and is calculated as follows:

𝑄𝑛

(
𝑠0 |𝜎 (𝑘 )

1
)
= exp

[
𝛽
(
𝐽𝑠0𝜎

(𝑘 )
1 + 𝐷𝐵

(
𝜎

(𝑘 )
1

)2 + ℎ𝜎
(𝑘 )
1

) ] 𝑝∏
𝑙=1

𝑄𝑛−1
(
𝜎

(𝑘 )
1 |𝑠 (𝑙)2

)
, (2.4)

with

𝑄𝑛−1
(
𝜎

(𝑘 )
1 |𝑠 (𝑙)2

)
= exp

[
𝛽
(
𝐽𝑠

(𝑙)
2 𝜎1 + 𝐷𝐴

(
𝑠
(𝑙)
2

)2 + ℎ𝑠
(𝑙)
2

) ] 𝑝∏
𝑚=1

𝑄𝑛−2
(
𝑠
(𝑙)
2 |𝜎 (𝑚)

3
)

(2.5)

and 𝑝 = 𝑞 − 1.
Let us now introduce the partition function per branch of the sublattice 𝐴 as follows:

𝑔𝑛 ({𝑠0}) =
∑︁
{𝜎1 }

𝑄𝑛 (𝑠0 |{𝜎1}). (2.6)

By using equation (2.4), equation (2.6) explicitly becomes:

𝑔𝑛 (𝑠0) =
∑︁
𝜎1

exp
[
𝛽
(
𝐽𝑠0𝜎1 + 𝐷𝐵𝜎

2
1 + ℎ𝜎1

) ]
𝑔
𝑝

𝑛−1(𝜎1).

Taking into account the different values of 𝜎1 (±7/2, ±5/2, ±3/2,±1/2), the partial partition function
𝑔𝑛 (𝑠0) explicitly becomes:

𝑔𝑛 (𝑠0) = exp
[
𝛽
(
7𝐽𝑠0/2 + 49𝐷𝐵/4 + 7ℎ/2

) ]
𝑔
𝑝

𝑛−1(7/2)
+ exp

[
𝛽
(
5𝑠0𝐽/2 + 25𝐷𝐵/4 + 5ℎ/2

) ]
𝑔
𝑝

𝑛−1(5/2)
+ exp

[
𝛽
(
3𝐽𝑠0/2 + 9𝐷𝐵/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−1(3/2)
+ exp

[
𝛽
(
𝐽𝑠0/2 + 𝐷𝐵/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−1(1/2)
= exp

[
𝛽
(
− 7𝐽𝑠0/2 + 49𝐷𝐵/4 + 7ℎ/2

) ]
𝑔
𝑝

𝑛−1(7/2)
+ exp

[
𝛽
(
− 5𝑠0𝐽/2 + 25𝐷𝐵/4 + 5ℎ/2

) ]
𝑔
𝑝

𝑛−1(5/2)
+ exp

[
𝛽
(
− 3𝐽𝑠0/2 + 9𝐷𝐵/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−1(3/2)
+ exp

[
𝛽
(
− 𝐽𝑠0/2 + 𝐷𝐵/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−1(1/2). (2.7)

For each of the four values of 𝑠0 (±3/2,±1/2), we can calculate a partial partition function. Thus, for
𝑠0 = ±3/2

𝑔𝑛 (±3/2) = exp
[
𝛽
(
± 21𝐽/4 + 49𝐷𝐵/4 + 7ℎ/2

) ]
𝑔
𝑝

𝑛−1(7/2)
+ exp

[
𝛽
(
± 15𝐽/4 + 25𝐷𝐵/4 + 5ℎ/2

) ]
𝑔
𝑝

𝑛−1(5/2)
+ exp

[
𝛽
(
± 9𝐽/4 + 9𝐷𝐵/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−1(3/2)
+ exp

[
𝛽
(
± 3𝐽/4 + 𝐷𝐵/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−1(1/2)
+ exp

[
𝛽
(
∓ 21𝐽/4 + 49𝐷𝐵/4 − 7ℎ/2

) ]
𝑔
𝑝

𝑛−1(−7/2)
+ exp

[
𝛽
(
∓ 15𝐽/4 + 25𝐷𝐵/4 − 5ℎ/2

) ]
𝑔
𝑝

𝑛−1(−5/2)
+ exp

[
𝛽
(
∓ 9𝐽/4 + 9𝐷𝐵/4 − 3ℎ/2

) ]
𝑔
𝑝

𝑛−1(−3/2)
+ exp

[
𝛽
(
∓ 3𝐽/4 + 𝐷𝐵/4 − ℎ/2

) ]
𝑔
𝑝

𝑛−1(−1/2). (2.8)
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for 𝑠0 = ±1/2

𝑔𝑛 (±1/2) = exp
[
𝛽
(
± 7𝐽/4 + 49𝐷𝐵/4 + 7ℎ/2

) ]
𝑔
𝑝

𝑛−1(7/2)
+ exp

[
𝛽
(
± 5𝐽/4 + 25𝐷𝐵/4 + 5ℎ/2

) ]
𝑔
𝑝

𝑛−1(5/2)
+ exp

[
𝛽
(
± 3𝐽/4 + 9𝐷𝐵/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−1(3/2)
+ exp

[
𝛽
(
± 𝐽/4 + 𝐷𝐵/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−1(1/2)
+ exp

[
𝛽
(
∓ 7𝐽/4 + 49𝐷𝐵/4 − 7ℎ/2

) ]
𝑔
𝑝

𝑛−1(−7/2)
+ exp

[
𝛽
(
∓ 5𝐽/4 + 25𝐷𝐵/4 − 5ℎ/2

) ]
𝑔
𝑝

𝑛−1(−5/2)
+ exp

[
𝛽
(
∓ 3𝐽/4 + 9𝐷𝐵/4 − 3ℎ/2

) ]
𝑔
𝑝

𝑛−1(−3/2)
+ exp

[
𝛽
(
∓ 𝐽/4 + 𝐷𝐵/4 − ℎ/2

) ]
𝑔
𝑝

𝑛−1(−1/2). (2.9)

By analogy to (2.6), one can introduce the partition function per branch of the sublattice 𝐵 as follows:

𝑔𝑛−1(𝜎1) =
∑︁
𝑠2

exp
[
𝛽
(
𝐽𝑠2𝜎1 + 𝐷𝐴𝑠

2
2 + ℎ𝑠2

) ]
𝑔
𝑝

𝑛−2(𝑠2).

By summing over the four (04) values of 𝑠2, one can explicitly get

𝑔𝑛−1(𝜎1) = exp
[
𝛽
(
3𝐽𝜎1/2 + 9𝐷𝐴/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(3/2)
+ exp

[
𝛽
(
𝐽𝜎1/2 + 𝐷𝐴/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−2(1/2)
+ exp

[
𝛽
(
− 3𝐽𝜎1/2 + 9𝐷𝐴/4 − 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(−3/2)
+ exp

[
𝛽
(
− 𝐽𝜎1/2 + 𝐷𝐴/4 − ℎ/2

) ]
𝑔
𝑝

𝑛−2(−1/2). (2.10)

Then, it follows that:

𝑔𝑛−1(±7/2) = exp
[
𝛽
(
± 21𝐽/4 + 9𝐷𝐴/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(3/2)
+ exp

[
𝛽
(
± 7𝐽/4 + 𝐷𝐴/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−2(1/2)
+ exp

[
𝛽
(
∓ 21𝐽/4 + 9𝐷𝐴/4 − 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(−3/2)
+ exp

[
𝛽
(
∓ 7𝐽/4 + 𝐷𝐴/4 − ℎ/2

) ]
𝑔
𝑝

𝑛−2(−1/2), (2.11)

𝑔𝑛−1(±5/2) = exp
[
𝛽
(
± 15𝐽/4 + 9𝐷𝐴/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(3/2)
+ exp

[
𝛽
(
± 5𝐽/4 + 𝐷𝐴/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−2(1/2)
+ exp

[
𝛽
(
∓ 15𝐽/4 + 9𝐷𝐴/4 − 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(−3/2)
+ exp

[
𝛽
(
∓ 5𝐽/4 + 𝐷𝐴/4 − ℎ/2

) ]
𝑔
𝑝

𝑛−2(−1/2), (2.12)

𝑔𝑛−1(±3/2) = exp
[
𝛽
(
± 9𝐽/4 + 9𝐷𝐴/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(3/2)
+ exp

[
𝛽
(
± 3𝐽/4 + 𝐷𝐴/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−2(1/2)
+ exp

[
𝛽
(
∓ 9𝐽/4 + 9𝐷𝐴/4 − 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(−3/2)
+ exp

[
𝛽
(
∓ 3𝐽/4 + 𝐷𝐴/4 − ℎ/2

) ]
𝑔
𝑝

𝑛−2(−1/2), (2.13)

and

𝑔𝑛−1(±1/2) = exp
[
𝛽
(
± 3𝐽/4 + 9𝐷𝐴/4 + 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(3/2)
+ exp

[
𝛽
(
± 𝐽/4 + 𝐷𝐴/4 + ℎ/2

) ]
𝑔
𝑝

𝑛−2(1/2)
+ exp

[
𝛽
(
∓ 3𝐽/4 + 9𝐷𝐴/4 − 3ℎ/2

) ]
𝑔
𝑝

𝑛−2(−3/2)
+ exp

[
𝛽
(
∓ 𝐽/4 + 𝐷𝐴/4 − ℎ/2

) ]
𝑔
𝑝

𝑛−2(−1/2). (2.14)
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By utilizing equations (2.8)–(2.9) and then equations (2.11)–(2.14), one can compute the exact recursion
relations, defined, on the one hand, as the ratio of the functions 𝑔𝑛 for spin-3/2

𝑋1 =
𝑔𝑛 (3/2)
𝑔𝑛 (−1/2) , 𝑋2 =

𝑔𝑛 (1/2)
𝑔𝑛 (−1/2) , 𝑋3 =

𝑔𝑛 (−3/2)
𝑔𝑛 (−1/2) , (2.15)

and, on the other hand, as the ratio of the functions 𝑔𝑛−1 for spin-7/2

𝑌1 =
𝑔𝑛−1(7/2)
𝑔𝑛−1(−1/2) , 𝑌2 =

𝑔𝑛−1(5/2)
𝑔𝑛−1(−1/2) , 𝑌3 =

𝑔𝑛−1(3/2)
𝑔𝑛−1(−1/2) , (2.16)

𝑌4 =
𝑔𝑛−1(1/2)
𝑔𝑛−1(−1/2) , 𝑌5 =

𝑔𝑛−1(−7/2)
𝑔𝑛−1(−1/2) , 𝑌6 =

𝑔𝑛−1(−5/2)
𝑔𝑛−1(−1/2) , 𝑌7 =

𝑔𝑛−1(−3/2)
𝑔𝑛−1(−1/2) .

The pursued objective is to obtain the order parameters in terms of these relations in equations (2.15)
and (2.16). Thus, the magnetization of sublattice A, being considered as the central spin, is given by

𝑀𝐴 = 𝑍−1
∑︁
{𝑠0 }

𝑠0𝑃({𝑠0}) = 𝑍−1
∑︁
𝑠0

𝑠0 exp
[
𝛽
(
𝐷𝐴𝑠

2
0 + ℎ𝑠0

) ]
𝑔
𝑞
𝑛 (𝑠0) (2.17)

and is derived in terms of exact recursion relations as follows:

𝑀𝐴 =
[
3e𝛽 (9𝐷𝐴/4+3ℎ/2)𝑋𝑞

1 + e𝛽 (𝐷𝐴/4+ℎ/2)𝑋𝑞

2

− 3e𝛽 (9𝐷𝐴/4−3ℎ/2)𝑋𝑞

3 − e𝛽 (𝐷𝐴/4−ℎ/2) ]/[2(e𝛽 (9𝐷𝐴/4+3ℎ/2)𝑋𝑞

1

+ e𝛽 (𝐷𝐴/4+ℎ/2)𝑋𝑞

2 + e𝛽 (9𝐷𝐴/4−3ℎ/2)𝑋𝑞

3 + e𝛽 (𝐷𝐴/4−ℎ/2) ) ] . (2.18)

Similarly, the magnetization of sublattice B is explicitly calculated as follows:

𝑀𝐵 =
[
7e𝛽 (49𝐷𝐵/4+7ℎ/2)𝑌𝑞

1 + 5e𝛽 (25𝐷𝐵/4+5ℎ/2)𝑌𝑞

2 + 3e𝛽 (9𝐷𝐵/4+3ℎ/2)𝑌𝑞

3

+ e𝛽 (𝐷𝐵/4+ℎ/2)𝑌4 − 7e𝛽 (49𝐷𝐵/4−7ℎ/2)𝑌𝑞

5 − 5e𝛽 (25𝐷𝐵/4−5ℎ/2)𝑌𝑞

6

− 3e𝛽 (9𝐷𝐵/4−3ℎ/2)𝑌𝑞

7 − e𝛽 (𝐷𝐵/4−ℎ/2) ]/[2(e𝛽 (49𝐷𝐵/4+7ℎ/2)𝑌𝑞

1

+ e𝛽 (25𝐷𝐵/4+5ℎ/2)𝑌𝑞

2 + e𝛽 (9𝐷𝐵/4+3ℎ/2)𝑌𝑞

3 + e𝛽 (𝐷𝐵/4+ℎ/2)𝑌4

+ e𝛽 (49𝐷𝐵/4−7ℎ/2)𝑌𝑞

5 + e𝛽 (25𝐷𝐵/4−5ℎ/2)𝑌𝑞

6 + e𝛽 (9𝐷𝐵/4−3ℎ/2)𝑌𝑞

7 + e𝛽 (𝐷𝐵/4−ℎ/2) ) ] . (2.19)

With the expressions of magnetizations established, one can readily determine the equations for the
critical temperatures. It is worth noting that a second-order transition occurs when magnetizations vanish
continuously, while a first-order transition is characterized by a discontinuity in the nullification of the
magnetizations.

At the critical temperatures, the following relations must be satisfied as follows:

𝑀𝐴 = 3e9𝛽𝑐𝐷𝐴/4 [𝑋𝑞

1 − 𝑋
𝑞

3 ] + e𝛽𝑐𝐷𝐴/4 [𝑋𝑞

2 − 1] = 0 (2.20)

and

𝑀𝐵 = 7e49𝛽𝑐𝐷𝐵/4 [𝑌𝑞

1 − 𝑌
𝑞

5 ] + 5e25𝛽𝑐𝐷𝐵/4 [𝑌𝑞

2 − 𝑌
𝑞

6 ]
+ 3e9𝛽𝑐𝐷𝐵/4 [𝑌𝑞

3 − 𝑌
𝑞

7 ] + e𝛽𝑐𝐷𝐵/4 [𝑌𝑞

4 − 1] = 0. (2.21)

The conditions (2.20) and (2.21) are satisfied when 𝑋1 = 𝑋3 and 𝑋2 = 1, while 𝑌1 = 𝑌5, 𝑌2 = 𝑌6, 𝑌3 = 𝑌7
and 𝑌4 = 1.

Explicitly, we have

𝑋1 = 𝑋3 =
[
e49𝛽𝑐𝐷𝐵/4 cosh(21𝛽𝑐𝐽/4)𝑌 𝑝

1 + e25𝛽𝑐𝐷𝐵/4 cosh(15𝛽𝑐𝐽/4)𝑌 𝑝

2

+e9𝛽𝑐𝐷𝐵/4 cosh(9𝛽𝑐𝐽/4)𝑌 𝑝

3 e𝛽𝑐𝐷𝐵/4 cosh(3𝛽𝑐𝐽/4)
]

×
[
e49𝛽𝐷𝐵/4 cosh(7𝛽𝑐𝐽/4)𝑌 𝑝

1 + e25𝛽𝑐𝐷𝐵/4 cosh(5𝛽𝑐𝐽/4)𝑌 𝑝

2

+e9𝛽𝑐𝐷𝐵/4 cosh(3𝛽𝑐𝐽/4)𝑌 𝑝

3 + e𝛽𝑐𝐷𝐵/4 cosh(𝛽𝑐𝐽/4)
]−1

, (2.22)
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𝑌1 = 𝑌5 =
[
e9𝛽𝑐𝐷𝐴/4 cosh(21𝛽𝑐𝐽/4)𝑋 𝑝

1 + e𝛽𝑐𝐷𝐴/4 cosh(7𝛽𝑐𝐽/4)
]

×
[
e9𝛽𝑐𝐷𝐴/4 cosh(3𝛽𝑐𝐽/4)𝑋 𝑝

1 + e𝛽𝑐𝐷𝐴/4 cosh(𝛽𝑐𝐽/4)
]−1

, (2.23)

𝑌2 = 𝑌6 =
[
e9𝛽𝑐𝐷𝐴/4 cosh(15𝛽𝑐𝐽/4)𝑋 𝑝

1 + e𝛽𝑐𝐷𝐴/4 cosh(5𝛽𝑐𝐽/4)
]

×
[
e9𝛽𝑐𝐷𝐴/4 cosh(3𝛽𝑐𝐽/4)𝑋 𝑝

1 + e𝛽𝑐𝐷𝐴/4 cosh(𝛽𝑐𝐽/4)
]−1

, (2.24)

and

𝑌3 = 𝑌7 =
[
e9𝛽𝑐𝐷𝐴/4 cosh(9𝛽𝑐𝐽/4)𝑋 𝑝

1 + e𝛽𝑐𝐷𝐴/4 cosh(3𝛽𝑐𝐽/4)
]

×
[
e9𝛽𝑐𝐷𝐴/4 cosh(3𝛽𝑐𝐽/4)𝑋 𝑝

1 + e𝛽𝑐𝐷𝐴/4 cosh(𝛽𝑐𝐽/4)
]−1

. (2.25)

In order to elucidate the compensation behavior in the model, we introduce the total magnetization
expressed as follows:

𝑀𝑇 =
1
2
(𝑀𝐴 + 𝑀𝐵) . (2.26)

For this purpose, we recall that the compensation temperature, denoted as 𝑇comp, is the temperature at
which the total magnetization of the system vanishes before the transition. It is also the temperature at
which the absolute values of the sublattice magnetizations are equal, i.e., at 𝑇comp

𝑀𝑇 (𝑇comp) = 0 and |𝑀𝐴(𝑇comp) | = |𝑀𝐵 (𝑇comp) | ≠ 0. (2.27)

3. Discussions of the numerical findings

3.1. Ground states phase diagram

In order to determine the existence domains of the various ground states of our system, we have
constructed the phase diagram in the (𝐷𝐴/𝑞 |𝐽 |, 𝐷𝐵/𝑞 |𝐽 |) plane in the absence of magnetic field (ℎ = 0).
These ground states correspond to the states of minimum energy and are obtained by comparing the values
of the internal energy 𝐻0 per site for different spin configurations. This energy 𝐻0 can be expressed as
follows:

𝐻0 = 𝑠𝑖𝜎𝑗 −
1

𝑞 |𝐽 |
(
𝐷𝐴𝑠

2
𝑖 + 𝐷𝐵𝜎

2
𝑗

)
. (3.1)

Taking into account the ferrimagnetic interaction (𝐽 < 0) and the possible values for the spins of type-𝑠
and type-𝜎, we find eight spin configurations; namely

( 3
2 , − 7

2
)
,
( 3

2 , − 5
2
)
,
( 3

2 , − 3
2
)
,
( 3

2 , − 1
2
)
,
( 1

2 , − 7
2
)
,
( 1

2 ,
− 5

2
)
,
( 1

2 , − 3
2
)
, and

( 1
2 , − 1

2
)
.

The comparison of energies for these different spin configurations has led to the ground state phase
diagram constructed in the (𝐷𝐴/𝑞 |𝐽 |, 𝐷𝐵/𝑞 |𝐽 |) plane for all values of the coordination number 𝑞 in
figure 1. In this figure, one can observe the existence of multiple phases lines as well as the multicritical
points; namely A

(
− 7

4 , − 1
12
)
, B

(
− 13

8 , − 1
8
)
, C

(
− 1, − 7

4
)
, D

(
− 5

8 , − 3
8
)

and E
(
− 1

4 , − 3
4
)
, where at least

three phases coexist. This initial result is in excellent agreement with the one reported in reference [34]
where the ground state phase diagram of the same model is constructed in the same plane but for 𝑞 = 4.

3.2. Thermal and compensation behaviors

The previous section devoted to the construction of the ground states phase diagram allowed us to
identify the various ground states exhibited by our system, as well as their range of existence. These will
be utilized in the current section to verify the saturation values of the magnetizations 𝑀𝐴 and 𝑀𝐵 of
the two sublattices of the system. The magnetization curves plotted here, obtained through numerical
resolution of equations (2.20)–(2.21), have been the subject to the analysis for various values of 𝐷𝐴/|𝐽 |
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Figure 1. Ground states phase diagram of the model in the (𝐷𝐴/𝑞 |𝐽 |, 𝐷𝐵/𝑞 |𝐽 |) plane. Here, 𝑞 denotes
the coordination number.

and 𝐷𝐵/|𝐽 | in the absence of the magnetic field (ℎ/|𝐽 | = 0). The initial thermal variations of the
magnetizations analyzed are illustrated in figure 2 for 𝐷𝐴/|𝐽 | = 4.0 and selected values of 𝐷𝐵/|𝐽 | as
indicated in the figure. As can be observed, 𝑀𝐴 starts from its saturation value of 3

2 for all values of
𝐷𝐵/|𝐽 |, while 𝑀𝐵 exhibits at𝑇 = 0 seven saturation values: − 1

2 , −1, − 3
2 , −2, − 5

2 , −3, and − 7
2 respectively

for 𝐷𝐵/|𝐽 | = −3.5,−3.0,−1.95,−1.5,−1.2,−1.0, and −0.50. Note that for each value of 𝐷𝐵/|𝐽 |, the
magnetization value 𝑀𝐴 decreases, while 𝑀𝐵 increases with temperature and both eventually vanish
continuously at a common critical temperature 𝑇𝑐, which increases with the increase of 𝐷𝐵/|𝐽 |.
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D
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Figure 2. Thermal behaviors of the sublattice magnetizations 𝑀𝐴 and 𝑀𝐵 for 𝐷𝐴/|𝐽 | = 4.0, 𝑞 = 4 and
given values of 𝐷𝐵/|𝐽 | as indicated on the curves.

When 𝐷𝐴/|𝐽 | = −6.0 (see figure 3), we can clearly observe in panel a, i.e., for 𝐷𝐵/|𝐽 | < −0.52,
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the magnetizations curves exhibit thermal behaviors similar to those observed previously, with the only
difference that the magnetization 𝑀𝐴 starts from its saturation value of 1

2 for all values of 𝐷𝐵/|𝐽 |. For
−0.52 ⩽ 𝐷𝐵/|𝐽 | < −0.45 ( figure 3b), the system also exhibits first-order phase transition. Indeed, within
this range of 𝐷𝐵/|𝐽 |, there has been a first-order transition between the phases:

( 1
2 ,−

5
2
)

and
( 3

2 ,−
7
2
)
;( 1

2 ,−2
)

and
( 3

2 ,−
7
2
)
;
( 1

2 ,−
3
2
)

and
( 3

2 ,−
7
2
)
, where the first-order temperature denoted as 𝑇𝑡 decreases as

𝐷𝐵/|𝐽 | increases. For values of 𝐷𝐵/|𝐽 | ⩾ −0.45 (figure 3c), the model only shows second-order phase
transition where only the phase

( 3
2 ,−

7
2
)

persists.

0 1 2 3
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D
B
/|J|=- 5.0

M
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kT/|J|

c)b)a)

- 0.52

- 0.458

- 0.5

- 0.45

Figure 3. Thermal behaviors of the sublattice magnetizations 𝑀𝐴 and 𝑀𝐵 for 𝐷𝐴/|𝐽 | = −6, 𝑞 = 4 and
selected values of 𝐷𝐵/|𝐽 | as indicated on the curves. Here, the model exhibits second- and first-order
phase transition temperatures.

In figure 4, where the thermal behaviors of the magnetizations are still being analyzed, for 𝐷𝐵/|𝐽 | =
0.25, the magnetization of sublattice 𝐴 exhibits three saturation values: 1

2 , 1, and 3
2 , respectively, for

𝐷𝐴/|𝐽 | = −8.0,−7.0, and 4.0, while 𝑀𝐵 = − 7
2 at 𝑇 = 0 for these same parameters. These various results

found in figures 2, 3 and 4 are in perfect agreement with the ground states phase diagram and reveal
the key critical behaviors of the model for specific values of the system parameters. These behaviors are
qualitatively similar to those reported in reference [35], where another model of mixed half-integer spins
is studied.
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Figure 4. Thermal behaviors of the sublattice magnetizations 𝑀𝐴 and 𝑀𝐵 for 𝐷𝐵/|𝐽 | = 0.25, 𝑞 = 4 and
selected values of 𝐷𝐴/|𝐽 | as indicated on the curves.
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Figure 5. Thermal behaviors of the total magnetization 𝑀𝑇 for 𝐷𝐵/|𝐽 | = −2, 𝑞 = 4 and selected values
of 𝐷𝐴/|𝐽 | as indicated on the curves. The model shows only one compensation temperature for specific
values of the model parameters.

In order to clarify the existence of compensation behavior in the system, we have examined the
thermal variations of the total magnetization 𝑀𝑇 . As shown in figure 5 calculated for 𝐷𝐵/|𝐽 | = −2.0
and −1.5 < 𝐷𝐴/|𝐽 | < 0, the thermal behaviors of the total magnetization reveal the presence of the
compensation phenomenon in the system, since the curves of the total magnetization nullify once before
the phase transition.

Furthermore, all these curves almost pass through the same compensation point. We can thus conclude
that the compensation behavior is not affected by the increase in the value of 𝐷𝐴/|𝐽 |, while the critical
temperature 𝑇𝑐 increases with the increase of 𝐷𝐴/|𝐽 |. This latter result is in complete agreement with
the one found in reference [34], with the difference that the critical temperatures are lower than those
reported in the cited reference, as expected.
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0
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k
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/|
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Figure 6. Finite temperature phase diagrams in the (𝐷/|𝐽 |, 𝑘𝑇𝑐/|𝐽 |) plane for 𝑞 = 3, 4, 5 and 6. The solid
and dashed lines refer to the second- and first-order phase transition lines, respectively.
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3.3. Phase diagrams

In this section, we present the phase diagrams obtained from the analysis of the thermal variations of
the magnetizations 𝑀𝐴, 𝑀𝐵, and 𝑀𝑇 . Thus, we present the phase diagrams in the (𝐷/|𝐽 |, 𝑘𝑇/|𝐽 |) plane,
in the (𝐷𝐴/|𝐽 |, 𝑘𝑇/|𝐽 |) plane as well as in the (𝐷𝐵/|𝐽 |, 𝑘𝑇/|𝐽 |) plane. In these diagrams of interest, the
solid and dashed lines represent the second-order and first-order transition lines, respectively. In addition,
the compensation lines are indicated by dotted-dashed lines.

The first phase diagram, as shown in figure 6, is displayed in the (𝐷/|𝐽 |, 𝑘𝑇/|𝐽 |) plane for the
given values of the coordination number 𝑞. The second-order transition lines separating the ordered
ferrimagnetic phase from the disordered paramagnetic phase start at low temperatures for all 𝑞 and are
nearly horizontal for large negative values of 𝐷/|𝐽 | until near 𝐷/|𝐽 | = −𝑞

2 . After this specific value
of 𝐷/|𝐽 |, these transition lines increase with the increase of 𝐷/|𝐽 |, and as this latter tends towards
infinity, they once again become nearly horizontal. As for the first-order transition lines, they start around
𝐷/|𝐽 | = −𝑞

2 and at high temperatures near the corresponding second-order transition line, then gradually
decrease until they disappear as 𝐷/|𝐽 | increases. It should also be noted that each of these transition lines,
for each value of 𝑞, separates the ferrimagnetic phase

( 1
2 ,−

1
2
)

from the ferrimagnetic phases
( 1

2 ,−
3
2
)

or( 1
2 ,−2

)
or

( 1
2 ,−

5
2
)

or
( 1

2 ,−3
)

or even
( 1

2 ,−
7
2
)

depending on whether 𝐷/|𝐽 | tends towards large positive
values. It is important to mention that the found results in this figure show a certain resemblance with
those of references [25, 35].

The next phase diagram is calculated, as shown in figure 7(a–b), in the (𝐷𝐴/|𝐽 |, 𝑘𝑇/|𝐽 |) plane with
varying values of 𝐷𝐵/|𝐽 |. For 𝐷𝐵/|𝐽 | < −0.25 (figure 7a), the critical lines exhibit similar behaviors to
those of the previous figure. On the other hand, when 𝐷𝐵/|𝐽 | ⩾ −0.25, i.e., in figure 7b, these critical
lines start at high temperature and increase exponentially as 𝐷𝐴/|𝐽 | approaches infinity. It is also worth
noting that the critical temperature increases with a simultaneous increase of 𝐷𝐴/|𝐽 | and 𝐷𝐵/|𝐽 |.
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Figure 7. Finite temperature phase diagrams in the (𝐷𝐴/|𝐽 |, 𝑘𝑇𝑐/|𝐽 |) plane for 𝑞 = 4 and given values of
𝐷𝐵/|𝐽 | as indicated on the transition lines.

The last phase diagram depicted in figure 8 of this manuscript is constructed in the (𝐷𝐵/|𝐽 |, 𝑘𝑇/|𝐽 |)
plane with variation of the 𝐷𝐴/|𝐽 | values in each case. As shown in figure 8a, for 𝐷𝐴/|𝐽 | < 0, the critical
lines exhibit similarity to those in figure 7a, with the only difference that the critical temperatures are
higher here. As observed in the inset of figure 8b, for all values of 𝐷𝐴/|𝐽 | (𝐷𝐴/|𝐽 | > 0), all compensation
lines originate from the specific value 𝐷𝐵/|𝐽 | = −2.0 and at zero temperature, and then increase with
the increase of 𝐷𝐵/|𝐽 | to terminate near the corresponding critical line. However, the critical behavior
remains the same as in the previous cases.

3.4. Hysteresis properties

In this section, we have presented the various results obtained concerning the hysteresis behavior
of the system. For this purpose, we have analyzed the influence of parameters such as temperature,

43601-10



Critical, compensation and hysteresis behaviors studies in the ferrimagnetic Blume–Capel model

anisotropies, and the ferrimagnetic coupling parameter on this hysteresis behavior.
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Figure 8. Finite temperature phase diagrams in the (𝐷𝐵/|𝐽 |, 𝑘𝑇𝑐/|𝐽 |) and (𝐷𝐵/|𝐽 |, 𝑘𝑇comp/|𝐽 |) planes
combined for 𝑞 = 4 and given values of 𝐷𝐴/|𝐽 | as indicated on the transition lines. Here, the solid and
dotted-dashed lines refer to the second-order phase transition and compensation lines, respectively.
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Figure 9. Hysteresis properties of the model for 𝐷𝐴/|𝐽 | = 0, 𝐷𝐵/|𝐽 | = −1.5 and given values of the
temperature as shown in the figure.

Initially, we investigated the influence of temperature on the hysteresis behavior in the system with
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the fixed value of a crystal field acting on the sites of one sublattice, while the second one was considered
to be zero. Figure 9 obtained for 𝐷𝐴/|𝐽 | = 0 and 𝐷𝐵/|𝐽 | = −1.5 reveals the existence of a multi-
hysteresis behavior in the system. Indeed, the number of hysteresis loops changes from three to one before
disappearing as the temperature increases. As depicted in this figure, when 𝑘𝑇/|𝐽 | < 1.8 (figure 9a–c), the
system exhibits three hysteresis loops, including a central loop connected to two lateral loops that gradually
vanish as the temperature rises. In figure 9(d–e), i.e., for 1.8 ⩽ 𝑘𝑇/|𝐽 | ⩽ 4.5, only one hysteresis loop is
observed, which already disappears when 𝑘𝑇/|𝐽 | = 5.0 (figure 9f), this latter temperature being higher
than the critical temperature (𝑘𝑇𝑐/|𝐽 | = 4.9099) at which the system transforms into its paramagnetic
phase for these same parameter values.

In figure 10, depicted for 𝐷𝐴/|𝐽 | = 1.0 and 𝐷𝐵/|𝐽 | = 0, the observed hysteresis behaviors are similar
to those analyzed in the previous figure, with the only difference being that they appear in different
temperature ranges. Indeed, the multi-hysteresis behavior emerges for 𝑘𝑇/|𝐽 | < 1.0 (figure 10a). The
sole loop, with decreasing size and width, is observed for 1.0 ⩽ 𝑘𝑇/|𝐽 | ⩽ 8.0. At 𝑘𝑇/|𝐽 | = 8.5, the
hysteresis behavior disappears for the same reason mentioned in figure 9f.
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Figure 10. Hysteresis properties of the model for 𝐷𝐴/|𝐽 | = 1.0, 𝐷𝐵/|𝐽 | = 0 and given values of the
temperature as shown in the figure.

43601-12



Critical, compensation and hysteresis behaviors studies in the ferrimagnetic Blume–Capel model

Figure 11 exhibits hysteresis behaviors for the fixed temperature value (𝑘𝑇/|𝐽 | = 0.5) and the given
values of the crystal field chosen uniformly for the sublattices, i.e., 𝐷𝐴/|𝐽 | = 𝐷𝐵/|𝐽 | = 𝐷/|𝐽 |. As can
be observed in this figure, the uniform crystal field has an impact on the hysteresis behavior in our
system. Indeed, when 𝐷/|𝐽 | < −1.9, no hysteresis loop appeared, while for −1.9 ⩽ 𝐷/|𝐽 | < −1.25 and
𝐷/|𝐽 | ⩾ −1.25, respectively, three and one loop are observed with widths and sizes that remain constant
when 𝐷/|𝐽 | ⩾ 0. Thus, the coercive field and the remanent magnetization are not affected by the increase
in the positive uniform crystal field.
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Figure 11. Hysteresis properties of the model for 𝑘𝑇/|𝐽 | = 0.5 and selected values of 𝐷𝐴/|𝐽 | = 𝐷𝐵/|𝐽 |
as shown in the figure.

Finally, we also investigated the influence of the ferrimagnetic interaction 𝐽 on the same behavior in
the system. As depicted in figure 12, which illustrates the total magnetization as a function of the external
magnetic field ℎ, the multi-hysteresis behavior is indeed exhibited in the system for other parameters, i.e.,
for 𝐷𝐴/|𝐽 | = 0, 𝐷𝐵/|𝐽 | = −1.5 and 𝑘𝑇/|𝐽 | = 0.5. For 𝐽 < −1.0 (figure 12a–b), only a single hysteresis
cycle is observed. The case where three hysteresis loops appear, i.e., for −1.0 ⩽ 𝐽 < −0.75 (figure 12c),
is extensively discussed in the previous figures. As the value of the ferrimagnetic interaction increases,
the width and size of the central loop observed in figure 12c shrink, and it disappears, leaving only the
two lateral loops, as evident for 𝐽 = −0.75 (figure 12d). These two lateral loops, under the influence of
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the increased magnetic interaction, vanish, and a single central cycle reemerges when −0.5 ⩽ 𝐽 < −0.25,
only to disappear again for values of 𝐽 ⩾ −0.25. This final result has allowed us to clearly observe that
the interaction coupling has an impact on the size and width of the hysteresis loops.Thus, there is a
dependence between the interaction coupling and the coercitive field ℎ𝑐 on one hand, and the remanent
magnetization 𝑀𝑅 on the other hand; the coercitive field ℎ𝑐 and the remanent magnetization 𝑀𝑅 being
two important characteristics to comprehend the magnetic behavior of materials.
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Figure 12. Impacts of the ferrimagnetic coupling 𝐽 on the hysteresis loops of the model for 𝐷𝐴/|𝐽 | = 0,
𝐷𝐵/|𝐽 | = −1.5 and 𝑘𝑇/|𝐽 | = 0.5.

In figure 13, we depict the dependence between the ferrimagnetic interaction coupling 𝐽 and the
coercive field ℎ𝑐 and remanent magnetization (𝑀𝑅). In figure 13a, when 𝐽 ⩽ −0.75, the coercive field
gradually decreases and becomes zero at 𝐽 = −0.75. For −0.75 < 𝐽 ⩽ −0.5, the coercive field changes
direction, i.e., it increases progressively and reaches a maximum value (ℎcmax = 1.35) at 𝐽 = −0.50.
Beyond this last value of 𝐽, the coercive field gradually decreases to become zero definitively starting
from 𝐽 = −0.25. From figure 13b, it is evident that 𝑀𝑅 = 1.0 indicating that the ferrimagnetic interaction
coupling does not affect the remanence when 𝐽 ⩽ −1.75. Beyond this value of 𝐽, the remanence exhibits
a behavior similar to that of the coercive field observed in figure 13a. These results illustrated in figure 13
are valuable for making appropriate parameter choices depending on whether one intends to use this type
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of material as a soft material (low coercivity) which finds applications in the design of transformers,
inductors, electromagnet cores, and other electromagnetic components, or as a hard material (high
coercivity) used in various applications, including speakers, electric motors, hard disks, etc. This last
result aligns perfectly with the ones reported in reference [20].
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Figure 13. Impacts of the ferrimagnetic coupling 𝐽 on the coercitive field and remanent magnetization of
the model for 𝐷𝐴/|𝐽 | = 0, 𝐷𝐵/|𝐽 | = −1.5 and 𝑘𝑇/|𝐽 | = 0.5.

4. Conclusion

In this paper, we have investigated the critical, compensation, and hysteresis behaviors of a mixed
spin-3/2 and 7/2 ferrimagnetic Ising system on the Bethe lattice using the method based on exact
recursion relations. Through the thermal variations of magnetizations and phase diagrams in multiple
planes, we have demonstrated that the studied system exhibits first- and second-order transition as well
as compensation behaviors. Furthermore, we have discovered that the system, under the influence of
an external magnetic field, exhibits one, two, or three hysteresis loops, the size and width of which
depend on the system parameters. It is thus evident that the system displays a multi-hysteresis properties.
Comparing our results with those existing in the literature especially to those reported in references [34]
where the same model is investigated for 𝑞 = 4 corresponding to the square lattice by means of mean field
approximation, our results are not only in perfect agreement with their results but also more interesting.

It is worth noting that the compensation and multi-hysteresis properties exhibited by this study offer
opportunities for designing materials and devices with specific magnetic characteristics, suitable for a
variety of technological applications. A thorough understanding of these properties enables us to optimize
the performance of magnetic materials and expand the possibilities in fields such as data storage and
magnetic sensors. As our future work, we plan to investigate in detail the effects of the interaction coupling
between second neighboring atoms on the magnetic properties revealed by the present study by using not
only the recursion relations technique but also the Monte Carlo simulations technique which is known as
one of the most reliable methods for studying complex systems.
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Дослiдження критичної, компенсацiйної та гiстерезисної
поведiнки у феромагнiтнiй моделi Блюма–Капеля iз
напiвцiлим спiном-(3/2, 7/2): точнi рекурсивнi
спiввiдношення

М. Каке1, С. I. В. Хонтiнфiнде2,3,5, М. Карiму1,4,5, Р. Хуену1, Е. Албайрак6,
Р. А. А. Єссуфу1,3, A. Кпадону1,7

1 Iнститут фiзико-математичних наук, Дангбо, Бенiн
2 Вища нацiональна технологiчна школа математичного моделювання Абомей, Бенiн
3 Фiзичний факультет унiверситету Абомей-Калавi, Бенiн
4 Лабораторiя технiчних наук i прикладної математики
5 Вища нацiональна школа енергетики та технiчних наук, Абомей, Бенiн
6 Фiзичний факультет унiверситету Ерджiес, 38039, Кайсерi, Туреччина
7 Лабораторiя прикладної фiзики, Абомей, Бенiн

Точнi рекурсивнi спiввiдношення застосовано для дослiдження феримагнiтної системи Блюма–Капела
Iзiнга зi змiшаним напiвцiлим спiном-(3/2, 7/2) на ґратцi Бете. Для виявлення рiзних можливих основних
станiв моделi, в площинi (𝐷𝐴/𝑞 |𝐽 |, 𝐷𝐵/𝑞 |𝐽 |) отримано фазовi дiаграми основного стану. Використову-
ючи температурну залежнiсть параметрiв порядку, побудовано досить цiкавi фазовi дiаграми у площинах
(𝐷𝐴/|𝐽 |, 𝑘𝑇/|𝐽 |), (𝐷𝐵/|𝐽 |, , 𝑘𝑇/|𝐽 |) та (𝐷/|𝐽 |, 𝑘𝑇/|𝐽 |), де 𝐷 = 𝐷𝐴 = 𝐷𝐵. Виявлено, що для пев-
них значень параметрiв моделi в системi мають мiсце фазовi переходи першого та другого роду, а також
iснують точки компенсацiї. При певних умовах на значення зовнiшнього магнiтного поля модель також
має багато-гiстерезисну поведiнку з наявнiстю одинарного, подвiйного та потрiйного циклiв. Дослiдже-
но вплив феримагнiтного зв’язку 𝐽 на залишкову намагнiченiсть i коерцитивнi поля для певних значень
фiзичних параметрiв системи. Отриманi числовi результати якiсно узгоджуються з даними, вiдомими з
наукової лiтератури.

Ключовi слова: рекурсивнi спiввiдношення, феримагнiтна система Блюма–Капеля, основний стан,
ґратка Бете, петлi гiстерезису
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