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A model of the non-concentric spherical core–shell quantum dot under the influence of an externally applied
electric field was proposed. It was established that the energy spectrum of both the electron and the hole de-
pends on the intensity of the electric field as well as on the specific location of the core within the quantum dot.
The phenomenon of energy level splitting and degeneration was analyzed in detail. Additionally, the variations
in the optical gap were determined and expressed as a function of the applied electric field strength and the
position of the core in the quantum dot.
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1. Introduction

In recent years, significant advancements have been achieved in the field of nanotechnology, particu-
larly in the production of hybrid quantum dots (QDs) composed of multiple components. By combining
different materials, it has become possible to fabricate multilayer QDs with diverse and tunable properties.
This integration of various components has opened up new opportunities for enhancing the performance
and efficiency of optoelectronic devices because the use of multilayer QDs can improve the operational
parameters of these devices. This approach allows for expanded functionality and customization of
optoelectronic systems in order to meet specific requirements.

Spherical core–shell quantum dots (CSQD) are the most basic type of multilayer structures. The
interest in CSQDs stems from their capability to modify the essential optical properties of the core
nanocrystals, such as the fluorescence emission wavelength and quantum yield by varying the thickness
of the shell surrounding the core [1–4]. In these structures, due to the presence of the shell, a reduced
blinking is observed [5, 6]. Those and other advantages caused the rise of theoretical interest in studying
CSQDs (for example [7–16]). Electron and hole spectra were calculated in [7–11], taking into account
external electric fields [8–10] and a magnetic field [8]. Based on the electron and hole spectra, the
photoionization cross-section [9, 12], interlevel, and intersubband transition energies [13, 14] were
obtained, and the linear and nonlinear optical properties of CSQDs were calculated. Furthermore, the
influence of QD-matrix deformation on the baric properties of CSQDs was determined [16]. In works [17–
19] it was shown that photoluminescence flickering can be controlled by an external action, in particular,
an electric field.
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The above mentioned works further confirm that the study of the effect of the electric field on the
CSQD is an actual task that is solved in many works. However, in most of them, the concentric spherical
CSQDs are considered. In real situations, there is no certainty that the spherical CSQD will be concentric.
Furthermore, the violation of concentricity can be reached by cation exchange in layers [20]. In work [20],
high-resolution transmission electron microscopy and high-angle annular dark-field scanning transmis-
sion electron microscopy images are presented, which prove that non-concentric spherical CSQDs were
obtained. There are presented numerical calculations of electron and hole spectrum in Comsol (soft-
ware) using the finite element method. However, there is no analytical theory of non-concentric spherical
CSQDs. The first analytic model of non-concentric CSQD was presented in our work [21].

Calculations [20, 21] show that the core displacement caused the changes in the hole and electron
levels. The energy levels of the excited states split [21]. This splitting can be changed depending on the
direction and value of the electric field. It can increase the changes in electron spectra caused by the
core displacement and decrease them, like we had in [22] with electric field and impurity. The external
electric field will change the hole levels and the effective optical gap.

For this reason, the objective of this paper is to investigate the energy states of both electrons and
holes in a non-concentric CSQD exposed to an external electric field. It also aims at assessing the impact
of the position of the core, as well as of the magnitude and direction of the electric field on the effective
optical gap.

2. Theory

Let us consider the semiconductor spherical non-concentric core–shell QD. The core radius is 𝑟0,
the shell radius is 𝑟1. The QD is characterized by the effective electron mass: 𝑚0 in the core, 𝑚1 in the
shell. The CSQD is in the bulk matrix with the electron effective mass 𝑚2. Additionally, we assume that
the lattice constants and dielectric constants of materials have close values, which is why we neglect the
impact of polarization and deformation effects. We use an average value of the dielectric permitivity 𝜀. In
our analysis, we focus on the case where the QD core is displaced from the QD center by a distance 𝐷 in
the 𝑧-direction (as illustrated in figure 1), where 𝑟1 − 𝑟0 ⩽ 𝐷. The external electric field ®𝐹 = (𝐹𝑥 , 𝐹𝑦, 𝐹𝑧)
is applied to the heterosystem. Electrostatic potential energy of the electron in external field has the
following form

𝑉 (®𝑟) = − ®𝑑 · ®𝐹 = 𝑒®𝑟 · ®𝐹 = 𝑒(𝑥𝐹𝑥 + 𝑦𝐹𝑦 + 𝑧𝐹𝑧), (2.1)

Figure 1. (Colour online) Geometric model of core–shell QD.
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where ®𝑑 is dipole momentum, 𝑒 is elementary charge (−𝑒 is the electron charge). We consider the case
of 𝑧-direction of the electric field

®𝐹 = (0, 0, 𝐹). (2.2)

The electron Hamiltonian of the described system in units of effective Rydberg energy Ry∗ = ℏ2

2𝑚0𝑎
∗2
𝑏

and

effective Bohr radius 𝑎∗
𝑏
= ℏ2𝜀

𝑚0𝑒2 is as follows:

�̂� = −®∇ ·
[
𝑚0

𝑚(®𝑟)
®∇
]
+𝑈 (®𝑟) + �̃� (®𝑟), (2.3)

where

𝑚 (®𝑟) =

𝑚0, ®𝑟 in core,
𝑚1, ®𝑟 in shell,
𝑚2, ®𝑟 in matrix

(2.4)

is the electron effective mass,

𝑈 (®𝑟) =


0, ®𝑟 in core,
𝑈01, ®𝑟 in shell,
𝑈02, ®𝑟 in matrix

(2.5)

is confinement potential, and �̃� (®𝑟) = 𝑉 (®𝑟)/Ry∗. Hereafter, we omit the tilde symbol and assume that the
distances are measured in units of the effective Bohr radius, while the energies are measured in units of
the effective Rydberg energy.

In order to determine the energy spectrum and wave functions of the electron, one must solve the
Schrödinger equation. However, when dealing with the systems that lack a spherical symmetry, exact
solutions to this equation are not feasible. Hence, the plane wave method is employed, which is extensively
explained in references [21, 23–25]. The wave function, serving as a solution to the Schrödinger equation,
can be represented in the following manner:

𝜓(®𝑟) =
∑︁

𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧

𝐶𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧𝜓
(0)
𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧 (𝑥, 𝑦, 𝑧), (2.6)

where
𝜓
(0)
𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧 =

1√︁
𝐿𝑥𝐿𝑦𝐿𝑧

exp
{
i
[
(𝑘𝑥 + 𝑛𝑥𝐾𝑥)𝑥 + (𝑘𝑦 + 𝑛𝑦𝐾𝑦)𝑦 + (𝑘𝑧 + 𝑛𝑧𝐾𝑧)𝑧

]}
. (2.7)

Here, 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 ≡ 𝐿 are the edge lengths of the unit cell along the 𝑥, 𝑦, and 𝑧 directions of the
coordinate system, 𝐾𝑥 = 𝐾𝑦 = 𝐾𝑧 ≡ 2π/𝐿,

𝑛𝑥 ∈ [−𝑛max, ..., 𝑛max], 𝑛𝑦 ∈ [−𝑛max, ..., 𝑛max], 𝑛𝑧 ∈ [−𝑛max, ..., 𝑛max] . (2.8)

References [21, 23–25] demonstrated that the results achieved convergence by considering 𝑛max = 7 and
𝐿 = 2.5 + 2𝑟1. Furthermore, it was substantiated that the obtained results are independent of the wave
vector (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) when using those parameters. That is why, we get 𝑘𝑥 = 𝑘𝑦 = 𝑘𝑧 = 0 in the following
calculations.

Upon substituting equation (2.6) into the Schrödinger equation containing Hamiltonian (2.3), a system
of linear homogeneous equations is obtained:∑︁

𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧

(
𝑇𝑛′𝑥 ,𝑛′𝑦,𝑛′𝑧

𝑛𝑥 ,𝑛𝑦,𝑛𝑧

+𝑈 𝑛′𝑥 ,𝑛′𝑦,𝑛′𝑧
𝑛𝑥 ,𝑛𝑦,𝑛𝑧

+𝑉𝑛′𝑥 ,𝑛′𝑦,𝑛′𝑧
𝑛𝑥 ,𝑛𝑦,𝑛𝑧

− 𝐸𝛿 𝑛′𝑥 ,𝑛′𝑦,𝑛′𝑧
𝑛𝑥 ,𝑛𝑦,𝑛𝑧

)
𝐶𝑛𝑥 ,𝑛𝑦 ,𝑛𝑧 = 0. (2.9)

Matrix elements 𝑇 and 𝑈 were presented and derived in [21]. The matrix element of (2.1) has the
following form

𝑉𝑛′𝑥 ,𝑛′𝑦,𝑛′𝑧
𝑛𝑥 ,𝑛𝑦,𝑛𝑧

= 𝑒𝐹𝐿𝛿𝑛′𝑥 ,𝑛𝑥
𝛿𝑛′𝑦 ,𝑛𝑦

{
0, 𝑛′𝑧 = 𝑛𝑧 ,
−i(−1)𝑛𝑧−𝑛′𝑧
2π (𝑛𝑧−𝑛′𝑧 ) , 𝑛′𝑧 ≠ 𝑛𝑧 .

(2.10)

43703-3



R. Ya. Leshko, I. V. Bilynskyi, O. V. Leshko, M. Yu. Popov, A. O. Ocheretyanyi

From the system of linear homogeneous equations (2.9) and normalized condition, the energy 𝐸 and
all coefficients can be found. In other words, we diagonalize the matrix 𝑇 +𝑈 + 𝑉 . Therefore, the wave
function (2.6) can be defined.

For the hole states, we assume that the valence band can be described by a simple isotropic parabolic
dispersion relation. That is why we used all the presented formulae (2.1)–(2.10) for the holes with a
suitable replacement of effective masses (2.4) and confinement potential (2.5).

3. Calculation results

We perform calculations for the CSQD of the heterostructure GaAs/Al𝑥Ga1−𝑥As/matrix using the
physical parameters like in our previous works [21, 22]: a) for the electron (𝑥 = 0.4, 𝑚0 = 0.067𝑚𝑒,
𝑚1 = 0.1𝑚𝑒, 𝑚2 = 𝑚𝑒,𝑈01 = 297 meV); b) for the hole (𝑥 = 0.4, 𝑚0 = 0.51𝑚𝑒, 𝑚1 = 0.61𝑚𝑒, 𝑚2 = 𝑚𝑒,
𝑈01 = 562 meV). 𝑚𝑒 is the free electron mass, 𝐸𝑔 = 451 meV. We also consider the matrix, where the
band offset between QD shell and matrix is very large. That is why we assume that𝑈02 = 6000 meV.

The dependence of the energy levels of the electron and hole on the magnitude of the applied electric
field along the 𝑧-axis is illustrated in figure 2. There we consider a concentric case [the first column (A,
D, G, J, M, P) of graphs in figure 2]; the case 𝐷 = (𝑟1 − 𝑟0)/2 [the second column (B, E, H, K, N, Q) of
graphs in figure 2]; and 𝐷 = (𝑟1 − 𝑟0) [the third column of graphs (C, F, I, L, O, R) in figure 2]. In all
these cases, 𝑟1 = 50 Å.

From the graphs in figure 2, it is evident that we calculated the dependence of the energy of the
electron within the range of electric field values from −60 · 106 to 60 · 106 V/m, while the holes were
within the range of −200 · 106 to 200 · 106 V/m. Such a selection was dictated by the plane wave method
that requires the existence of infinitely high potential walls at the boundaries of a cube with sides of
length 𝐿. The energy model of potential wells and barriers is schematically depicted in figure 3.

From the energy diagram (figure 3), it can be observed that as the magnitude of the electric field
increases, the zones tilted more. Therefore, for high electric fields, conditions may arise where a particle
with a predominant probability will reside in the region from 𝑟2 to 𝐿, close to the surface of the cube 𝐿.
Consequently, the energy levels will also be located in the same region (see figure 3). Since 𝐿 is large,
this situation corresponds to a case where the particle has left the QD. We will not consider these cases.
Consequently, for the electron and the hole, there are specific electric field values at which such a process
occurs. Therefore, for the radii of the core, shell, and the displacement of the core from the center (which
are used in figure 2), the electric field values (when the departure from the electron or hole from the
quantum dot is not observed) are the same as mentioned above. As the effective masses of the holes are
larger, their energy is consequently lower by absolute value. Hence, the tunneling effect into the matrix
for holes can occur at lower electric fields.

In the case of a concentric CSQD, the applied electric field caused the splitting of electron and hole
1𝑝 levels (figure 2 A, D, G, J, M, P). However, in the case of non-concentric CSQD, the electron and hole
levels are split in zero electric fields by the magnetic quantum number |𝑚𝑙 |. The magnitude of splitting
depends on the QD layers size [21]. Furthermore, in [21] we showed that the splitt 𝑝-levels can change
the order. In the electric field, these levels can degenerate again or the splitting can increase.

Let us consider the electron levels in a non-concentric CSQD. If the electric field is directed along
the 𝑧 axis ( ®𝐹 ↑↑ 𝑧, 𝐹 > 0), the electric field “pushes” the electron from the shifted core to the shell in −𝑧
direction (opposite to the direction of the electric field). In this case, compensatory effects occur. That
is, at a certain value of the electric field magnitude, the initial spherical symmetry is restored (similar
to the case of the concentric spherical CSQD). A further increase in the electric field magnitude again
breaks this spherical symmetry. Therefore, for the ground state energy, as the electric field increases, we
observe a maximum in the 𝐸 (𝐹) dependence. For example, this is observed in (figure 2 I). The 𝑝 levels
may have 1 or 2 points of degeneration recovery (for 𝐷 > 0). One point of degeneration recovery is
always observed when 𝐹 > 0. The second point can arise at 𝐷 > 0 and 𝐹 < 0, when the 𝑝-level order is
changed.

To confirm the conclusions regarding the restored initial spherical symmetry, we built the graphs
illustrating the distribution of electron probability density in the ground state for a non-concentric
spherical CSQD at various values of the electric field (figure 4). It can be observed that negative values
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Figure 2. (Colour online) Electron (A, B, C, G, H, I, M, N, O) and hole (D, E, F, J, K, L, P, Q, R) energy
levels as a function of the electric field. 1 — the energy of ground state (𝑠-levels); 2, 3 — energies of
exited states (𝑝-levels); 2 — magnetic quantum number |𝑚𝑙 | = 0; 3 — |𝑚𝑙 | = 1.
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Figure 3. (Colour online) The energy model of potential wells and barriers in 𝑧-direction of the concentric
core–shell QD without electric field (left-hand side; blue color) and with electric field (right-hand side;
red color).

Figure 4. (Colour online) The probability density of electron location in the QD at different electric fields.
𝑟0 = 30 Å, 𝑟1 = 50 Å, 𝐷 = 20 Å.

(when the field is directed opposite to the 𝑧-axis) of the electric field cause a further displacement of the
probability density maximum along the 𝑧-axis (figure 4, 𝐹 > 0). Whereas positive values (𝐹 > 0) lead to
the restoration of spherical symmetry (𝐹 = 65 · 106 V/m) and to further displacement of the probability
density maximum in the opposite direction to the 𝑧-axis. Similar dependencies have be observed for the
hole states too.

Taking into account the change in the energy of the hole and electron levels in a non-concentric
spherical core–shell QD under an electric field, it is possible to determine the dependence of the effective
optical gap on the electric field and on the magnitude of the core displacement. This result is presented
in figure 5.
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Figure 5. (Colour online) The effective optical gap (𝐸gap = 𝐸𝑒 − 𝐸ℎ − 𝐸𝑔) as a function of the applied
electric field. Shell radius is 𝑟1 = 50 Å. Core radii are 𝑟0 = 20 Å (A), 𝑟0 = 30 Å (B), 𝑟1 = 40 Å (C). Curve 1
corresponds to 𝐷 = 0; curve 2 corresponds to 𝐷 = (𝑟1 − 𝑟0)/2; curve 3 corresponds to 𝐷 = (𝑟1 − 𝑟0).

From figure 5, it can be seen that for a concentric spherical CSQD (curves 1, figure 5), the application
of an electric field reduces the effective optical gap. It is also seen that in the absence of an electric field
(𝐹 = 0), the effective optical gap is larger in the case of a non-concentric CSQD. Moreover, the larger
is parameter 𝐷 (non-concentricity parameter) the larger is the optical gap (curves 1, 2, 3 in figure 5
at 𝐹 = 0). The applied non-zero electric field induces a change in the magnitude of the optical gap.
Specifically, its value increases when electronic levels rise and decreases when the hole levels decrease.
Conversely, the reduction in the optical gap occurs in the opposite scenario.

4. Conclusion

The conducted computations of the electronic and hole levels in a spherical CSQD enabled the
establishment of the dependence of the energy levels on the magnitude and direction of the electric field.
It was determined that an increase in non-concentricity leads to an increase in the ground state energy
for electrons and to a decrease for the holes. The energy levels of excited 𝑝-states split according to the
magnetic quantum number due to the disruption of spherical symmetry and conservation of cylindrical
symmetry.

The obtained dependencies of energies in non-concentric CSQDs concerning the electric field demon-
strate that there are electric fields causing the restoration of spherical symmetry by compensating for
the influence of non-concentricity. Degeneracy occurs again for the energy levels of 𝑝-states at specific
electric fields too.

The obtained results can be utilized to determine the absorption and luminescence of non-concentric
spherical CSQDs both in the presence and in the absence of an electric field. Additionally, the theory can
be extended to the case of arbitrary direction of the electric field.
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Було запропоновано модель неконцентричної сферичної квантової точки типу ядро-оболонка пiд впли-
вом зовнiшнього електричного поля. Встановлено, що енергетичний спектр як електрона, так i дiрки за-
лежить вiд величини електричного поля, а також вiд конкретного розташування ядра всерединi кванто-
вої точки. Особливостi розщеплення та виродження енергетичних рiвнiв було детально проаналiзовано.
Додатково було визначено змiну ефективної оптичної щiлини, функцiю вiд величини прикладеного еле-
ктричного поля та положення ядра.

Ключовi слова: неконцентрична сферична квантова точка типу ядро-оболонка, електричне поле
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