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We investigate a two-dimensional nonlinear oscillator with a position-dependent effective mass in the frame-
work of nonrelativistic quantum mechanics. Using the Nikiforov-Uvarov method, we obtain exact analytical ex-
pressions for the energy spectrum and wave functions. Based on the canonical partition function, we derive
key thermodynamic quantities, including internal energy, specific heat, free energy, and entropy. Our results
show that, unlike the one-dimensional case, where the specific heat is unaffected by the nonlinearity param-
eter k, the two-dimensional system exhibits a strong k—dependence. At high temperatures, the specific heat
becomes temperature-independent for fixed values of &, in line with the Dulong-Petit law. However, these be-
haviors occur only for negative values of k. These findings highlight the impact of effective mass nonlinearity
on macroscopic thermodynamic quantities and suggest that tuning the parameter k could serve as an effective
strategy for enhancing the performance of quantum devices, including thermal machines and optoelectronic
components.
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1. Introduction

In quantum mechanics, nonlinear systems are obtained by studying quantum problems modeled by
a quantum oscillator on three-dimensional spherical and hyperbolic spaces[1-H4] or in curved space in
general. Others are considered as variable mass systems with enormous interests due to their various
applications in different fields of physics such as semiconductor fabrication [5], quantum liquids [6],
helium clusters [7]], the study of electronic properties of inhomogeneous crystals. In fact, some particles
such as free electrons can have a different mass than the electrons that evolve in crystals. This mass
varies according to the position occupied by the electron in the crystal and its sign depends on that
of the nonlinearity parameter. This nonlinearity parameter can be positive or negative [8-H10]]. From a
geometric point of view, the study of variable mass systems in two dimensions proves that they are not
only integral but super-integral. This implies mathematical difficulties because of the kinetic energy term
comprising a position-dependent mass [3}[11H14]]. In [12]], it is shown that a nonlinear system has periodic
solutions whose frequency depends on the amplitude. It has also been proven that there is a conjugation
relation between this nonlinear system and the linear harmonic oscillator on spaces of constant curvature,
the two-dimensional sphere S? and the hyperbolic plane H?. In [15], it is shown that variable mass
systems treated in one dimension exhibit the form invariance [16] and realize finite-dimensional Lie
algebras such as the Heisenberg—Weyl algebra, su(1, 1) and su(2). Other studies have been carried out
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on effective mass systems such as the supersymmetric approach to coherent states in the sense of Barut
and Girardelo [17], the approach using transport and dispersion properties of heterojunctions [18] and
the Schrodinger factorization method approach [11} 1517, [19-21].

Indeed, it is important to determine the thermodynamic properties of a harmonic oscillator with
effective mass because of its uses in statistical thermodynamics, quantum mechanics, and solid-state
physics. These properties allow us to model physical systems such as phonons in a crystal lattice or
electrons in a semiconductor. In such a lattice, the vibration of atoms around their equilibrium position
effects the heat capacity of the material. The knowledge of the thermodynamic properties of a harmonic
oscillator with position-dependent mass helps optimize optoelectronic devices where the thermal response
of electrons impacts the behavior of lasers, diodes, and transistors. Motivated by these applications, we
decided to study the thermodynamic properties of a harmonic oscillator with variable mass using the
Nikiforov-Uvarov method. This method is very useful in solving the Schrodinger equation for variable-
mass systems. Recently, in [22], the method is used to study the Schrédinger equation with a general
ambiguity, a position dependent mass Morse potential. More recently, in [23], this method is used to
search for the exact one-dimensional solutions of the position dependent mass Schrodinger equation
with pseudoharmonic oscillator and its thermal properties thermodynamic properties. However, the
two-dimensional of the thermodynamic properties of variable mass systems has not been done.

In this work, we proposed to study the two-dimensional quantum model of a variable mass system
using the well-known techniques of the Nikiforov-Uvarov method [24H27]]. We analytically determine
the wave function and the energy spectrum of the system. Then, we evaluate the partition function from
which we study the behavior of the thermodynamic properties of the system. Our study reveals that the
effect of the nonlinearity parameter on the thermodynamic properties is considerable. It has been shown
that in one dimension [17]] the specific heat does not depend on the nonlinearity parameter but in our work
in two dimensions we find that the specific heat is effected by the nonlinearity parameter k£ and remains
insensitive at high temperature. This result is also considerable since the specific heat is a function of the
structure of a substance.

The work is organized as follows: in section [2] we define a nonlinear system whose mass depends
on the position. Then, section [3]is devoted to the determination of the wave function and the energy
spectrum from the Hamiltonian of the two-dimensional system. In section 4] we calculate the partition
function and then different thermodynamic functions such as average energy, heat capacity, free energy
and entropy. Finally, the last section contains a conclusions.

2. Two-dimensional nonlinear oscillator

The study of the nonlinear oscillator problem is of great importance in classical and quantum
mechanics because the problem plays a leading role in the explanation of a large number of realistic
physical phenomena. Thus, a nonlinear bi-dimensional oscillator is a two-dimensional system that is
described by a nonlinear differential equation. It can be studied using the Lagrangian and Hamiltonian
formalisms. It was recently shown in [12] that there is a generalization to n dimensions preserving the
symmetry characteristics. This is the only generalization to n dimensions for which the kinetic term is
a quadratic function in the velocities, which is invariant under rotations and under the two vector fields
generalizing the symmetries of the one dimensional model [[11} [17] In particular, the two-dimensional
generalization studied in [12] which was not only integrable but also superintegrable is given by the
following Lagrangian,

_m()

L
2

1
[vf + k(xvy, — yvx)z] - Em(r)azrz, vf = 0)26 + vi, rr=x*+ 7, 2.1

where k = 62 /1 represents the nonlinearity parameter on which the mass depends. « is the frequency of
the oscillations while m(r) represents the variable mass of the system. There are several variable mass
models in the literature[[15]. In this work, we choose the variable mass whose expression is given by

(2.2)
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with A being a real parameter and ¢ a constant that measures the force of oscillator linearity.
The Hamiltonian corresponding to the Lagrangian (2.1)) is given by

B (1+ 62r2)

H
22

52 @2 Ar?
2 2 2
(Pi + Py) - ﬁ(xPy —yPy)" + 3 2.3)

(1+6%r2)
It should be noted that the k—dependence is introduced in two distinct ways: the first is through the
global factor (1+6%r%)/A, which is the most direct extension to n = 2 of the one-dimensional fac-
tor (1 +6%x2)/A; the second is term g—;(xPy — yP,)?, which represents a genuinely two-dimensional
contribution that is absent in the one-dimmensional case. This additional term considerably effects the
properties of the system.

Now, we can use the polar coordinate system. Thus, we have

x=rcos, y=rsinf, r>=x>+y>% 2.4)
% 10 1 9*
2, .2 2 2
+p2 = 4= _ , Lo=- . 2.5
Px TPy or:  ror P2z z 562 (2.5)

The eigenvalue equation of the Hamiltonian ([2.3) is given by

(1+6%r2) 02 (1+6%YH o L2 a2ar?
— —_— = — + + Y (r,0) =EY (r9), 2.6
TR R B P R YRR | R 20
with 72 = 1. We can write the wave function ¥ (r, 8) as follows
¥ (r,0) = U(r)e”m9, (2.7)
withm =0, +1, +2, . ... The above equation becomes,
(1+6%2) 8>  (1+6%7%) 0 m? a?ar?
- - — - + U(r)=EU(r). 2.8
W o 2 o e a(irern) | U T EVC) (28

To solve this equation, we use the Nikiforov-Uvarov method which is one of the analytical methods

used to solve the Schrodinger equation that resists standard methods. Its differential equation generalized

hyperbolic type [28]][29] is presented in the form:
7(z)

144 N\~ ’ 5-(2)
Y (2) + a(z)yl (z) + T

¥Y(z) =0. (2.9)

The most convenient parametric form of ([2.9) [25] is written

d¥(z)  a;—arz d¥(2) 1 )
¥ —a +er-e|¥(@) =0, 2.10
dz? z(1 —asz) dz Z2(1 —a3Z)2 [ 1 2 3] (2) ( )
with
‘F(Z):al_QZZ, O'(Z)zz(l—a3z), &(Z):_€112+622—63, @.11)

7 is a polynomial of degree not greater than 1. o(z) and & (z) are polynomials of degree not greater
than 2.
The functions 7(z) and the parameter x+ are defined by:

7(z) = as + asz = V(ae — kaz) 22 + (a7 + K)z + as, (2.12)
k+ = —(a7 + 2asag) + 2+/agay. (2.13)
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For the method to be valid, the function
7(z) = 7(2) +27(2), (2.14)

would have to satisfy the condition that its derivate must be negative. This condition is met when using
k_ expression. In this approach, we find different solutions of the system.
The weight function p(z), from Nikiforov-Uvarov method, is given by the following relation:

p(z) =207 (1 —azg) = 07, (2.15)

and

10-1,—

an
Yn(z) = P,(, T )(1 - 2a3z). (2.16)
Part of the general function

I'n+a+1)

(a,b)
PP (1 —pp = 14T )
n =)= SR

2Fi(-n,1+n+a+b,1+a,z), 2.17)
represents the Jacobi polynomial [30]. The second part of the general function is given by:

$(2) =2 (1 - asz)” ™ M, (2.18)

The general solution y(z) = ¢(z)y,(z) is then

- —ap (“ x )
x(2) =21 —asz) = ""Py P71 - 2a37). (2.19)
We use the following relation to explicitly determine the energy spectrum of the system:

an — (2n+ as +n(n — 1)az + (2n + 1)(az+as + vag) + a7 + 2azag + 2+Jagag = 0, (2.20)

with the different parameters [25} 31]]

1 1

as = 5(1 -ay), a5=§(az—203), ag = az + €,

a7 = 2a4as5-—¢€, ag= ai +€3, a9 =aza7+ a%ag + ae,

ajp = a1+2a4+2\/a_, a11=a2—2a5+2(\/a_9+a3\/a_g),

apy, = as++ag, a3 =as— (Vag+azasg). (2.21)

The radial differential equation is given in the form
d*U(r) 1dU(r) 21E m? @’ 2%r?
+ - - - U(r) =0. 2.22

dr? r dr 1+6%r2 r2(1+6%r%)  (1+6%r2)? ") (222)

3. Spectre of the system

The NU method is based on solving a second-order linear differential equation by reducing it to
a generalized equation of the hypergeometric type. Using the appropriate coordinate transformation
7 = —6°r2, this equation can be rewritten in the following form:

d*U(z) 1-z dU(z) 1 ( 2 )
+ +yz-w|U(z) =0, 3.1
dz2 72(1-2) dz 22(1-2)2 e Hyi-w)U) 1)
with
AE  a?A? m? AE m?
Ho262 " asv 774 "o YT (5-2)
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By identification, we find
ai=ar=a3=1, e =-u, =7y, € =w.
The expressions for the other coeflicients are as follows:

1 1
as = 0, as=—-——=, ag=—-—-—-u, arj=-y, dag=w,
4 5 ) 64,11 7 Y 8
1

ag = w—y—p+Z ap =1+2vVo,

/ 1
ayy = 2+2( w—y—u+z+vw), ain = Vo,
= ! +1+
a3 = - \w-v-—Hu 2 Vol .

From the relations (2.12)) and (2.13) we find

2

ﬂ(Z):—%Zi\/(i—ﬂ—K)Z2+(K—7)Z+mT,

L (/1E+m2)+|m| a2/12+1
EEe Ty )T N T

The physically acceptable expression for 7 (z) is the one for which

7(2) = 7(2) +2n(2),

(3.3)

(3.4)

(3.5)

(3.6)

3.7

has a negative derivative. Using the expression for «x_, the appropriate forms of 7(z) and 7(z) are given

respectively by

1 [a?A?
H(Z):_El(1+|m|+ 7+1)z—|m|l,
2/12
T(z):—(2+\,a7+1+|m|)z+1+|m|.

The derivative of 7(z) gives us
222
T’:—(2+|m|+ a—+l) < 0.
o4

The relation (2.15) allows us to write the weight function in the form

22

p(r) = (=62 )Ml (14 g2V

The relations (2.16), allow us to write respectively

232
(\m\,,l%ﬂ

Yn(r) = P, (1+28%r%),

1,1 [a222
a4 54

6(r) = (6% % (1 + 6427 :

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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with

222
(Iml, i+l
n

I'(n+|m|+1)
n!T(|m|+ 1)

272 9 5
-n,1+n+|m|+ 7+1,1+|m|,—(5r . (3.14)

The general radial solution U(r) = ¢(r)y(r) is then

P (1+28%7%) =

X Fy

1,1 2,12+1 (Iml,,/ﬁﬂ
U(r) = (=652 (1 +6272) "2 P\ (1+26%r2). (3.15)
The total wave function is then written as
1.1 a2 (""' 2/12”) .
(r,0) = Cpm(=6°r 254522V e T p) (1+28%)e™?, (3.16)

with C, ,, the normalization constant.
Using the relation (2.20) and setting k = 62/ we can write the expression of the energy spectrum of

the system in the form
m=02n, +|m|+1)Va? + k2 -

2
k 2n%+m7+(2nr+1)(|m|+1) , (3.17)

with k < 0.

4. Thermodynamic properties

Let us now study the thermodynamic properties of our system. Thus, the partition function is calculated
to determine the thermodynamic functions, namely: internal energy, heat capacity, free energy and
entropy. The partition function can be expressed as follows [25, [32]

A
Z= Z e PEn, 4.1

with A being the upper bound, kg represents the Boltzmann constant and 8 = 1/kgT.
Using the Poisson summation given by [25} 33]]:

N+1
Zf(n) — 57O - s+ | s @2)
0
We find
7= %(ew—d) _e P _g, (4.3)
with

a = k(lml+1)=Va2+k2 b=-B+|m|+20)k+Va?+k2,

(2/l+|m|+3)\/k2+a/2—k( +—+6/l+5+2/1|m|+3|m|)

¢ =
i 1 o2p [derf b erf
d = |m| /12+a/2—/li, Q= _—_ Ee—Tkﬁ a (\/ﬁ)_'_ber(\/ﬁ) ’
? 2N 2 o v
52 ~ ’ z
o = Lo =D et -— [ o
0
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Average energy U:

4 A
U=—-—InZ=-—— _ .
op (eﬁ(a—d) - e—,BC) —-20
where
7 i—b & 2 + k Q 1 a? a2 - b2
A =(a-b)ePla=b) v cehe 4 % N ﬁe*T’f(deTf + be%).
Heat capacity:
ou
C = —kgB*—,
B 5
1 | @- E)Zeﬁ(d—l;) _Re B _ g A2
C = _kBﬂ — - _ — _
2 [eﬁ(a—d) —e B -2Q ([J(a—d) — e8] - 2Q)2
where
= 422 2 2 e 2%
e = —2k2B2(a/ B~ +2a° Bk +3k7)Q - Wg,

a? - BB .
¢ = e (@B -2a28 - 3k) +be (528 - 2028 - 3k).

Free energy:

B B

gz In2-hn (eﬁw—d) —eh-20)

e
=
|—

b)

—k=0
—k=-0.1
04 k=-03 0.4
Zz —k=-05 z
02 k=-09 02
0 0

0.5 1 T 15

[

ocooco®
O Ln e E

~LLLL

0,5 1 T 1.5 2 0.5 1 T 1.5 2

]

(4.5)

(4.6)

4.7

4.8)

4.9)

(4.10)

Figure 1. (Colour online) Partition function as a function of temperature for different values of the

parameter k In (a): 4 = 200, in (b) 2 = 300, in (c) A = 400, in (d) A = 500.
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Entropy:

_, 0F
S = kpf 5 @.11)

BA
[eBla-d) —e=B¢] —2Q ]

S =kp [— In2+1In (eW—J) —e P 29) - (4.12)

The partition function and thermodynamic function curves are plotted as a function of temperature
for different values of the non-lineraty parameter k. In figure [I] we see that the partition functions
increase monotonously with temperature for each fixed value of the nonlinearity parameter k. The curves
are insensitive from A = 300. For clarity, we have used the larger 4 = 500 to plot all thermodynamic
functions. In figures 2] and [3] we note that the average energy increases as the temperature increases.
The specific heat increases rapidly for low temperatures and then becomes an almost constant value at
high temperatures. The free energy decreases while the entropy increases as the temperature increases.
We also note that the effect of the parameter k is more apparent at the level of the average energy for
lower temperatures but the effect is felt at the level of the specific heat, free energy and entropy for higher
temperatures.

8 (a) i (b)
p 0,8
U — 0,6
4 T =0 c —= 0
k= -0.1 04 —k=-0.1
, k=-03 k=-03
2 Lk =-05 02 | k=-05
k=-09 k=-09
0 : 0 :
1 2 3 4 ] 1 2 T 3 4 5
6 (c) 5 i (d)
—k= 0
4 E] Eir
F ’—\ S —&=-05
2 1 = -
—%= 0
OF |—k=-0.1 0.5
k=-03
2F —k=-05 0
k=-09
4 05

1 2 T 3 4 5 1 2 T 3 4 5

Figure 2. (Colour online) (a) average energy, (b) heat capacity, (c) free energy, (d) entropy as a function
of T for different values of parameter k; m =1, kg = 1 and 4 = 500.

We note that, in [21], the authors focused on the construction of new exactly solvable one-dimensional
potentials by deforming shape-invariant potentials, highlighting theoretical effects such as the noncom-
mutativity between mass and momentum operators, as well as a modified Hermiticity condition. Their
analysis reveals considerable structural modifications in the energy spectra and potential shapes as a
function of the mass parameters, with fundamental implications in quantum mechanics. In our study, we
investigated a two-dimensional nonlinear oscillator with position-dependent effective mass, applying the
analytical Nikiforov-Uvarov method in order to rigorously determine the wave functions, energy spectra,
and thermodynamic properties of the system. Our results show that the nonlinearity parameter directly
effects the thermodynamic functions, particularly the specific heat, which may have practical applications
in the optimization of quantum devices such as thermal machines and optoelectronic components.
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(a) (b)

X\
L,,L,Lw

Y =01
=-01 = 03
k=-03 02 =-(.5
2 —k=-0.5 ’ k=-09
k=-09
O " T i
4 4 5
10
8
6
F

=

=]

'
2]

[
-
w
=
)

1 2 71T 3 4 3

Figure 3. (Colour online) (a) average energy, (b) heat capacity, (c) free energy, (d) entropy as a function
of T for different values of parameter k; m =2, kg = 1 and 4 = 500.

5. Conclusions

In this work, the Nikiforov-Uvarov method has been applied to study a two-dimensional nonlinear
oscillator with a position-dependent effective mass. This approach has enabled us to exactly determine
the energy spectrum and the corresponding wave functions. From these results, the canonical partition
function has been evaluated, allowing the derivation of key thermodynamic quantities such as the mean
energy, specific heat, free energy, and entropy.

Our analysis has shown that, for each fixed value of the nonlinearity parameter k, the mean energy
and entropy increase with temperature, while the free energy decreases. The specific heat has been
observed to increase with temperature before reaching a saturation value, consistent with the Dulong—
Petit law. Notably, this constant value decreases as the parameter k decreases, highlighting a direct effect
of nonlinearity on the thermal behavior of the system. A similar dependence on k has been found in the
behavior of entropy.

These findings are in agreement with the previous one-dimensional studies, but reveal a key dis-
tinction: in two dimensions, the specific heat depends on the nonlinearity parameter k, unlike in the
one-dimensional case. This result is particularly significant, as it illustrates how a macroscopic thermo-
dynamic quantity can be strongly affected by the quantum characteristics of the system. Furthermore, we
have found that meaningful thermodynamic behavior is obtained only for certain negative values of k,
suggesting that tuning the effective mass via this parameter may offer a promising route for optimizing
quantum devices, such as thermal machines and optoelectronic components.
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Generalised two-dimensional nonlinear oscillator

TepmoauHaMiUYHi BNaCTUBOCTI y3araJibHEHOro ABOBUMipHOro
HeniHiAHOro ocuMNATOpPaA i3 3aNeXXHOI Bij NOJIOXKEHHS
edpeKTUBHOIO Macoo

C. E. boknél ®. A. loccd?, T. 1. X. ABoccesy!

L IHCTUTYT MaTeMaTrKK Ta $i3nvHMX Hayk, YHiBepcuTeT A6omeii-Kanagi, 01 BP 613 MopTo-HoBo, beHiH

2 JNlabopatopia NnpuknagHoi ¢isnky, HauioHanbHWA yHiBEpCUTET HayK, TEXHOOTIN, iHXeHepii Ta MaTemMaTku
(UNSTIM) A6omeli, BP: 2282 loxo Abomeid, beHiH

JoCnifxyeTbca ABOBUMIPHUIA HENIHINHWI OCLMAATOP i3 3a1€XHOH0 Bif NONOXeHHS eGeKTUBHOK Macoto B paMm-
Kax HepensTUBICTCbKOT KBaHTOBOI MexaHiku. BukopuctoBytoun metog HikidopoBa-YBapoBa, M1 OTPUMYEMO TO-
YHi aHaniTUYHI BUPa3n ANS eHepreTUYHOro CNekTpy Ta XBUabOoBMX GYHKLi. Ha 0CHOBI KaHOHIYHOT GYHKLIii po3-
noAiny oTpPYMaHo K/YOBI TEPMOANHAMIYHI BEANYMHMN BKAKOYHO 3 BHYTPILLHbOK eHeprito, MMTOMOIO TeMN/I0EM-
HICTI0, BiNbHOIO eHeprieto Ta eHTponieto. OTpMMaHi pe3ynbTaT NOKasyHoThb, LU0, Ha BiAMIHY Bij OAHOBUMIPHOIO
BUNagAKy, KOV napameTp HefliHiliHOCTI k He BNAMBAE Ha NMTOMY TEMJIOEMHICTb, ABOBMMIpHA cMCTEMa AEMOH-
CTPYE CUBHY k-3aN1€XHICTb. 33 BUCOKUX TEMMEPaTyp NMTOMa TEMNOEMHICTb CTa€ HE3aIEXHOH0 Bif TeMmepaTypu
Ans GiKcoBaHWX 3HaueHb k, Lo BignoBiaae 3akoHy Jro10Hra-I1ti. OfHaK Taka NoBeAiHKa CMOCTepiraeTbes ane
ANA BifeMHUX 3HaueHb k. Lii pe3ynsTati NigKpecntorTb BM/IMB HeNiHINHOCTI epeKTUBHOI Macy Ha MaKpoCKo-
nivHi TepMOAVHAMIYHI BeANUYMHU Ta CBig4YaTb NpO Te, O HaNALUTYBaHHA napameTpa k Moxe cnyxutn ede-
KTUBHOIO CTpaTerieto Ans NiABULLEHHS MPOAYKTUBHOCTI KBAHTOBUX MPUCTPOIB, BKAHOYAKOUN TEMNAOBI MaLLVHW Ta
OMTOENEeKTPOHHI KOMMOHEHTU.

KnrwouoBi cnoBa: HeniHiliHnii ocynastop Hikipoposa-YBapoBa, TepMoguHaMidHi BAaCTUBOCTI
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