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Graphene is a zero-gap semiconductor, where the electrons propagating inside are described by the ultra-
relativistic Dirac equation normally reserved for very high energy massless particles. In this work, we show
that graphene under a magnetic field in the presence of a minimal length has a hidden 𝑠𝑢(1, 1) symmetry. This
symmetry allows us to construct the spectrum algebraically. In fact, a generalized uncertainty relation, leading
to a non-zero minimum uncertainty on the position, would be closer to physical reality and allow us to control
or create bound states in graphene. Using the partition function based on the Epstein zeta function, the ther-
modynamic properties are well determined. We find that the Dulong–Petit law is verified and the heat capacity
is independent of the deformation parameter.
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1. Introduction

Graphene has attracted the attention of scientific community in recent years due to its special pro-
perties. This is the first two-dimensional crystalline solid that has been experimentally developed. This
solid consists of a two-dimensional (2D) sheet composed of carbon atoms arranged in a hexagonal
honeycomb lattice. Its first theoretical study was carried out by Wallace [1]. In 2004, Novoselov et al. [2]
succeeded in isolating and electrically contacting a graphene sheet from the mechanical exfoliation of
natural graphite. A graphene sheet consists of carbon atoms arranged in a two-dimensional hexagonal
network. It has very particular electronic and mechanical properties, which have attracted the interest of
both the scientific community and industrialists. Indeed, graphene has a very high electronic mobility
and a high stability at the nanometric scale. In addition, unlike nanotubes, graphene can be produced
on large surfaces. All these properties make it possible to envisage the manufacture of graphene-based
electronic systems that could process data 10 times faster than the current systems. However, graphene
does not have an energy gap, which is an essential condition for the manufacture of transistors. This
discovery of graphene paved the way for the study of new 2D materials. Like graphene, many other 2D
materials have been prepared experimentally. This is particularly the case for hexagonal boron nitride,
which is a wide bandgap material, whose structural properties are similar to those of graphene. It is noted
that the study of graphene has attracted much interest in controlling or confining electrons in graphene
due to its spectacular properties and potentially important applications in nanotechnology. Confinement
attempts, using position-dependent mass [3] and magnetic fields, have been made to create bound states
in graphene. Recently, a series of studies concerning the interaction of graphene electrons have been
conducted, in order to find a way to confine charges [4–9]. More recently, exact analytical solutions of
the Dirac–Weyl equation in graphene under various magnetic fields in the Cartesian coordinate system
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have been found [10]. Furthermore, in [11] the massless Dirac equation in the presence of a constant
external magnetic field has been solved within the framework of the Dunkl formalism, where the Dunkl
parameters modify the conventional results of graphene thermal quantities. Parity effects appear on the
thermal quantities at low temperatures.

In this work, we study the Dirac–Weyl equation in graphene under magnetic fields with the genera-
lized uncertainty principle. Indeed, the pointlike character of particles is a basic postulate in quantum
mechanics; one of the fundamental consequences, which follows from it, is the localizability of particles.
In fact, a generalized uncertainty relation, leading to a minimal non-zero uncertainty on the position,
would be closer to physical reality. This could help to control or create bound states in graphene. Several
works have been done in recent years in the framework of the generalized uncertainty principle to show
the impact of this principle on quantum mechanical problems [12, 13]. We show that the Dirac–Weyl
equation for the deformed graphene has a hidden 𝑠𝑢(1, 1) symmetry. Thus, the eigenvalues and eigenstates
are constructed algebraically. Next, we use the properties of the zeta functions to determine, from the
partition function, thermodynamic quantities such as: free energy, entropy, specific heat and average
energy.

2. Basics of graphene

Structurally, graphene consists of an ordered hexagonal carbon lattice. Although it has some symmetry,
the resulting lattice is not a Bravais lattice, but a superposition of two triangular Bravais sublattices formed
by atoms of types 𝐴 and 𝐵, as shown in figure 1(a). In the reciprocal lattice, the Brillouin zone figure 1(b)
is the primitive cell of the wave vector space ®𝑘 and has the particularity of being capable of representing
all the properties of the real lattice.

(a)

δ1

δ
2δ3

a
1

a
2

(a)

(b)

(b)

Figure 1. (Colour online) (a) Graphene honeycomb lattice. (• : 𝐴 sublattice) and (◦ : 𝐵 sublattice). The
vectors 𝛿1, 𝛿2, and 𝛿3 connect neighboring carbon atoms, separated by a distance 𝑎 = 0.142 nm. The
vectors a1 and a2 form the basis of the triangular Bravais lattice. (b) First Brillouin zone with band path.
Its primitive vectors are a★1 and a★2 . The shaded region represents the first Brillouin zone, with its center Γ,
the inequivalent corners 𝐾 (red squares) and 𝐾′ (red squares), as well as the three crystallographic points
𝑀 , 𝑀′, 𝑀′′ (green triangles). The path Γ → 𝐾 → 𝑀 → Γ (dashed magenta line) is a standard line
in solid-state physics to represent the electronic bands of graphene. Original representation, inspired
by [14].

Inside this zone, we identify the points of high symmetry, also called critical points. The points 𝐾
and 𝐾 ′ are of great importance in the description of the band structure. Graphene has a band gap that is
zero [15], so it can be assimilated to a semiconductor without a band gap. Its basic electronic properties
are easily understood within a simple tight-binding model in which electron hopping is restricted to the
nearest sites. The Hamiltonian resulting from a decomposition into Bloch states with a lattice momentum ®𝑘
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reads

𝐻 = 𝜉

(
0 𝛾★k
𝛾k 0

)
= 𝑣

(
0 𝑝𝑥 − i𝑝𝑦

𝑝𝑥 + 𝑝𝑦 0

)
= 𝑣𝜎 · p, (2.1)

which is obtained within a tight-binding model, where one considers the electronic hopping between
nearest-neighbouring sites with a hopping amplitude 𝜉. Here, the Fermi velocity 𝑣 plays the role of
the velocity of light 𝑐, which is nevertheless roughly 300 times larger, 𝑐 = 300𝑣. The Pauli matrices
𝜎 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) are given by

𝜎𝑥 =

(
0 1
1 0

)
, 𝜎𝑦 =

(
0 −i
i 0

)
, 𝜎𝑧 =

(
1 0
0 −1

)
. (2.2)

The Hamiltonian (2.1) is indeed formally the Hamiltonian of massless 2D particles, and it is sometimes
called Weyl or Dirac Hamiltonian. In order to describe free electrons in a magnetic field, one needs to
replace the momentum by its gauge-invariant form

p → p − 𝑒

𝑐
A, (2.3)

where A is the vector potential that generates the magnetic field B = ∇ × A. This gauge-invariant
momentum is proportional to the electron velocity 𝑣, which must naturally be gauge-invariant because it
is a physical quantity.

The Hamiltonian (2.1) becomes
𝐻 = 𝑣𝜎 ·

(
p − 𝑒

𝑐
A
)
, (2.4)

where A is the electomagnetic vector potential and in the symmetric gauge is given by

A =
𝐵

2
(−𝑦, 𝑥, 0). (2.5)

We consider the Dirac electron moving in graphene under a static orbital magnetic field acting perpen-
dicular to the graphene plane. Moreover, we disregard the electronic spin degree of freedom and the
presence of any disorder in the system. In order to analyse the Hamiltonian (2.4) in a quantum mechani-
cal treatment, we use the standard method, the canonical quantization, where one interprets the physical
quantities as operators that act on state vectors in a Hilbert space. These operators in general do not
commute with each other, i.e., the order matters in which they act on the state vector that describes the
physical system. Under these circumstances, the low energy excitation of the electron around a Dirac
point in the Brillouin zone is described by the following Dirac–Weyl equation

𝐻Ψ(𝑥, 𝑦) = 𝑣𝜎 ·
(
p − 𝑒

𝑐
A
)
= 𝐸Ψ(𝑥, 𝑦). (2.6)

The two-component wavefunction is the column matrix Ψ(𝑥, 𝑦) = (𝜑(𝑥, 𝑦), 𝜑(𝑥, 𝑦))𝑇 , with the super-
index 𝑇 denoting the matrix transposition. From equation (2.6) we can write

𝑣

(
0 2𝑝𝑧 + i𝜔𝑧

2𝑝 𝑧̄ − i𝜔𝑧 0

) (
𝜑1
𝜑2

)
= 𝐸

(
𝜑1
𝜑2

)
, (2.7)

where
𝑧 = 𝑥 + i𝑦, 𝑧 = 𝑥 − i𝑦, 𝑝𝑧 =

1
2
(𝑝𝑥 − i𝑝𝑦), 𝑝 𝑧̄ =

1
2
(𝑝𝑥 + i𝑝𝑦). (2.8)

We have set 𝜔 = 𝑒𝐵/2𝑐. The operators (2.8) obey the basic commutation relations,

[𝑥, 𝑝𝑥] = iℏ11 = [𝑦, 𝑝𝑦], [𝑥, 𝑝𝑦] = 0 = [𝑦, 𝑝𝑥], (2.9)

[𝑧, 𝑝𝑧] = iℏ11 = [𝑧, 𝑝 𝑧̄], [𝑧, 𝑝 𝑧̄] = 0 = [𝑧, 𝑝𝑧] . (2.10)
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We use the formalism based on complex quantities to reduce the two-dimensional system to a one-
dimensional system. The creation and annihilation operators in the complex formalism are given as
follows

𝑎 = i
(

1
√
𝜔ℏ

𝑝 𝑧̄ −
i
2

√︂
𝜔

ℏ
𝑧

)
, 𝑎† = −i

(
1

√
𝜔ℏ

𝑝𝑧 +
i
2

√︂
𝜔

ℏ
𝑧

)
. (2.11)

Consequently, the equation (2.7) becomes

𝑣

(
0 2i

√
ℏ𝜔𝑎†

−2i
√
ℏ𝜔𝑎 0

) (
𝜑1
𝜑2

)
= 𝐸

(
𝜑1
𝜑2

)
. (2.12)

Thus, the problem is transformed into a one-dimensional case whose eigenvalue is given by

𝐸𝑛 = 2𝑣
√
ℏ𝜔𝑛. (2.13)

3. Lorentz-covariant deformed algebra with minimal length

We review the Lorentz covariance problem in deformed algebra. In the spacetime, coordinates
are denoted by contravariant (𝐷 + 1)-vectors 𝑥𝜇 = (𝑥0, 𝑥𝑖). The corresponding covariant (𝐷 + 1)-
vectors are given by 𝑥𝜇 = (𝑥0, 𝑥𝑖), with 𝑔𝜇𝜈 = 𝑔𝜇𝜈 = diag(1,−1,−1,−1). Contravariant and covariant
momenta are similarly defined as 𝑝𝜇 and 𝑝𝜇. The commutation relation of these operators are given by
[𝑥𝜇, 𝑝𝜈] = −iℏ𝑔𝜇𝜈 . The Lorentz covariance in the deformed algebra is given by

[𝑋𝜇, 𝑃𝜈] = −iℏ(1 − 𝛽𝑃𝜌𝑃
𝜌)𝑔𝜇𝜈 , [𝑋𝜇, 𝑋𝜈] = 2iℏ𝛽(𝑃𝜇𝑋𝜈 − 𝑃𝜈𝑋𝜇), [𝑃𝜇, 𝑃𝜈] = 0, (3.1)

where we assume that 𝛽 = 𝛽/ℏ𝜔 is a very small non-negative parameter. 𝛽 has the dimension of an
inverse squared momentum and 𝛽 is dimensionless.

The study of a system constructed from the algebra (3.1) is called the Synder model. This model is
based on an algebra that includes spacetime coordinates and Lorentz generators. This is an example of
noncommutative spacetime, meaning that the position operators have nontrivial commutation relations.

We can convert the covariant Lorentz algebra (3.1) into a non-covariant Lorentz algebra,

[𝑋𝑖 , 𝑃 𝑗 ] = −iℏ(1 + 𝛽𝑃2)𝑔𝑖 𝑗 , [𝑋𝑖 , 𝑋 𝑗 ] = 2iℏ𝛽(𝑃𝑖𝑋 𝑗 − 𝑃 𝑗𝑋𝑖), [𝑃𝑖 , 𝑃 𝑗 ] = 0. (3.2)

In the momentum representation, the deformed position 𝑋𝑖 and momentum operators 𝑃𝑖 are represented
by

𝑋𝑖 = iℏ(1 + 𝛽𝑝2) 𝜕

𝜕𝑝𝑖
+ iℏ𝛾𝑝𝑖 , 𝑃𝑖 = 𝑝𝑖 , [𝑥𝑖 , 𝑝 𝑗 ] = −iℏ𝑔𝑖 𝑗 , (3.3)

where 𝛾 is an arbitrary real constant, which does not effect the commutation relations (3.2). This constant,
that affects the weighting function in the scalar product in the momentum space, ensures the Hermiticity
of the operators (3.3),

⟨𝜓 |𝜙⟩ =
∫

d𝐷 𝑝

(1 + 𝛽𝑝2)1−(𝛾/𝛽)
𝜓★(𝑝)𝜙(𝑝). (3.4)

The algebra (3.1) gives rise to nonzero minimal uncertainties in the position coordinates, hence

(Δ𝑋)𝑖 = (Δ𝑋)0 = ℏ

√︃
𝐷𝛽. (3.5)

In the next section, we study the two-dimensional Dirac–Weyl equation in the presence of a min-
imal length in the case where the deformed algebra (3.1) remains invariant under standard Lorentz
transformations [16].

33601-4



Algebraic solution and thermodynamic properties of graphene

4. Two-dimensional Dirac–Weyl equation in the presence of a minimal
length

In this part, taking into account the results obtained in (4.4) and (4.6), we construct a natural extension
with the same property, exhibiting the familiar structure of Fock algebra operators. Indeed, in the presence
of a minimal length, the Fock algebra becomes [A,A†] = (1 + 𝛽𝑝2), where the ladder operators A
and A† in the momentum space are given by [13], 𝜔̄ =

√
ℏ𝜔,

A = i
𝜔̄
√

2

[
𝑝

𝜔̄2 +
(
1 + 𝛽𝑝2) 𝜕

𝜕𝑝

]
, A† = i

𝜔̄
√

2

[
− 𝑝

𝜔̄2 +
(
1 + 𝛽𝑝2) 𝜕

𝜕𝑝

]
. (4.1)

In terms of the ladder operators (4.1), the Hamiltonian of the Dirac–Weyl in presence of the minimal
length is give by

H𝛽 =

(
0 𝜆★A†

𝜆A 0

)
, 𝜆 = −2𝑣i

√
ℏ𝜔. (4.2)

In the limit 𝛽 −→ 0, we have

lim
𝛽−→0

A = 𝑎 = i
𝜔̄
√

2

(
𝑝

𝜔̄2 + 𝜕

𝜕𝑝

)
, lim

𝛽−→0
A† = 𝑎† = i

𝜔̄
√

2

(
− 𝑝

𝜔̄2 + 𝜕

𝜕𝑝

)
. (4.3)

We can obtain an interesting result if we define the operators A and A† as

A =

√︂
𝛽

2
(𝑎†𝑎 + 2ℓ)𝑎, A† = 𝑎†

√︂
𝛽

2
(𝑎†𝑎 + 2ℓ), (4.4)

where, A ≡ J− and A† ≡ J+ are the generators of the 𝑠𝑢(1, 1) algebra and satisfy the following 𝑠𝑢(1, 1)
algebra,

[J− ,J+] = 2
√︂
𝛽

2
J0, [J0,J±] = ±

√︂
𝛽

2
J±, (4.5)

with

J0 =

√︂
𝛽

2
(𝑎†𝑎 + ℓ), ℓ = 1 +

√︄
1 + 1

𝛽2 . (4.6)

We show that the realizations (4.4) and (4.6) particularly play a dominant role in the solution of the
Hamiltonian (4.2). Indeed, the action of the realizations (4.4) and (4.6) on the state |ℓ, 𝑛⟩ (𝑛 = 0, 1, 2, . . . )
leads to infinite dimensional unitary irreducible representation of 𝑠𝑢(1, 1) known as the positive repre-
sentation 𝐷+(ℓ),

J0 |ℓ, 𝑛⟩ =
√︂
𝛽

2
(𝑛 + ℓ) |ℓ, 𝑛⟩,

C|ℓ, 𝑛⟩ = 𝛽

2
ℓ(ℓ − 1) |ℓ, 𝑛⟩, (4.7)

J− |ℓ, 𝑛⟩ =
√︂
𝛽

2
𝑛(2ℓ + 𝑛 − 1) |ℓ, 𝑛 − 1⟩,

J+ |ℓ, 𝑛⟩ =
√︂
𝛽

2
(𝑛 + 1) (2ℓ + 𝑛) |ℓ, 𝑛 + 1⟩. (4.8)

The eigenvalue problem of the Hamiltonian (4.2) gives

H𝛽Ψ = 𝐸𝛽Ψ, (4.9)

where Ψ = (𝜓1, 𝜓2)𝑇 . We get a set of coupled equations as follows

𝐸𝛽 |𝜓1⟩ = 𝜆J+ |𝜓2⟩, 𝐸𝛽 |𝜓2⟩ = 𝜆★J− |𝜓1⟩. (4.10)
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Using the above equation, we have

|𝜓2⟩ =
𝜆★J− |𝜓1⟩

𝐸𝛽
. (4.11)

By inserting equation (4.11) into (4.10), we get

(𝐸𝛽)2 |𝜓1⟩ = 𝜆𝜆★J+J− |𝜓1⟩. (4.12)
When we write the component |𝜓1⟩ in terms of states

|ℓ, 𝑛⟩ =

√︄
2𝑛Γ(2ℓ)

(𝛽)𝑛𝑛!Γ(𝑛 + 2ℓ) (J+)𝑛 |ℓ, 0⟩, (4.13)

the equation (4.12) can be diagonalized and the energy spectrum is given by

𝐸
𝛽
𝑛

±
= ±

√︂
𝜆𝜆★

𝛽

2
𝑛(2ℓ + 𝑛 − 1). (4.14)

The total associated eigenstate is

Ψ =

(
1

𝜆★J−/𝐸

)
|ℓ, 𝑛⟩. (4.15)

It is clear that the energy of the system depends explicitly on the noncommutative parameter associated
with the positions, and the zero-energy level for this system is 𝐸𝛽±

0 = 0. In the limit 𝛽 = 0, we obtain

𝐸0±
𝑛 = 2𝑣

√
ℏ𝜔𝑛, (4.16)

which exactly coincides with the results found in [1] and [17] for the special cases.
Our results are in agreement with those found in the literature. We found that the energy levels

exhibit a dependence on 𝑛2 in the presence of the minimum length, which describes a hard confinement.
For example, in the limit 𝛽 = 0, we find the results of the article [7]. In the work [8], by passing into
the commutative space, we find the same results for the case 𝛽 = 0. Moreover, our algebraic method
generalizes the results found in [9].

The energy states are divided into two sectors: the positive sector made up of states of particles of
positive energy and the negative sector made up of states of particles of negative energy. Additionally,
negative energy levels are identified at antiparticle levels. We can then assume that only positive energy
particles are more appropriate to determine the thermodynamic properties of the system.

5. Thermal properties of the Dirac oscillator

In order to study the thermodynamic properties of the Dirac–Weyl system, we start by defining the
partition function of the system. Thus, given the positive energy spectrum (4.14), the partition function 𝑍
at finite temperature 𝑇 is defined by

𝑍 =
∑︁
𝑛=0

e−𝛼𝐸
𝛽
𝑛 , with 𝛼 =

1
𝑘B𝑇

, (5.1)

where 𝑘B is the Boltzmann constant, 𝐸𝑛 is the positive energy given by

𝐸
𝛽
𝑛 =

√︂
𝜆𝜆★

𝛽

2
𝑛(2ℓ + 𝑛 − 1), 𝜆 = −2𝑣i

√
ℏ𝜔, 𝜔 =

𝑒𝐵

2𝑐
. (5.2)

Therefore, we rewrite the partition function (5.1) as follows

𝑍 = 1 +
∑︁
𝑛=0

exp
(
− 1
𝜌

√︁
𝑎𝑛2 + 𝑏𝑛 + 1

)
, (5.3)
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where

𝑎 =
1
2ℓ
, 𝑏 = 1 + 𝑎, 𝜌 = 𝑘B𝑇

√︂
𝑐

2ℏ𝑒𝐵𝑣2𝛽ℓ
, ℓ = 1 +

√︄
1 + 1

𝛽
. (5.4)

Using the formula [18]

e−𝑥 =
1

2πi

∫
𝐶

d𝑠 𝑥−𝑠Γ(𝑠), (5.5)

the partition function(5.3) can take the following form dependent on the Epstein zeta function,

𝑍 = 1 + 𝐼1 + 𝐼2 + 𝐼3, (5.6)

where

𝐼1 =
1

2πi

∫
𝐶

d𝑠
(

1
𝜌

)−𝑠
2(𝑎)− 𝑠

2 𝜁 (𝑠)Γ(𝑠), (5.7)

𝐼2=
1

2πi

∫
𝐶

d𝑠
(

1
𝜌

)−𝑠
2(𝑎)− 𝑠

2 𝑦( 1
2 −

𝑠
2 )

√
π

Γ
(
𝑠
2
) 𝜁 (𝑠 − 1)Γ

(
𝑠

2
− 1

2

)
Γ(𝑠), (5.8)

𝐼3 =
1

2πi

∫
𝐶

d𝑠
(

1
𝜌

)−𝑠
2
𝑎−

𝑠
2 𝑦

𝑠
2 −

1
2

Γ
(
𝑠
2
) π

𝑠
2 𝐻

( 𝑠
2

)
Γ(𝑠). (5.9)

Γ(𝑠) is the Euler function, 𝜁 (𝑠) is zeta function. 𝐻
(
𝑠
2
)

is the power function given by

𝐻

( 𝑠
2

)
= 4

𝑁∑︁
𝑘=1

𝜎(1−𝑠) 𝑘
𝑠
2 −

1
2 cos(2π𝑘𝑥) 𝐾 𝑠

2 −
1
2

2𝑘π𝑦,

where 𝐾 𝑠
2 −

1
2

is the Bessel function and

𝜎(1−𝑠) =
∑︁
𝑘/𝑚

(
𝑘

𝑚

)1−𝑠
, 𝑥 =

𝑏

2𝑎
, 𝑦 =

√
𝑏2 − 4𝑎

2𝑎
, 𝑏2 − 4𝑎 > 0. (5.10)

Thus, the integral 𝐼1 has two poles in 𝑠 = 0 and 𝑠 = 1. The integral 𝐼2 has three poles in 𝑠 = 0, 𝑠 = 1 and
𝑠 = 2, and the integral 𝐼3 has a pole at 𝑠 = 0. By applying the residues theorem and using the following
limit,

lim
𝑠→0

[𝑠𝜁 (𝑠)Γ(𝑠)] = −1
2
, lim

𝑠→1
[(𝑠 − 1)𝜁 (𝑠)Γ(𝑠)] = 1. (5.11)

lim
𝑠→1

[
(𝑠 − 1)𝜁 (𝑠 − 1)Γ

(
𝑠
2 − 1

2
)
Γ(𝑠)

Γ
(
𝑠
2
) ]

= − 1
√
π
, (5.12)

lim
𝑠→0

[
𝑠𝐻

(
𝑠
2
)
Γ(𝑠)

Γ
(
𝑠
2
) ]

= 0, (5.13)

we get

𝐼1 = −1 + 2
𝜌
√
𝑎
, 𝐼2 = −2

𝜌
√
𝑎
+ 2π𝜌2

𝑎𝑦
, 𝐼3 = 0. (5.14)

Consequently, we obtain the partion function in the following form,

𝑍 =
2π𝜌2

𝑎𝑦
, 𝑦 =

1
2
(2ℓ − 1). (5.15)
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From the equation (5.2), we can rewrite the above equation

𝑍 =
8π

𝛽(2ℓ − 1)
1
𝜏
, (5.16)

with

𝜏 = 𝛼𝛿, 𝛼 =
1
𝑘B𝑇

, 𝛿 = 𝑣

√︂
2ℏ𝑒𝐵
𝑐

. (5.17)

Although in principle the deformation parameter 𝛽 is not fixed by theory, it is generally assumed to be
of the order of unity. This is particularly the case in some models of string theory [19, 20]. Many studies
have appeared in the literature, with the aim of setting experimental limits to 𝛽 (see [21, 22] and the
references therein). Different theoretical frameworks, and an explicit analytical calculation [23], indicate
a value of 𝛽 of order 1, in particular 𝛽 ≃ 82π/5. In this work the value of 𝛽 has not been fixed. It can
take on all positive values, i.e., 𝛽 ⩾ 0. This is contrary to the results found for our previous work on the
deformed Dirac model [13]. The partition function well delimits the values of the deformation parameter.

Once the domain of definition of our deformation parameter 𝛽 is well specified, we can determine
from the partition function (5.16) all the thermodynamic quantities such as the total energy, the free
energy, the entropy and the specific heat:

– the total energy

𝑈

𝛿
= − 𝜕

𝜕𝜏
ln(𝑍) = 2

𝜏
; (5.18)

– the free energy

𝐹

𝛿
= −1

𝜏
ln(𝑍) = −1

𝜏
ln

[
8π

𝛽(2ℓ − 1)
1
𝜏2

]
; (5.19)

– the entropy

𝑆

𝑘B
= 𝜏2 𝜕

𝜕𝜏

(
𝐹

𝛿

)
= ln

[
8π

𝛽(2ℓ − 1)
1
𝜏2

]
+ 2; (5.20)

– the specific heat

𝐶

𝑘B
= −𝜏2 𝜕

𝜕𝜏

(
𝑈

𝛿

)
= 2. (5.21)

We note that the average energy and specific heat are independent of the deformation parameter.
Moreover, the Dulong–Petit law for an ultra-relativistic ideal gas is verified. It is worth mentioning that
similar results were observed for the Dirac and Kemmer oscillators in a thermal bath [24, 25]. It was
also found in [11] that in the high temperature region the dominant term of the Dunkl partition function
becomes independent of the Wigner parameter.

The analysis of these figures shows us that the deformation parameter 𝛽 plays an important role on
the thermodynamic properties. Indeed, figure 2 shows the free energy as a function of temperature for
different values of the parameter 𝛽. It is clear from the figure that the free energy increases until it reaches
a maximum, then decreases with a decreasing temperature and shifts to positive values. We notice that
at each curve there is a peak that appears over a small temperature range. This peak is more noticeable
when the deformation parameter is higher and then all these curves go towards an increasing temperature
of constant value.

Figure 3 shows entropy as a function of temperature for different parameters 𝛽. As expected, entropy
decreases with a decreasing temperature at a fixed 𝛽 parameter. At fixed values of temperature, the
entropy decreases with an increasing parameter 𝛽. Thus, the reduction of the system is an order.
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Figure 2. (Colour online) Free energy as a function of temperature for different values of parameter 𝛽.

Since the specific heat tends to an asymptotic value equal to 2𝑘B, we can then say that the specific
heat of two-dimensional graphene coincides with that of the two-dimensional harmonic oscillator for
higher temperatures. Moreover, as in the non-relativistic case [26], we can argue this situation by saying
that these limits follow the Dulong–Petit law for a relativistic ideal gas.

We have solved the Dirac-Well equation algebraically within the framework of the generalized Heisen-
berg principle. The results obtained compare well with those obtained in the literature for particular
cases [27]. It has been recently shown that the graphene system can be modulated under a uniform mag-
netic field. We have determined the thermodynamic properties of the deformed graphene in the presence
of a minimum length using the Epstein zeta function. We have found that the algebraic solution does
not impose any condition on the deformation parameter. This solution method confirms only the positive
value of the deformation parameter.
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Figure 3. (Colour online) Entropy as a function of temperature for different values of parameter 𝛽.
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6. Conclusion

We have studied the thermodynamic properties of a massless Dirac electron in graphene subjected to
a uniform magnetic field with the generalized Heisenberg uncertainty principle. This principle, through
the deformed Heisenberg algebra, brought out the hidden symmetries of the 𝑠𝑢(1, 1) Lie algebra of
the system. The eigenvalues and eigenstates have been constructed algebraically and form the infinite-
dimensional representation of the deformed 𝑠𝑢(1, 1) algebra. These are used together with a method
based on the zeta function to explicitly determine the partition function. Thus, thermodynamic functions
such as Helmholtz free energy, total energy, entropy and heat capacity have been obtained in terms of
the deformation parameter 𝛽. The overall behavior of the thermodynamic functions indicates that the
deformation parameter produces a deviation around the usual undeformed profile. We note that this
deviation for a fixed temperature is positive for the free energy and negative for the entropy. It is both
interesting and surprising to find that the specific heat and the average energy are independent of the
deformation parameter. Finally, we hope that in the near future, as soon as high-precision experimental
measurements involving the thermodynamic properties of graphene are obtained, our results can be
used as a good tool to study these properties. Furthermore, we intend to investigate the possibility that
new features of graphene can be described by more general models with the higher-order generalized
uncertainty principle.
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Алгебраїчний розв’язок та термодинамiчнi властивостi
графену за наявностi мiнiмальної довжини

Дж. Ґеботого1, Ф. А. Досса1, Г. Й. Х. Авоссеву2
1 Лабораторiя прикладної фiзики, Нацiональний унiверситет наук, технологiй, iнженерiї та математики
(UNSTIM) Абомей, BP: 2282 Гохо Абомей, Бенiн

2 Iнститут математики та фiзичних наук, Унiверситет Абомей-Калавi, 01 BP 613 Порто-Ново, Бенiн

Графен — це напiвпровiдник з нульовою забороненою зоною, де електрони, що поширюються всере-
динi, описуються ультрарелятивiстським рiвнянням Дiрака, яке зазвичай використовується для безмасо-
вих частинок дуже високої енергiї. У цiй роботi ми показуємо, що графен пiд дiєю магнiтного поля за
наявностi мiнiмальної довжини має приховану симетрiю 𝑠𝑢(1, 1). Ця симетрiя дозволяє нам побудувати
спектр алгебраїчно. Фактично, узагальнене спiввiдношення невизначеностi, що призводить до ненульо-
вої мiнiмальної невизначеностi положення, було б ближчим до фiзичної реальностi та дозволило б нам
контролювати або створювати зв’язанi стани в графенi. Використовуючи функцiю розподiлу на основi
дзета-функцiї Епштейна, отримуються задовiльнi значення термодинамiчних характеристик. Виявлено,
що закон Дюлонга–Птi добре пiдтверджується, а теплоємнiсть не залежить вiд параметра деформацiї.

Ключовi слова: графен, мiнiмальна довжина, симетрiя su(1,1), термодинамiчнi властивостi
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