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The Rényi statistics is applied for a description of finite size effects in the 1D Isingmodel. We calculate the internal
energy of the spin chain and the system temperature using the Rényi distribution and postulate them to be equal
to their counterparts, obtained in the microcanonical ensemble. It allows us to self-consistently derive the Rényi
𝑞-index and the Lagrange parameter 𝑇 to relate them to the physically observed system temperature 𝑇ph, and
to show that the entropic phase transitions are possible in a broad temperature domain. We have also studied
the temperature dependence of the internal energy𝑈 (𝑇ph) at constant 𝑞 and an influence of the size related
effects on the system thermodynamics.
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1. Introduction

By the early 20-th century, the basic principles of statistical description of thermodynamic systems
had been well established by the efforts of Boltzmann, Gibbs, Einstein, and many others. In 1957,
Jaynes [1] formulated the probabilistic approach based on the knowledge of some statistical information
about the system and introduced the rule, now widely known as the maximum entropy principle (MEP);
when applied to the statistical mechanics it yields the famous Gibbs canonical distribution. Today this
rule is used in many fields of science, ranging from physics and chemistry to the stock market analysis.

Further advances were stipulated by the growing necessity to generalize the elaborated schemes onto
description of the systems, consisting of large but finite numbers of particles, for which the thermodynamic
limit cannot be performed. The recent achievements in the study of a microcosm rely not only on more
sophisticated experimental measurements [2, 3], but also on a creation of the accompanying theoretical
methods such as the nano-thermodynamics [4, 5].

The second way to proceed is a construction of the groundwork of the non-equilibrium statistical
mechanics and thermodynamics [6]. Obviously, a description of the non-equilibrium properties of small
sized objects becomes much more complicated, due to: i) large fluctuations in the system, ii) a presence
of the local equilibrium or steady states rather than a true thermodynamic equilibrium and iii) a necessity
to use the non-Gibbsian statistics when describing the observables. Nevertheless, serious advances have
been recently made in a development of the theory of open quantum systems at the finite sizes of their
environments [7, 8], when the microcanonical distribution was used to derive the corresponding master
equations and to calculate the non-equilibrium mean values.

Conceptually different methods of handling the finite size systems rest upon the usage of other non-
Gibbsian statistics. The basics of the so-called parastatistics were introduced in the pioneering papers
by Rényi [9] and Tsallis [10, 11] and were developed by many others, e.g., [12–14]. At the first stage,
the entropy functional is constructed within the framework of one or another parastatistics. A common
feature of all the cases is an application of the MEP under a demand for the internal energy to be fixed
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and the availability of the normalization condition. This conditional extremum problem yields explicit
expressions for the distribution functions.

Though an applications of the Rényi and Tsallis statistics are wide enough, ranging from the descrip-
tion of the systems of non-physical nature (Zipf’s law) up to the thermodynamics of black holes [14],
the possibility to use these distributions to study the finite size objects is very important. Here, we
mean the cases of finite environments regardless of how large are the systems interacting with them
provided these systems are finite as well. In this context, the above mentioned statistics can be viewed as
a certain alternative for the microcanonical distribution for investigation of the systems that do not allow
the thermodynamic limit to be performed, despite the fact that these statistics are based on completely
different foundations. The Rényi statistics seem to be most promising, being the additive one, unlike the
Thallis statistics that are inherently non-additive and cannot be linked in any way to the microcanonical
ensemble, which also completely rests upon the additivity principle.

Application of the Rényi statistics opens up new prospects and sheds light on the specific features
that are not met when we use the microcanonical distribution. Firstly, we mean a possibility for the
entropic phase transitions to appear, which are not observed when we use the traditional (canonical or
microcanonical) ensembles. In this paper, we put a question whether the inherently different Rényi and
microcanonical distributions could render a similar thermodynamics. In other words, if one postulates
that the observables obtained within the two statistics are the same or very close, then how and to what
extent the non-observable characteristics (for instance, the system entropy) will differ. We study the
behavior of change of the Rényi index 𝑞 at the entropic phase transition and compare it with the results
of other theories, where it is determined from the heat capacity of the environment.

The paper is structured as follows. In section 2, we present the basic relations of the Rényi ther-
mostatistics, which follow from the MEP. The limiting cases of 𝑞 → 0 and 𝑞 → 1, leading to the
microcanonical distribution and the Gibbs statistics, are emphasized. In section 3, we discuss some
remarkable features typical of the Rényi statistics: i) the entropic phase transition, which appears at
𝑞 → 1, and ii) the relation between the Rényi index 𝑞 and the specific heat of the system environment,
which comes after an application of the thermal fluctuations approach [14] or more sophisticated exact
method [15]. In section 4, we consider a chain of Ising spins and present some expressions describing its
equilibrium properties in the microcanonical ensemble.

The most substantial is section 5, where the Ising model is studied within the Rényi statistics. First,
having assumed that the observables (internal energies and temperatures) are equal in the microcanonical
and Rényi ensembles, we show that the entropic phase transition appears in the second case and that all
the remarkable relations mentioned in section 3 are obeyed with a great accuracy. A special attention is
paid to the description of the system on the microscopic level: we analyse the “allowed” and “forbidden”
microstates, their origin and influence on the system behaviour via the corresponding macrostates for-
mation. Second, we study the temperature dependence of the internal energy𝑈 (𝑇) at constant 𝑞 and the
size related effects, by which we mean an influence of two factors: the discreteness and finiteness of the
system.

In the final section, we summarize the obtained results and point out some open questions.

2. The Rényi entropy and the Rényi distribution

We start in a somewhat formal way. Using a notion of the “free entropy” [14], we can introduce the
generating function

Φ𝑆 (𝑞) =
𝑊∑︁
𝑖=1

e−𝑞𝑆
(B)
𝑖 , (2.1)

where 𝑆 (B)
𝑖

= − ln 𝑝𝑖 denotes the Boltzmann entropy of the ensemble of microcanonical subsystems with
probabilities 𝑝𝑖 , which are generally dependent on the state 𝑖. Hereafter, we put the Boltzmann constant
𝑘B to be equal to the unity. The summation in (2.1) runs over all the energy states starting from the
lowest one up to the value𝑊 (a limiting case𝑊 → ∞ can also be considered). The cumulant generating
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function that corresponds to (2.1) looks as follows:

Ψ𝑆 (𝑞) = lnΦ𝑆 (𝑞) = ln
𝑊∑︁
𝑖=1

𝑝
𝑞

𝑖
. (2.2)

Dividing it by 1− 𝑞, we obtain the sought “free entropy”, which coincides with the known Rényi entropy

𝑆
(R)
𝑞 (𝑝) = 1

1 − 𝑞 ln
𝑊∑︁
𝑖=1

𝑝
𝑞

𝑖
, (2.3)

and includes the Gibbs-Shannon entropy 𝑆 (G) = −∑𝑊
𝑖=1 𝑝𝑖 ln 𝑝𝑖 as a particular case when 𝑞 → 1.

Before the explicit expressions for the probabilities 𝑝𝑖 are obtained, it is worth explaining the reason
to introduce the family of entropies (2.3). First of all, the Gibbs-Shannon entropy derived by a simple
averaging of the Boltzmann entropy cannot be the function, whose extremum characterizes the steady
state of a complex system under the entropy exchange with the surroundings [14]. Therefore, it is pertinent
to introduce a notion of the entropy bath for such processes, just like the concept of the thermal bath
has been adopted for a small subsystem being in contact with its surroundings, which is considered to
be infinite in the thermodynamic sense. Coupling with the entropy bath is a necessary condition for the
self-organization of a complex system [16]. As a result of such coupling, the system under consideration
cannot reach the state of thermodynamic equilibrium characterized by the minimum of the Helmholtz
free energy.

Since the entropy flux is usually accompanied by the heat flux, it is almost impossible to exclude
one of the above mentioned reservoirs from consideration and to focus only on the other one. That is
why the concept of entropy bath is not very popular in the scientific literature. In our case, it serves
mainly to derive the expressions for the Rényi entropy in the most transparent way. Nevertheless, one can
mention the so-called dephasing model [17, 18], widely used in the theory of open quantum systems to
describe the processes of pure decoherence/recoherence. In such a model, there is no energy exchange
between the spin or spin chain and the bath; the populations of levels remain constant, but the off-diagonal
elements of the density matrix related to the system coherence evolve in time. This leads to a decrease (or
increase) of the Bloch vector modulus and, as a consequence, to the entropy flow from the system to its
environment or vice versa. Though the dephasing model is exactly solvable at averaging over the Gibbs
equilibrium distribution, some interesting results were recently obtained for a similar spin-boson system
using the Rényi ensemble [19]. From our point of view, the application of the Rényi statistics would be
most promising for open quantum systems interacting with finite size environments. In the subsequent
sections, we use the Rényi distribution as a certain alternative to the microcanonical one when describing
the thermodynamics of the Ising system with a finite number of spins.

Though the limit 𝑞 → 1 in the Rényi entropy (2.3) resulting in its Gibbs-Shannon counterpart is
widely applied, another limiting case 𝑞 → 0 is considered much more rarely [20–22]. A simple inspection
of equation (2.3) shows that in this limit the Rényi entropy converts into the system entropy determined
in the microcanonical ensemble:

𝑆micro = lim
𝑞→0

𝑆
(R)
𝑞 (𝑝) = ln𝑊. (2.4)

The microcanonical distribution is known to describe a behaviour of an adiabatically isolated system [23],
consisting of 𝑁 particles contained within the volume 𝑉 . Correspondingly, its small subsystem is dis-
tributed canonically if the thermodynamic limit 𝑁 → ∞, 𝑉 → ∞ can be applied at the constant value
𝑛 = 𝑁/𝑉 of the number density. Our task is to combine these two limits: 𝑞 → 1 that corresponds to the
infinite bath and 𝑞 → 0 that is realized if the surrounding of the subsystem is vanishing — into a single
case defined by the Rényi distribution.

To derive the expression for the Rényi distribution, let us proceed in a standard manner, considering
the conditional extremum of the entropy (2.3) under the corresponding constraints of the normalization
condition and constant internal energy:

𝐿R(𝑝) =
1

1 − 𝑞 ln
𝑊∑︁
𝑖=1

𝑝
𝑞

𝑖
− 𝛼

𝑊∑︁
𝑖=1

𝑝𝑖 − 𝛽
𝑊∑︁
𝑖=1

𝐻𝑖 𝑝𝑖 . (2.5)
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Equating the variation of the functional (2.5) to zero,

𝛿𝐿R(𝑝)
𝛿𝑝𝑖

=
𝑞

1 − 𝑞
𝑝
𝑞−1
𝑖∑𝑊
𝑖=1 𝑝

𝑞

𝑖

− 𝛼 − 𝛽𝐻𝑖 = 0, (2.6)

we obtain the explicit expression for the Rényi distribution,

𝑝
(R)
𝑖

≡ 𝑝𝑖 =
1
𝑍
(R)
𝑞

(
1 − 𝛽 𝑞 − 1

𝑞
Δ𝐻𝑖

)1/(𝑞−1)
, (2.7)

where

𝑍
(R)
𝑞 =

𝑊∑︁
𝑖=1

(
1 − 𝛽 𝑞 − 1

𝑞
Δ𝐻𝑖

)1/(𝑞−1)
(2.8)

denotes the partition function, while the deviation of the system energy from its mean valueΔ𝐻𝑖 ≡ 𝐻𝑖−𝑈
should be obtained from the self-consistency condition for the internal energy𝑈,

𝑈 =

𝑊∑︁
𝑖=1

𝐻𝑖 𝑝𝑖 . (2.9)

As in the case of the Gibbs statistics, the so far unspecified Lagrange parameter 𝛽 can be associated with
the inverse temperature, 𝛽 = 𝑇−1, expressed in the energy units since 𝑘B ≡ 1; further it will be convenient
to position alternatively the temperature 𝑇 as the Lagrange multiplier as well. Unlike the Gibbs case, the
internal energy𝑈 both enters the Rényi distribution and is defined by the 𝑝𝑖 itself, as it follows from (2.7)–
(2.9). At the canonical distribution, which is obtained when the power law function (2.7) converts into
the exponential form at 𝑞 → 1, the internal energy 𝑈 enters both the numerator and denominator (the
corresponding partition function 𝑍 (G) ) and is mutually reduced.

There is an alternative representation for the Rényi distribution, which can be obtained when the
constraint (2.9) is changed to the averaging over the so-called escort distribution 𝑝esc

𝑖
[14, 24]:

𝑈 =

𝑊∑︁
𝑖=1

𝐻𝑖 𝑝
esc
𝑖 , 𝑝esc

𝑖 =
𝑝
𝑞

𝑖∑𝑊
𝑖=1 𝑝

𝑞

𝑖

. (2.10)

The corresponding Rényi distribution function 𝑝esc
𝑖

can be written down as follows:

𝑝esc
𝑖 =

1
𝑍esc [1 − 𝛽(1 − 𝑞)Δ𝐻𝑖]1/(1−𝑞) , 𝑍esc =

𝑊∑︁
𝑖=1

[1 − 𝛽(1 − 𝑞)Δ𝐻𝑖]1/(1−𝑞) . (2.11)

The detailed explanation of the differences between the distributions (2.7) and (2.11) and the physical
arguments to choose one or the other can be found, e.g., in [24]. Since in this paper we opted for the
distribution (2.7), we are not going to explore this subject further, only mentioning that this concept is
very close to the arguments1 in favour of the 3-rd form of the Tsallis statistics over the 1-st and the 2-nd
forms [25].

3. Some remarkable relations typical of the Rényi distribution

In this section, we are going to present some known relations dealt with the Rényi distribution, which
we shall extensively use, when analyzing the data of numerical calculations. It is straightforward to show

1The expression for the non-extensive Tsallis entropy can be formally obtained after series expansion of (2.7) at 𝑞 = 1,
𝑆
(𝑇 )
𝑞 (𝑝) = 1

1−𝑞

(∑𝑊
𝑖=1 𝑝

𝑞

𝑖
− 1

)
, which is equivalent to the condition |1 − 𝑞 | ≪ 1.
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that the Rényi entropy (2.3) can be expressed via the partition function (2.8) in a way similar to the
microcanonical ensemble:

𝑆
(R)
𝜂 = ln 𝑍 (R)

𝜂 = ln
𝑊∑︁
𝑖=1

(
1 + 𝛽 𝜂

𝜂 − 1
Δ𝐻𝑖

)−1/𝜂
, (3.1)

where the new constant 𝜂 = 1 − 𝑞 is introduced for some physical reasons to be explained soon. When
𝜂 → 0, this entropy turns into the Gibbs entropy

𝑆 (G) = ln
𝑊∑︁
𝑖=1

e−𝛽Δ𝐻𝑖 . (3.2)

Taking the derivative of the entropies difference Δ𝑆 = 𝑆
(R)
𝜂 − 𝑆 (G) with respect to 𝜂, one can easily obtain

the following relation:

lim
𝜂→0

dΔ𝑆
d𝜂

=
𝛽2

2

𝑊∑︁
𝑖=1

𝑝
(G)
𝑖

(Δ𝐻𝑖)2, (3.3)

where 𝑝 (G)
𝑖

=
e−𝛽𝐻𝑖∑𝑊
𝑖=1 e−𝛽𝐻𝑖

denotes the Gibbs distribution. The expression in the r.h.s. of equation (3.3)

can be rewritten in a more convenient way using a simple thermodynamic relation,

𝑊∑︁
𝑖=1

𝑝
(G)
𝑖

(Δ𝐻𝑖)2 =
1
𝛽2

d𝑈
d𝑇

=
1
𝛽2𝐶𝑉 , (3.4)

where𝑈 means the internal energy (2.9), and 𝐶𝑉 denotes the heat capacity at constant volume.
Combining equations (3.3) and (3.4), we arrive at the first remarkable relation:

lim
𝜂→0

dΔ𝑆
d𝜂

=
1
2
𝐶𝑉 . (3.5)

In spite of its simple form, this expression has a profound physical meaning. If we relate 𝜂 to some order
parameter, it enables us to consider the transition to the Rényi thermostatistics as a peculiar kind of the
phase transition into a more organized state. Following [14], we call it the entropic phase transition. As
a result of the entropic phase transition, the system passes into an ordered state with the order parameter
𝜂 ≠ 0. In contrast to the usual phase transition that takes place at some critical temperature 𝑇cr, which can
be evaluated taking the thermodynamic limit, conditions of the entropic phase transition will be shown
to depend on the size of the finite system.

Note that relation (3.5) is exact, since no assumption or approximation has been made at its derivation.
The physical reasoning, leading to the second useful relation, equation (3.6), is semi-phenomenological
and less rigorous. Nevertheless, the said relation is just as important as equation (3.5). Since its derivation
needs some intermediate calculations, which are not relevant in our case, we shall only briefly outline
the basic points underlying its origin (see [14] and references therein).

Suppose that the finite system (hereafter called the subsystem) is placed in the environment of finite
size and heat capacity. This environment defines the temperature 𝑇 of the total combined system, which
can fluctuate around some average value 𝑇0. The amount of heat transferred from the environment to
the subsystem is finite, and the time of temperature equilibration distinctly differs from zero causing the
mentioned fluctuations. The time behaviour of temperature can be described by the Langevin equation
with white noise. At the next stage of description, one can pass to the corresponding Fokker-Planck
equation for the distribution function of random temperature𝑇 , which stationary solution can be obtained
explicitly. A subsequent assumption is very similar to that underlying the concept of local equilibrium,
which is widely used in the problems of non-equilibrium statistical mechanics [6]. Let us assume that
any mesoscopical part of the total system obeys the canonical distribution, but the temperatures of these
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small subsystems are random values. With the stationary solution 𝑓 (𝑇) of the Fokker-Planck equation
in hand, and averaging the Gibbs distributions 𝑝 (G) (𝑇) over 𝑓 (𝑇), one can obtain the final distribution
function governing a thermostatistics of the above system. The obtained formula can be related to the
Rényi distribution function, if one identifies

𝑞 = 1 − 1
𝐶𝑉𝐸

(3.6)

and

𝑇0 = 𝑞𝑇, (3.7)

where 𝐶𝑉𝐸 is the heat capacity of the environment.
The above presented approach is quite illustrative in some physical sense, but definitely lacks rigo-

rousness; it is obvious that there are lots possibilities [26] to obtain the probability density 𝑓 (𝑇). However,
more rigorous approaches (see, for instance, [15]) are based on the exact relations of statistical mechanics
and yield the results similar to (3.6).

The relations (3.6)–(3.7) are worthy to be commented a bit more. First of all, the order parameter
𝜂 = (1 − 𝑞) is inversely proportional to the number of particles in the environment 𝑁 − 𝑁𝐿 , since the
heat capacity of the environment 𝐶𝑉𝐸 ∼ (𝑁 − 𝑁𝐿). Note that the subsystem consists of 𝑁𝐿 particles,
and its heat capacity in equation (3.5) is proportional to 𝑁𝐿 . In this context, the order parameter 𝜂, being
neither purely intensive nor extensive, differs from those known in the phase transition theory. Obviously,
in the thermodynamic limit 𝑁 → ∞, 𝑉 → ∞, 𝑁/𝑉 = 𝑛 = const, and at 𝑁𝐿 = const, the 𝜂 tends to zero,
yielding the canonical distribution.

The second point follows directly from equation (3.7). The meaning of physically measurable tem-
perature can be attributed to 𝑇0, as it corresponds to the average value of the system temperature, rather
than to the fluctuating temperature 𝑇 dealt with the Lagrange multiplier 𝛽 = 1/𝑇 , see equation (2.5). In
the limit 𝜂 → 0, the temperature 𝑇 becomes 𝛿-distributed around 𝑇0, 𝑓 (𝑇) = 𝛿(𝑇 − 𝑇0), and the two
temperatures coincide, 𝑇0 = 𝑇 .

The final point to be mentioned in this section is that the relation (3.6) changes to

𝑞 = 1 + 1
𝐶𝑉𝐸

, (3.8)

if one uses the Rényi distribution (2.11) instead of (2.7). Equation (3.8) assumes that the Rényi index can
be greater than unity, in contrast to the case (3.6). In section 5, we will use equations (3.5)–(3.8) as the
reference relations to verify the consistency of the proposed approach.

4. The Ising model in the microcanonical ensemble

Let us consider an isolated one-dimensional chain of 𝑁 Ising spins with periodic boundary conditions.
The Hamiltonian of such a system can be written down in a usual form:

𝐻 = −𝐽
𝑁∑︁
𝑖=1

𝜎𝑖𝜎𝑖+1, (4.1)

where 𝐽 denotes the interaction strength, and𝜎𝑖 = ±1. Possible values of the system energy are determined
by an even integer 𝑀 (0 ⩽ 𝑀 ⩽ 𝑁): the number of pairs2 of the oppositely directed neighbouring spins,
𝜎𝑖 = −𝜎𝑖+1. The energy of such a spin configuration is

𝐸 (𝑀) = −𝐽 (𝑁 − 2𝑀), (4.2)

while the number of configurations with the energy 𝐸 (𝑀) is

Γ(𝑀) = 2
𝑁!

𝑀!(𝑁 − 𝑀)! , (4.3)

2Hereafter, we follow the reasoning and use denotations for the corresponding values as those adopted in [27].

43603-6



Ising model in the Rényi statistics

and all theses states with the given energy 𝐸 (𝑀) are equally probable.
If the coupling is ferromagnetic, 𝐽 > 0, then in the ground state all spins are aligned in the same

direction, and 𝑀 = 0. On the other hand, if the coupling is antiferromagnetic, 𝐽 < 0, in the ground
state we have an alternating spin alignment, and 𝑀 = 𝑁 for even 𝑁 . Excited energy levels correspond to
configurations with 𝑀 > 0 and 𝑀 < 𝑁 , respectively. Obviously, the numbers 𝑀 or (𝑁 − 𝑀) are directly
related to the system temperature: the larger is the temperature, the more spins are flipped as compared
to the ground state configuration due to thermal fluctuations.

Let us now single out a subsystem containing 𝐿 spins, starting from the first spin and up to the 𝐿-th
one. Hereafter, we will call these 𝐿 spins as the “subsystem”, whereas the spins from the (𝐿 + 1)-th up to
the 𝑁-th constitute the “bath” or the “environment”. There is an energy exchange between the subsystem
and the bath since the “boundary” spins interact with each other: the 1-st spin is coupled to the 𝑁-th
one, and the 𝐿-th spin — to the (𝐿 + 1)-th one. The corresponding energy of the subsystem of 𝐿 spins
is determined by the integer number 𝐾 of pairs of the oppositely directed neighbouring spins in it.3 This
energy can be presented in a way similar to (4.2):

𝐸𝑆 (𝐾) = −𝐽 (𝐿 − 1 − 2𝐾), (4.4)

while the number of the subsystem configurations with such an energy is

Γ𝑆 (𝐾) = 2
(𝐿 − 1)!

𝐾!(𝐿 − 1 − 𝐾)! . (4.5)

Within our consideration, the integer 𝐾 has the physical meaning of the possible number of the subsystem
microstates and obeys the following inequality:

𝐾min ⩽ 𝐾 ⩽ 𝐾max, (4.6)
𝐾min = max(0, 𝑀 − 𝑁 + 𝐿 − 1), 𝐾max = min(𝑀, 𝐿 − 1).

Since we assume the entire chain of 𝑁 spins with the fixed energy to be distributed microcanonically,
the probability to find the subsystem of 𝐿 spins in the microstate 𝐾 is equal to

𝜔(𝐾) = 1
Γ(𝑀)

(𝑁 − 𝐿 + 1)!
(𝑀 − 𝐾)!(𝑁 − 𝐿 + 1 − 𝑀 + 𝐾)! . (4.7)

The binomial coefficient in the r.h.s. of (4.7) determines the number of ways to choose from the 𝑁 − 𝐿 +1
spins, which do not belong to the subsystem, exactly 𝑀 − 𝐾 pairs of oppositely directed neighbouring
spins, while the division by the total number of states (4.3) appears naturally due to the microcanonical
distribution.

Using equations (4.4)–(4.7) and the properties of the Vandermonde’s convolution [27], it is straight-
forward to calculate the mean energy of the subsystem as

⟨𝐸𝑆⟩ ≡
𝐾max∑︁
𝐾=𝐾min

𝜔(𝐾)Γ𝑆 (𝐾)𝐸𝑆 (𝐾) = −𝐽 (𝐿 − 1)
(
1 − 2

𝑀

𝑁

)
. (4.8)

Now let us turn our attention to transition from the microcanonical ensemble to the canonical one. It is
known to occur in the thermodynamic limit, when the subsystem is infinitesimally small as compared to
the bath: 𝑁 → ∞, 𝑀 → ∞, while 𝐿 and the ratio 𝑎 = 𝑀/𝑁 remain finite. In such a case, due to (4.6) the
number of subsystem microstates is determined by the inequality 0 ⩽ 𝐾 ⩽ 𝐿 − 1. Besides, the following
strong inequalities are also valid:

𝐿 − 1 ≪ 𝑁, 𝐾 ≪ 𝑀, 𝐿 − 1 − 𝐾 ≪ 𝑁 − 𝑀. (4.9)

3Since the chosen subsystem is an open spin chain, the values of 𝐾 can be either even or odd, in contrast to 𝑀, which must be
even due to the periodic conditions imposed to the entire chain.
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Thus, using the approximation (𝑁 − 𝑛)! ≈ 𝑁!/𝑁𝑛, which is valid at 𝑛 ≪ 𝑁 , one can pass from
the probability (4.7) to the canonical Gibbs distribution 𝜔 (G) (𝐾) = 𝑍−1 exp[−𝐸 (𝐾)/Θ], where the
temperature Θ is equal to

Θ = −2𝐽
/

ln
(

𝑀

𝑁 − 𝑀

)
= −2𝐽

/
ln

( 𝑎

1 − 𝑎

)
, (4.10)

and the partition function 𝑍 is expressed as

𝑍 = 2 [𝑎(1 − 𝑎)]−
𝐿−1

2 . (4.11)

As expected, the partition function depends on the subsystem size 𝐿 and temperature Θ and does not
depend on the size of the thermal bath. The second point is that in the ferromagnetic case (𝐽 > 0) at
𝑎 > 1/2, the temperature (4.10) becomes formally negative. The same is true in the antiferromagnetic
case (𝐽 < 0) at 𝑎 < 1/2. A notion of the negative temperature is perfectly analysed in the well-known
textbook [23], and we are not going to explore this subject any more. We just would like to note that
for the ferromagnetic coupling 𝐽 > 0, the configuration, when the upside and downside oriented spins
strictly alternate and 𝑀 = 𝑁 , corresponds to the temperature Θ → −0 and to the maximum of energy
𝐸 = 𝐽𝑁 , whereas the case 𝑀 = 𝑁/2 corresponds to Θ → −∞ and the zero energy of the total system.

The above expressions are used in the next section, where we attempt to relate the observables,
obtained within the microcanonical ensemble, to those in the Rényi thermostatistics. The key point is
that both ensembles allow one to take into consideration the effects when the size of a subsystem is
comparable to that of its surroundings, or even becomes larger than this one.

5. The Ising model in the Rényi ensemble

Now let us combine and generalize the results presented in sections 2 and 4 to study the behaviour
of a finite Ising chain in the Rényi statistics. First of all, using equations (2.7) and (4.4)–(4.5), we write
down the explicit form of the Rényi distribution for the chain of 𝐿 spins:

𝑝R(𝐿, 𝐾, 𝑞, 𝑇) = Γ𝑆 (𝐾)
{
1 − 𝑞 − 1

𝑞𝑇
[−𝐽 (𝐿 − 1 − 2𝐾) −𝑈]

}1/(𝑞−1) /
𝑍R(𝐿, 𝑞, 𝑇 ;𝑈), (5.1)

where the corresponding partition function reads as

𝑍R(𝐿, 𝑞, 𝑇 ;𝑈) =
𝐾max∑︁
𝐾=𝐾min

Γ𝑆 (𝐾)
{
1 − 𝑞 − 1

𝑞𝑇
[−𝐽 (𝐿 − 1 − 2𝐾) −𝑈]

}1/(𝑞−1)
, (5.2)

and, according to equation (3.1), defines the Rényi entropy

𝑆R(𝐿, 𝑞, 𝑇 ;𝑈) = ln 𝑍R(𝐿, 𝑞, 𝑇 ;𝑈). (5.3)

The self-consistency condition is expressed in the usual way, see equation (2.9):

𝑈 ≡ 𝑈 (𝐿, 𝑞, 𝑇) =
𝐾max∑︁
𝐾=𝐾min

𝑝R(𝐿, 𝐾, 𝑞, 𝑇)𝐸𝑆 (𝐾). (5.4)

An essential point must be mentioned here. Since the Rényi distribution (5.1) is an exponential
function with (in general) arbitrary power index 1/(𝑞 − 1), the expressions in parentheses should be
non-negative [24]. One can consider this condition as a strict requirement for the microstates with some
“unphysical” values of 𝐾 to be forbidden. Consequently, there appear two possible ways to manage this
problem in calculations:

• Option 1: to reject the entire macrostate if at least for one of its microstates the expression in the
parentheses is negative;
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• Option 2: to reject only the microstates with “forbidden” 𝐾 , while retaining the corresponding
macrostate as a whole. Technically, it means mutiplying each parantheses in (5.1)–(5.2) by the
appropriate Heaviside 𝜃-function, {...}1/(𝑞−1) → {...}1/(𝑞−1)

+ = {...}1/(𝑞−1)𝜃 (...).

By the term “macrostate” we mean a state of the system in the Rényi ensemble with given values of 𝑞
and 𝑇 at the fixed length 𝐿 of the spin chain. In the subsequent numerical calculations we shall consider
both options.

Before studying the thermodynamic properties of the Ising model in the Rényi ensemble and com-
paring them with those in the microcanonical one, we have to define two temperatures, related to the
above statistics. These temperatures are expressed quite similarly via the corresponding entropies. In
particular [see also equation (3.1) for comparison], the system entropy in the microcanonical ensemble
is determined as

𝑆micro = ln Γ(𝑀), (5.5)

where the statistical weight Γ(𝑀) is defined in equation (4.3). To proceed, we express factorials in the
binomial coefficient (4.3) via the elementary functions using the Stirling approximation

𝑁! ≈ 𝑁𝑁 exp(−𝑁)
√

2π𝑁. (5.6)

Now the entropy formally becomes a differentiable function, and the system temperature in the micro-
canonical ensemble can be calculated in the usual way:

𝑇micro =

(
𝜕𝑆

𝜕𝐸

)−1
=
𝜕𝐸 (𝑀)
𝜕𝑀

/ 𝜕𝑆(𝑀)
𝜕𝑀

=
4𝐽𝑀 (𝑁 − 𝑀)

2𝑀 − 𝑁 − 2𝑀 (𝑁 − 𝑀) ln[𝑀/(𝑁 − 𝑀)] . (5.7)

In the thermodynamic limit, it transforms into the temperature Θ defined in the canonical ensemble, see
equation (4.10). In a general case, the temperature 𝑇micro depends not only on the ratio 𝑎 = 𝑀/𝑁 , but
also on the total spin number 𝑁 . It can be easily shown that the inverse temperature 𝛽micro ≡ 1/𝑇micro
scales as 𝛽micro = Θ−1(1 + 𝑏/𝑁), where 𝑏 is a certain parameter independent of 𝑁 . Therefore, the
temperature of a finite system, which is determined in the microcanonical ensemble, can be positioned
as a pseudo-intensive quantity [28], as opposed to the temperature derived with the Gibbs distribution.
We will explore this point further when discussing the numerical results for the system entropy in the
Rényi thermostatistics.

The subsystem temperature defined in the Rényi ensemble can be obtained similarly to (5.7):

𝑇 (R) ≡ 𝑇ph =

(
𝜕𝑆R
𝜕𝑈

)−1
= 𝑞𝑇𝑍R/�̃�R, (5.8)

�̃�R =

𝐾max∑︁
𝐾=𝐾min

Γ𝑆 (𝐾)
{
1 − 𝑞 − 1

𝑞𝑇
[−𝐽 (𝐿 − 1 − 2𝐾) −𝑈]

}−1+1/(𝑞−1)
.

We have omitted the arguments of the entropy function (5.3) in equation (5.8) and used a denotation
𝑇ph for the temperature defined in the Rényi ensemble. This is in line with the concept used in [29] to
introduce the “physically measurable” temperature in different parastatistics.

It can be shown by the series expansion of (5.8) at 𝑞 = 1 that at small deviations |𝑞−1| ≪ 1, the Rényi
temperature is expressed via the second ⟨Δ𝐻2⟩ and the third ⟨Δ𝐻3⟩ moments of the energy fluctuation,
which should be calculated in the canonical ensemble. The linear term in the expansion disappears due
to the imposed self-consistency condition ⟨Δ𝐻⟩ ≡ 0, c.f. equation (2.9). The second moment ⟨Δ𝐻2⟩ is
given by (3.4). In a similar way, one can derive the expression for the third moment ⟨Δ𝐻3⟩ and to write
down the approximate expression for the physical temperature as follows:

𝑇ph ≈ 𝑞𝑇
{

1 + (𝑞 − 1)2

[
𝑇

2
d𝐶 (G)

𝑉

d𝑇
− 𝐶 (G)

𝑉

]}
= 𝑞𝑇

{
1 + (𝑞 − 1)2(𝐿 − 1)

𝐽 tanh
(
𝐽
𝑇

)
− 2𝑇

𝑇3 cosh2 ( 𝐽
𝑇

) }
, (5.9)
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where we used the heat capacity of the subsystem𝐶
(G)
𝑉

, expressed [27] via the canonlical internal energy.

𝐶
(G)
𝑉

(𝑇) = d𝑈 (G) (𝑇)
d𝑇

, 𝑈 (G) (𝑇) = −𝐽 (𝐿 − 1) tanh
(
𝐽

𝑇

)
. (5.10)

As it follows from equation (5.9), the corrections to 𝑞𝑇 vanish at small deviations of the Rényi index
from the unity and for small subsystem sizes 𝐿. Besides, the corrections approach zero as 𝑇−1 at 𝑇 → ∞
and much faster, as exp

(
−2𝐽
𝑇

)
𝑇−2, at 𝑇 → 0. Hence, at |𝑞 − 1| ≪ 1 or at very low or sufficiently high 𝑇 ,

the physical temperature should be well approximated by the expression 𝑇ph ≈ 𝑞𝑇 , see also equation (3.7)
for comparison. The Rényi temperature (5.8) can be considered as a generalization of the widely used
linear dependence 𝑇ph = 𝑞𝑇 [14] for large deviations of 𝑞-index from the unity that occur when the
subsystem is comparable with or even larger than the environment.

Beside the length of the spin chain 𝐿 and the microstate number 𝐾 , the Rényi distribution (5.1)
depends also on the Rényi index 𝑞 and the Lagrange parameter 𝑇 . Usually, the value of 𝑞 is determined
by the choice of the system environment. In particular, in [29] a similar chain of the Ising spins studied
within the Tsallis statistics is assumed to be coupled to a thermal bath of an ideal gas. The index 𝑞 has
been related to the heat capacity of the bath by an expression like (3.6). However, at the beginning, we
proceed along another pathway, which appears to be more self-consistent and refined in some sense.

5.1. Problem I

As a basis of further investigation, we consider the following assumption:

At certain values of the parameter 𝑇∗ and Rényi index 𝑞∗, the physical temperature and the internal
energy coincide with their counterparts calculated in the microcanonical ensemble,

𝑇ph(𝐿, 𝑞∗, 𝑇∗) = 𝑇micro(𝑁, 𝑀), (5.11a)
𝑈 (𝐿, 𝑞∗, 𝑇∗) = ⟨𝐸𝑆 (𝑁, 𝑀, 𝐿)⟩ . (5.11b)

From all possible solutions of equations (5.11), we choose that pair (𝑞∗, 𝑇∗), which provides the
largest value of the entropy (5.3). In fact, we have a double maximization over the entropy, since initially
we solved the conditional extremum problem for the functional (2.5) to obtain the explicit expression for
the Rényi distribution at arbitrary 𝑞.

The conditions (5.11) appear to be physically well justified. Indeed, equation (5.11a) resembles the
condition (28) of [24] imposed on the Rényi temperature to ensure the proper system thermodynamics
in the Rényi statistics. The only difference is that, in our case, we relate the Rényi temperature with
its microcanonical counterpart (5.7) rather than with the canonical one, as it was done in [24]. The
assumption identical to equation (5.11a) has been also made in [30, 31], where the classical and quantum
systems governed by the Tsallis and Rényi statistics were considered.

As for equation (5.11b), the situation is more subtle. It was shown in [31] that internal energies of
the classical independent harmonic oscillators in the microcanonical and Rényi statistics are identical as
long as the relation 𝑇ph = 𝑇micro is valid. In the case of quantum non-interacting harmonic oscillators,
the same is true at high temperatures. In the general case [30], there is a difference between the internal
energies 𝑈 and ⟨𝐸𝑆⟩, which was found to be small if (𝑞 − 1)𝑁 < 1. We shall return to this issue in the
final part of section 5. However, at this stage of investigation, we believe the second equation in (5.11) to
be quite reasonable too, since we are trying to find out whether the Rényi statistics yield the same values
of the thermodynamic observables as the microcanonical one. If the answer is yes, then we can use the
Rényi statistics to describe the system thermodynamics as a certain alternative to the microcanonical
statistics because both of them use the similar concept of the system/environment finiteness.

From the mathematical point of view, the solutions to the system of equations (5.11) give one
the dependences 𝑇∗(𝑁, 𝑀, 𝐿) and 𝑞∗(𝑁, 𝑀, 𝐿). In other words, at fixed values of 𝑁 , 𝑀 and 𝐿, the
observables (5.11) are identical in both ensembles as long as the corresponding Rényi index and Lagrange
parameter 𝑇 are equal to 𝑞∗(𝑁, 𝑀, 𝐿) and 𝑇∗(𝑁, 𝑀, 𝐿). However, the entropy calculated in the Rényi
and microcanonical (as well as canonical) ensembles will be different, see equations (5.3) and (5.5). To
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study the entropy dependence on temperature and size of the subsystem is one of our main goals of this
section.

In figure 1, we plot the dependences of the Rényi index 𝑞∗ and Rényi entropy 𝑆 on the number 𝐿 of
spins in the subsystem at different values of 𝑀 for 𝑁 = 200. In all numerical calculations we take the
ferromagnetic 𝐽 = 1. The function 𝑞∗(𝐿) is either continuous (at 𝑀 = 2 ÷ 6 that corresponds to low
temperatures) or discontinuous (at 𝑀 ⩾ 8). Obviously, the term “continuity” means a regular behaviour
of the corresponding functions since the argument 𝐿 is itself discrete. In the former case (top row, 𝑀 = 4),
something like the 2-nd order entropic phase transition occurs: at a certain value 𝐿trans, the entropy starts
to deviate from the straight line, being at that a continuous function of the subsystem size 𝐿. Using the
terminology adopted in the recent paper by Tsallis [28], the Rényi entropy becomes a pseudo-extensive
function of the subsystem size. There is a discrepancy between our results and the reasoning presented in
the cited paper, which needs some explanation. In [28], the particle number 𝑁 , the system volume𝑉 , and
the system entropy 𝑆 are imposed to be extensive functions, whereas the thermodynamic potentials are
allowed to be pseudo-extensive. In our case, the internal energy (4.8) is extensive by definition. Hence,
the entropy 𝑆 is forced to behave in a pseudo-extensive manner.4.

Quite expectedly, at high 𝐿 → 𝑁 when 𝑞 → 0, the curve 𝑆(𝐿) approaches the linear extrapolation
of its low 𝐿 part, and thus the microcanonical distribution of the Ising spins that ensures the extensive
behaviour of the system entropy is restored. Note that this is also true for other values of 𝑀 , when a
noticeable jump of 𝑆(𝐿) occurs at 𝐿trans, and we deal with something like the 1-st order entropic phase
transition, which is well-known to be absent in the canonical ensemble. We were pleased to note that
despite the discreteness of our model and the impossibility to perform the continuous limit transition
𝑞 → 1 at the point of the above mentioned jump, a difference scheme approximation to the relation (3.5)

lim
𝑞→1

(
𝜕𝑆

𝜕𝑞

)
= −1

2
𝐶𝑉 ≈ 𝑆(𝐿trans) − 𝑆(𝐿trans + 1)

𝑞(𝐿trans) − 𝑞(𝐿trans + 1) (5.12)

holds within the accuracy of a few percent (at least, at low to moderate 𝑀; see the discussion below).
This once again indicates that the assumption (5.11) is reasonable. Here, 𝐿trans is the largest 𝐿 below the
transition point, while 𝐿trans + 1 is the smallest length above the transition point. The explicit expression
for the heat capacity of the subsystem is obtained from a simple thermodynamic relation

𝐶𝑉 =
d⟨𝐸𝑆⟩
d𝑇micro

=
d⟨𝐸𝑆⟩
d𝑀

/ d𝑇micro
d𝑀

= − (𝐿 − 1) [𝑁 − 2𝑀 + 2𝑀 (𝑁 − 𝑀) ln(𝑀/(𝑁 − 𝑀))]2

2𝑁 [𝑁2 − 2𝑀 (𝑁 − 𝑀) (𝑁 + 1)]
(5.13)

using the expressions (4.8) and (5.7). The expression for the heat capacity 𝐶𝑉𝐸 of the environment is
found from (5.13) with a substitution 𝐿 −→ 𝑁 − 𝐿. Note that 𝐶𝑉 and 𝐶𝑉𝐸 have maxima positioned at
about 𝑀/𝑁 = 0.08, which within the canonical distribution corresponds to temperature ∼ 0.82𝐽 [see
equation (4.10)].

It can be noted that the values of 𝑞∗ coincide with those predicted by (3.8) below 𝐿trans, except for
the domain of fast oscillations of 𝑞∗. In its turn, (3.6) qualitatively reproduces the behaviour of 𝑞∗(𝐿)
above 𝐿trans, with the best quantitative agreement observed for 𝑀 close to the position of the maximum of
𝐶𝑉𝐸 (𝑀). The differences are to be expected, since we used a completely different method of calculating
𝑞, not based on equations (3.8) or (3.6). Even though expression (3.8) arises due to the application of the
escort distribution (this can be a subject of a separate study), a direct comparison of our results with the
reference formulae mentioned in section 3 looks quite interesting.

The analysis of the results plotted in figure 1 brings us back to the “option 1 vs. option 2” dilemma,
see page 9. At low to moderate 𝑀 values, option 1 (when the entire macrostate is rejected if at least one
of the parentheses in the distribution (5.1) is negative) appears much more favourable for the description
of 𝑞∗(𝐿) of large subsystems, providing a smooth heading of the Rényi index to zero.

At the intermediate values of 𝑀 ∼ 40 ÷ 60, the two options yield identical results for large 𝐿.
However, below 𝐿trans, there appears a gap in the 𝑞∗(𝐿) dependence calculated according to option 1,

4There is also a more formal explanation of such a behaviour of the entropy. Proceeding in a strict mathematical way and using
two additional constraints (5.11), one has to re-derive the distribution, which obviously could differ from the Rényi probability (5.1).
Since such a generalized problem of the conditional extremum seems to be unsolvable explicitly, we prefer to use the distribution (5.1)
instead of the desired but unobtainable “exact” one. The pseudo-extensive behaviour of the entropy can be directly related to this
fact.

43603-11



V. V. Ignatyuk, A. P. Moina

0 50 100 150

0.0

0.5

1.0

q*

q* = 1+1/C
VE

L

M = 4

q* = 1-1/C
VE

50 100 150 200

0

5

10

15

20

L

S

M = 4

0.0

0.5

1.0

0 50 100 150 200

q*

M = 20

L

0 50 100 150 200

0

25

50

M = 20

L

S

0 50 100 150 200

0.0

0.5

1.0

q*

M = 50

L

0 50 100 150 200

0

50

100

M = 50

L

S

0 50 100 150 200

0.5

1.0

q*

M = 76

L

120 130 140 150 160 170 180

80

100

120 S

M = 76

L

Figure 1. (Colour online) Dependences of the Rényi index 𝑞∗ (left) and the Rényi entropy 𝑆 (right) on
the subsystem size 𝐿 at different 𝑀 for 𝑁 = 200. The red circles and black squares are calculated using
options 1 and 2, respectively (see page 9). The green lines are the 𝑞∗ = 1 ± 1/𝐶𝑉𝐸 dependences found
from equations (3.8) and (3.6). Black lines are the extrapolations of the linear dependences 𝑆(𝐿) to
large 𝐿. The red arrows indicate the entropic phase transitions, where lim𝜂→0 𝜕𝑆/𝜕𝜂 = 𝐶𝑉/2.
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while option 2 ensures the existence of the solutions of (5.11) in the whole domain of 𝐿. This gap grows
with 𝑀 , and fast oscillations of 𝑞∗(𝐿), calculated according to option 2, emerge below 𝐿trans (see the
bottom left-hand part in figure 1). We attribute this behaviour to the rapid changes in the number of
“unphysical” microstates 𝐾 with 𝐿. It is closely related to the introduced notion of the size effects since
we face a discreteness of 𝐾 and a finiteness of the subsystem size 𝐿. However, no such oscillation is
observed in 𝑆(𝐿) (the bottom right figure 1), since the fast oscillations of 𝑞∗ are in the “anti-phase”
with those of the Lagrange multipliers 𝑇∗ (not shown in the figure), yielding a smooth increase of the
entropy with a noticeable jump at 𝐿trans only. Overall, option 2 seems to be much more reliable [24, 29]
for a description of the 𝑞∗(𝐿) behaviour almost everywhere except the domain “small 𝑀 – large 𝐿”.
Nevertheless, we believe that a detailed study of peculiarities dealt with option 1 can also shed additional
light upon the behaviour of the system described by the Rényi/Tsallis parastatistics.

We repeated the above calculations of the Rényi index 𝑞∗ and Rényi entropy 𝑆 for 𝑁 = 100. Their
dependences on the subsystem size 𝐿 were found to be analogous to those for 𝑁 = 200. However, the
subsystem length 𝐿trans, at which the jump of the Rényi index occurs, significantly decreases.

In figure 2, we plot the dependences of the 𝐿trans on 𝑀 for 𝑁 = 100 and 𝑁 = 200. They are found to
be approximated quite well by the logarithmic function 𝐴 + 𝐵 ln𝑀 with 𝐴 and 𝐵 being almost exactly
twice larger for 𝑁 = 200 than for 𝑁 = 100. In the right-hand panel, 𝐿trans are replotted as functions of
𝑇ph = 𝑇micro using the expression (5.7): the jump length grows linearly at low temperatures and barely
changes at high temperatures. Unfortunately, no useful analytical results could be obtained for 𝐿trans; the
numerical calculations suggest that it should be proportional to 𝑁 .
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Figure 2. (Colour online) Dependences of the transition length 𝐿trans on the number of pairs of the
oppositely directed neighbouring spins 𝑀 or the corresponding 𝑇micro, calculated using equation (5.7),
for 𝑁 = 200 (■) and 𝑁 = 100 (⃝). Red and blue lines: 𝐿trans = 𝐴 + 𝐵 ln𝑀 with 𝐴 = 74, 𝐵 = 44.5 and
𝐴 = 37, 𝐵 = 23.5, respectively.

In figure 3, we plot the dependence of the Rényi index 𝑞∗ on the number of pairs of the oppositely
directed neighbouring spins 𝑀 at different 𝐿. For 𝐿 = 2, the 𝑞∗(𝑀) dependence is quite smooth. For
𝐿 = 120, a noticeable jump of the Rényi index occurs at 𝑀 = 12, in agreement with the data shown
in figure 2. Nevertheless, for the same 𝐿 = 120, no irregularity is observed in the dependence of the
Rényi entropy either on 𝑀 or on 𝑇ph (figure 4). This result is quite interesting, since it shows that the
conventional phase transitions in the 1D Ising model are absent not only in the limit 𝑞 → 1 but also at
other values of the Rényi indices.

5.2. Problem II

In the final part of this section, we consider a problem similar to that examined in [29], where the
thermodynamics of the Ising spins chain was studied within the Tsallis statistics. As it has already been
mentioned, the value of the 𝑞 index there was uniquely chosen by selection of the environment, which
was composed of the ideal gas molecules interacting with the Ising spins.

Let us take one pair (𝑞∗, 𝑇∗) of solutions of equations (5.11), which was previously obtained for
some generally arbitrary values 𝑀 and 𝐿. Then we put 𝑞 = 𝑞∗ at all temperatures, whereas the Lagrange
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Figure 3. Dependence of the Rényi index 𝑞∗ on 𝑀 for 𝐿 = 2 (left-hand) and 𝐿 = 120 (right-hand).
𝑁 = 200. The lines are guides to the eye.
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Figure 4.Dependence of the Rényi entropy on the number of pairs of the oppositely directed neighbouring
spins 𝑀 (left) and temperature 𝑇ph = 𝑇micro (right-hand) at constant subsystem length 𝐿 = 120. 𝑁 = 200.
The lines are guides to the eye.

parameter 𝑇 is allowed to vary in quite a broad domain. The variation of 𝑇 means that the number of pairs
of the oppositely directed neighbouring spins 𝑀 in the entire chain varies too. We find 𝑀 and the internal
energy 𝑈 by solving the self-consistency equation (5.4) as well as either the exact equation 𝑇ph = 𝑇micro,
see (5.11a) or its approximation 𝑞𝑇 ≈ 𝑇micro. To do that we assume that 𝑀 could be a real number, and
then we round the found solution to the nearest even integer. This rounded value is used to determine the
boundaries of the domains [𝐾min, 𝐾max] of the allowed microstates at each temperature 𝑇 . Again, of the
multiple solutions at each given 𝑇 we choose that solution which corresponds to the largest entropy.5

In figure 5, we plot the dependence of the internal energy of the subsystem on the physical temper-
ature (5.8) for two different 𝐿 = 80 (left-hand) and 𝐿 = 180 (right-hand) for 𝑁 = 200. We choose
𝑀 = 30 to fix the pair of solutions (𝑞∗, 𝑇∗) found for Problem I, namely: 𝑞∗(30, 80) = 1.0219,
𝑇∗(30, 80)/𝐽 = 1.1472, and 𝑞∗(30, 180) = 0.94418, 𝑇∗(30, 180)/𝐽 = 2.3545. As one can see, the
calculated exact dependences quite accurately follow the𝑈 (G) (𝑇ph) curves of the canonical distribution.
It would be also true for the microcanonical ensemble: the internal energy defined by equation (4.8)
differs from that determined by the second equation in (5.10) only by terms of the order 1/𝑁 , which are
quite unessential for a long enough Ising spin chain with 𝑁 = 200.

However, on a small scale, the dependences of the Rényi internal energies on 𝑇ph have a discrete
stairway structure with steps and gaps both in 𝑈 and in 𝑇ph. This structure is quite apparent for a larger
subsystem (right-hand panel in figure 5, 𝐿 = 180) and barely discernible and only at very low temperature

5The described algorithm means that we are looking for the values of𝑈 that do not differ too much from those obtained using
the microcanonical distribution. In fact, one can apply less strict conditions for the microstates numbers 𝐾 , just demanding from
them to ensure the positivity of the expression in the parentheses of equation (5.1). Obviously, a comparison of the obtained results
with the observables calculated within the microcanonical ensemble loses its meaning in such a case.
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Figure 5. (Colour online) The temperature dependence of the Rényi internal energy. The calculations
are carried out with constant 𝑞 = 1.0219 (left) and 𝑞 = 0.94418 (right); 𝑁 = 200. The black and red
points are found by using the relations 𝑇ph = 𝑇micro and 𝑞𝑇 ≈ 𝑇micro, respectively. The green lines are
the internal energy of the canonical distribution𝑈 (𝐺) = −𝐽 (𝐿 − 1) tanh(𝐽/𝑇ph). The arrows in the inset
indicate the jumps of 𝑈. (Only the lowest jump in the inset is discernible, while the magnitudes of two
others are smaller then the size of the symbols).

for a significantly smaller subsystem (left-hand panel and the inset in figure 5, 𝐿 = 80). The steps become
lower and wider with increasing 𝑇ph. This stairway structure of the 𝑈 (𝑇ph) dependence is caused by the
discreteness of the system, in particular of the allowed values of 𝑀 (even integers), 𝐾 (integers), and of
the boundaries [𝐾min, 𝐾max] limiting the values of 𝐾 , all of which change stepwise with the increasing
temperature. The increase of temperature and of 𝑀 is accompanied by the expansion of the interval
[𝐾min, 𝐾max] or even to its shift to the right. Physically, it means that more and more microstates are
involved in the formation of the system thermodynamics. This effect is discussed more in detail in the
appendix.

Note also that when the exact relation 𝑇ph = 𝑇micro (5.11a) or 𝑞𝑇 ≈ 𝑇micro is used in calculations, the
𝑈 (𝑇ph) of a smaller subsystem (𝐿 = 80) is the same (left-hand panel). For a larger subsystem (𝐿 = 180,
right-hand panel), such two curves coincide only at moderate to high temperatures, whereas at low
temperatures they apparently deviate from each other. The exact curve follows the line of the internal
energy of the canonical distribution. The big visible gap in the exact 𝑈 (𝑇ph) curve for 𝐿 = 180 at about
𝑇ph ∼ 𝐽 is caused by the absence of solutions for quite a strong requirement 𝑇ph = 𝑇micro and probably
does not bear any physical significance; this gap can vanish if one loosens the above requirement.
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Figure 6. (Colour online) The dependence 𝑇ph (𝑇). The calculations are carried out with constant 𝑞 =

1.0219 (left-hand panel) and 𝑞 = 0.94418 (right-hand panel). The black and red symbols are calculated
by using the exact 𝑇ph = 𝑇micro and approximate 𝑞𝑇 ≈ 𝑇micro relations, respectively. The blue line is
found from equation (5.9). 𝑁 = 200.

Some light on the origin of the peculiarities of the presented above 𝑈 (𝑇ph) dependences is shed by
the corresponding 𝑇ph(𝑇) dependences, plotted in figure 6. The two𝑈 (𝑇ph) curves in the left-hand panel
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of figure 5 overlap because the corresponding 𝑇ph(𝑇) curves coincide: regardless of the relation used
for calculation of the allowed microstates, 𝑇ph for 𝐿 = 80 follows the same straight line 𝑞𝑇 . This agrees
with equation (5.9), according to which 𝑇ph = 𝑞𝑇 in the first approximation, whereas the next term in the
expansion series is proportional to (1 − 𝑞)2(𝐿 − 1) and is negligible, when the Rényi index only slightly
deviates from unity.

The situation changes for a larger subsystem, 𝐿 = 180 (the right-hand panel in figure 6). In this
case, the difference between the chosen value of the Rényi index, 𝑞 = 0.94418, and unity is greater and
the product (1 − 𝑞)2(𝐿 − 1) is much greater. Nevertheless, the dependence 𝑇ph(𝑇) is still linear at very
low and at moderate to high 𝑇 , which means that the second term in equation (5.9) becomes negligible
at these temperatures, anyway. The approachment of the limits 𝑇 → 0 and 𝑇 → ∞ by the calculated
𝑇ph(𝑇) dependence is well approximated by equation (5.9), as indicated by the blue line in figure 6. At
intermediate 𝑇 , however, 𝑇ph(𝑇) calculated with the exact relation 𝑇ph = 𝑇micro essentially deviates both
from the straight line 𝑞𝑇 and from the curve, corresponding to equation (5.9). This temperature range
clearly has two domains with different character of the 𝑇ph(𝑇) dependence. It is the deviation of 𝑇ph(𝑇)
from 𝑇ph = 𝑞𝑇 that causes the difference between the corresponding 𝑈 (𝑇ph) dependences (the black
and red symbols in figure 5). Obviously, the difference between the exact 𝑇ph(𝑇) and calculated from
equation (5.9), means that higher terms in the expansion of equation (5.8) over 𝑞 − 1 must be taken into
account, because the quadratic term only included in equation (5.9) is not sufficient at the intermediate
temperatures.

In figure 7 we plot the 𝑇ph(𝑇) and 𝑈 (𝑇ph) dependences for a twice smaller entire system, 𝑁 = 100,
for 𝐿 = 90 and 𝑞 = 0.94418, i.e., the same 𝐿/𝑁 ratio (a twice smaller subsystem) and 𝑞 as in the
right-hand panels of figures 5, 6. Notable is a larger deviation of the calculated 𝑈 (𝑇ph) dependence
from the canonical curve, which is totally expected. The exact 𝑇ph(𝑇) dependence, on the other hand, is
much better approximated by equation (5.9), as well as it is much closer to the line 𝑇ph = 𝑞𝑇 , which is
also expected for smaller 𝐿 at the same value of 𝑞. The stairway structure of the shown dependences is
more pronounced, and the step width is increased, as compared to the case 𝑁 = 200, in agreement with
equation (A.2); see the discussion in appendix.
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Figure 7. (Colour online) The dependences 𝑇ph (𝑇) and 𝑈 (𝑇ph) for 𝑁 = 100 and 𝐿 = 90; 𝑞 = 0.94418.
The symbols and lines are the same as in Figs. 5 and 6.

Worth mentioning is the monotonous dependence of the physical temperature on 𝑇 for the above
considered values of 𝑞. In [32], the non-monotonous behaviour 𝑇ph(𝑇) of the 8-level system with an
equidistant discrete spectrum in the Tsallis statistics was observed and attributed to the metastable
states. In our case, no metastable states have been detected, as it is explained in detail in the Appendix.
Interestingly, as preliminary calculations show, the 𝑇ph(𝑇) dependence for 𝑞, much different from 1,
becomes non-monotonous at low temperatures, but the𝑈 (𝑇ph) dependence remains monotonous, and no
metastable states are still detected. We shall address these findings more in detail elsewhere.

6. Conclusions and outlook

In this paper, we study the behaviour of the 1D Ising model in the framework of the Rényi statistics.
We consider the Rényi statistics as a certain alternative to the microcanonical distribution in describing
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the size effects for the subsystem, which is supposed to be comparable with its surroundings or even
greater than the environment.

First, we consider Problem I, based on our assumption that the observables (the internal energy and
the physical temperature) are the same in both statistics. This allowed us to self-consistently calculate the
Rényi index 𝑞 and to study its evolution from the values slightly greater than unity, when the subsystem
size 𝐿 is much less the that of the total system 𝑁 , through the jump of 𝑞 at the intermediate values of
𝐿, and up to the limit 𝑞 → 0, when the size of environment is vanishing, and the system is governed by
the microcanonical distribution. A downward jump of the Rényi index at 𝐿 = 𝐿trans is accompanied by
a notable change of the system entropy, which gives us reasons to associate it with the entropic phase
transition. At the same time, the curve describing the temperature behaviour of the Rényi entropy has
no anomalies, which indicates the absence of conventional phase transitions. The derivative of the Rényi
entropy with respect to the order parameter at 𝜂 → 0 turns out to be proportional to the heat capacity 𝐶𝑉
of the subsystem, as it is expected from the basic thermodynamic relations. The calculated behavior of
the Rényi index 𝑞 is found to qualitatively agree with the one given by the formulae, which follow from
the simple thermo-fluctuation approach [14] or more sophisticated statistical methods [15] and invoke an
inverse heat capacity of the environment.

Problem II considered is dealt with the temperature behaviour of the internal energy. To this end, we
have loosened the first assumption 𝑈𝑅 = 𝑈micro made earlier. We use fixed values of the Rényi index
𝑞 (which do not substantially differ from the unity), while the allowed microstates are determined from
equation (5.11a). We obtain a monotonous temperature behaviour of 𝑈 (𝑇ph) with no metastable states
detected. On a small scale,𝑈 (𝑇ph), 𝑇ph(𝑇), and 𝑀 (𝑇ph) exhibit stairway structures, which we attribute to
the discreteness of the system spectra, i.e., those are the size effects that disappear in the thermodynamic
limit. These size effects become stronger when the total particle number 𝑁 decreases, and the difference
between 𝑞 and unity increases, as the subsystem particle number 𝐿 increases at 𝑁 = const.

The approach similar to ours had been adopted in [33], when a portion of the isotropic XY spin chain
was interpreted as the subsystem, whereas the remaining spins composed the bath. Though the statistics
of the overall system was taken to be Gibbsian (a concept of the superbath was introduced, and the
entire spin chain was immersed in the infinite environment), some thermodynamic anomalies, obviously
caused by the finite bath effects, were observed. It could be interesting to follow this line of investigation,
namely, to loosen the requirement for 𝐾 , demanding only “unphysical” states avoidance, and to study the
temperature behaviour of the same thermodynamic functions as in [33].

Another problem worth studying is a generalization of our approach to the two-temperature formalism
by introducing the concept of the system and bath temperatures, see [34] and the references therein.
In the framework of the thermo-fluctuation approach and the related methods [14, 26], the “system”
temperature 𝑇 is considered to be a random quantity, while the “bath” temperature 𝑇0 = 𝑞𝑇 coincides
with the mean value of the stochastic variable 𝑇 . It does not allow one to introduce the mentioned two-
temperature concept reliably. At the same time, within the purely statistical approaches [15] supplemented
by the thermodynamic consideration [16, 35], the two-temperature formalism becomes quite realistic,
at least, if the heat bath by size and energy content is greater than or comparable to the system under
consideration [34]. However, a concept of the “higher” bath temperature 𝑇bath = 𝑞𝑇 at 𝑞 > 1 cannot be
directly adopted in our case, since the Rényi indices remain greater than unity for large enough subsystems
(up to 𝐿trans, see figure 2), when the environment length 𝑁 − 𝐿trans becomes smaller than that of the
system. The assumption made on page 10 should be re-examined if one is going to directly introduce the
two-temperature formalism using, for instance, the exact statistical relations [15] or the second law of
thermodynamics [34].

All the above mentioned problems can be the subject of future investigations.
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Appendix

As it has been discussed in section 5, the overall stairway structure of the 𝑈 (𝑇ph) dependence is
caused by the jumps in the number of the pairs of the oppositely directed neighbouring spins 𝑀 with
increasing temperature. The qualitative physical picture shows that the jumps occur when this increase
is sufficient to flip yet another spin and create (for ferromagnetic 𝐽) two extra such pairs, so that the
next energy level could be populated. Technically, this happens whenever the actual solution 𝑀 (a real
number) of the system increases through an odd number, say 2𝑛 + 1. Just below the jump it is rounded to
the nearest even integer number 2𝑛, and just above the jump to 2𝑛 + 2.
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Figure 8. (Colour online) The temperature dependence of the number 𝑀 of the pairs of the oppositely
directed neighbouring spins on temperature 𝑇ph, calculated for 𝐿 = 80 and 𝐿 = 180 with the exact
𝑇ph = 𝑇micro and approximate 𝑞𝑇 = 𝑇micro equations, the real number solution as calculated, or rounded
to the nearest even integer, and, finally, obtained from the canonical distribution, equation (A.1). 𝑁 = 200.

As seen in figure 8, in contrast to the 𝑇ph(𝑇) and 𝑈 (𝑇ph) curves, the dependence 𝑀 (𝑇ph) is basically
the same for different 𝐿 and does not depend on the employed approximation for 𝑇ph. If one uses the
canonical distribution equation for 𝑀 , equation (4.10), as a first approximation, then

𝑀 =
𝑁

2

(
1 − tanh

[
𝐽

𝑇ph

] )
. (A.1)

Here, 𝑀 is independent of 𝐿 and is determined by the size of the entire system 𝑁 , as expected. The
calculated with the Rényi distribution 𝑀 follows the canonical 𝑀 (𝑇ph) curve of equation (A.1), as seen
in figure 8. The width of a step in the stairway structure of 𝑀 (and thereby of𝑈) can be estimated as the
change of temperature Δ𝑇ph, required to increase 𝑀 by 2:

Δ𝑇ph ≈
4𝑇2

ph

𝑁𝐽
cosh2

[
𝐽

𝑇ph

]
. (A.2)

According to this, Δ𝑇ph increases with temperature everywhere, except for the region of very low temper-
atures, 𝑇ph/𝐽 < 0.8. The predicted behaviour agrees with the picture in figures 5, 8 both qualitatively and
quantitativly. The step width also decreases with increasing 𝑁 and tends to zero in the thermodynamic
limit, yielding smooth temperature dependences of 𝑀 and𝑈.

It should be mentioned that the nature of the observed in figures 5, 8 stairway structures is completely
different from that of the steps depicted in figure 2 of [29], where they appeared due to the application
of “the Maxwell’s law of areas” when dealing with the metastable states. Besides, the steps of𝑈 (𝑇ph) in
the cited paper become less wide as temperature increases.

At least for the considered values of 𝐿, 𝑁 , and 𝑞, we do not observe the metastable states like in [29].
Even when the system of equations (5.4), (5.11a) has multiple solutions with different 𝑀 at the same
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value of 𝑇 , these solutions, when plotted as functions of 𝑇ph, do not overlap. Moreover, there exist gaps
in the allowed values of 𝑇ph. The gaps are to be expected, since 𝑇ph given by equation (5.8) is a function
of 𝑀 via 𝐾min and 𝐾max, and these increase stepwise. This behaviour is illustrated in figure 9 for the
vicinity of one of the jumps in 𝑈. Note that among these multiple solutions, the one with the largest 𝑀
always corresponds to the largest entropy and is adopted. A jump between the adopted solutions (shown
in red), as well as the gap in the values of 𝑇ph, are clearly seen in the figures.
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Figure 9. (Colour online) The temperature dependences of solutions (5.4), (5.11a) for the Rényi internal
energy. The calculations are carried out with 𝑞 = 0.94418, using the exact relation 𝑇ph = 𝑇micro for
𝐿 = 180, 𝑁 = 200. The black points represent all the found solutions, while the red ones are the adopted
solutions, which correspond to the largest entropy.
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Модель Iзiнга у статистицi Ренi: ефекти скiнченного розмiру

В. В. Iгнатюк1,2, А. П. Моїна1
1 Iнститут фiзики конденсованих систем НАН України, вул. Свенцiцького, 1, 79011 Львiв, Україна
2 Львiвський нацiональний унiверситет iм. Iвана Франка, вул. Унiверситетська, 1, 79007 Львiв, Україна

Основнi засади статистики Ренi застосовано для опису ефектiв скiнченого розмiру у одномiрнiй моделi
Iзiнга. Внутрiшня енергiя та температура системи розрахована з використанням розподiлу Ренi та вва-
жаються рiвними аналогiчним величинам, обчисленим у мiкроканонiчому ансамблi. Це дозволяє само-
узгоджено розрахувати iндекс Ренi 𝑞 та параметр Лагранжа 𝑇 , пов’язати їх з фiзично спостережуваною
температурою 𝑇ph i показати, що у широкому дiапазонi температур у системi можливi ентропiйнi фазовi
переходи. Також дослiджено температурну залежнiсть внутрiшньої енергiї𝑈 (𝑇ph) при фiксованому 𝑞 та
вплив ефектiв скiнченого розмiру на термодинамiку системи.

Ключовi слова: статистика Ренi, мiкроканонiчний ансамбль, ентропiйнi фазовi переходи, модель Iзiнга
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