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The influence of monomer-monomer interactions on the scaling exponents and shape characteristics of a sin-
gle polymer chain in a selective solvent is investigated using Langevin dynamics simulations. By systematically
increasing the temperature of the solution, the effects of interactions between blocks on the conformational
properties of the chain are explored. The results demonstrate that longer-range interactions cause a transition
of a polymer similar to the transition for homopolymers; short-range repulsive interactions between different
blocks have a negligible impact on the effective scaling exponents: they are the same regardless of the blocks
being globule and coil or ideal and swollen coils.
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1. Introduction

In recent decades, block copolymers have come to the forefront of polymer science as they open
up a wide range of potential applications for finely tuned materials [1, 2]. Those traditionally include
adhesives [3] and coatings [4], but also extend to new areas such as targeted drug delivery [5–7], tissue
engineering [8, 9], nanotechnology [10], and many others. This vast interest is largely due to the fact that
block copolymers combine two or more types of chemically distinct monomers, each of which forms
a long segment [2]. As a result, block copolymers in melts have the capability to self-assemble into
lamellae, micelles, and more complex structures [11–13] due to microphase separation.

In most practical applications, polymers are found in dense solutions or melts; some studies suggest
that understanding the size scales of individual molecules can help predict the pore size in the final
product [13] since the characteristic size measured in a dilute solution is proportional to the size of the
pore after self-assembley. Nevertheless, dilute solutions have also got a limited application. Examples of
copolymers in a dilute solution are star-like micelles [14] and unimolecular micelles [15, 16]. Another
important point of dilute solutions is the capability to study the properties of a single molecule since the
interactions between molecules can be neglected [17].

One of the properties that characterizes the coil size and can be measured in experiments is the
gyration radius. In the case of homopolymers, it is known that it increases with molecular mass according
to the scaling law [18, 19]:

𝑅2
𝑔 ∼ 𝑁2𝜈 , (1.1)

where 𝑁 is a polymerization degree and 𝜈 is a Flory scaling exponent that does not depend on the
microscopic details. In a poor solvent, this exponent is equal to, 1/𝑑 and in a good one to 3/(2 + 𝑑). In
is important to note that Flory formula for the exponent in three-dimensional space gives an approximate
value that is a bit bigger than the predictictions of renormalization group, that is 0.5882(11) [20] or
Monte Carlo simulations — 0.587597(7)[21]. Experimental measurements of the scaling exponent for
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the radius of gyration, calculated for the five most common flexible linear polymers, range between 0.61
and 0.546 [22]. For DNA, using an atomic force microscope, the value of 0.585(14) was received [23].

However, in the case of copolymers, the story of scaling exponents is much more interesting [24, 25]
because usually the interaction between monomers and solvent molecules is preferable for one block
rather than for the other one. It is a well-established fact in the literature that in the case of copolymers,
each of the blocks is governed by its own exponent, while a third exponent governs the distance between
the centers of masses of the blocks [25–34]. Unlike in the case of homopolymers, the experimental study
of size characteristics for copolymers is also a hard task [25, 35, 36]. Thus most of the research was done
using theoretical approaches.

The majority of the investigations of size characteristics of diblock copolymers were done either within
the framework of the continuous chain model [27, 29–31, 33, 34] or Monte Carlo simulations [26, 29, 32–
34, 37] often making a comparison between those. Both analytical and numerical studies confirm the
existence of the scaling exponents: one for each of the characteristic scale lengths. Two of those exponents
are either 1/2, which corresponds to the polymer in theta solvent, or ≈ 3/(2 + 𝑑), known for the good
solvent, and the third one is somewhere in between them. Moreover, it appears that the effective interaction
between the monomers on different blocks does not affect the scaling exponents [26, 30]. The conclusion
also holds for more complex structures [33, 34, 37–39].

A notable point in all of those works is that they consider ideal blocks alongside swollen ones rather
than collapsed ones, somewhat equating polymers in theta and poor solvents. In the case of a continuous
chain model, this is true since a three-point interaction that describes a poor solvent has an upper critical
dimension of three [40, 41]. As a result, those approaches account only for the influence of the repulsive
interactions.

In particular, the influence of attractive interactions on copolymers was studied [42–44], showing the
existence of the coil-to-globule transition for copolymers. However, to the author’s knowledge, scaling
properties for copolymers with attractive interactions were not studied. Thus, the aim of the present work
is to study these properties along with universal shape characteristics of asphericity and prolatness [45]:

⟨𝐴𝑑⟩ =
3
2

〈
Tr Ŝ2

(Tr S)2

〉
, (1.2)

⟨𝑃𝑑⟩ = 27
〈

det Ŝ2

(Tr S)2

〉
, (1.3)

where S is the gyration tensor, Ŝ = S− 𝜇I with 𝜇 being an average eigenvalue and I being a unity matrix.
The simplest case of a block copolymer is a diblock copolymer, consisting of two chains connected

together. Originally synthesized in the mid-1950s, they still draw the attention of the scientific community,
both in traditional [3, 4, 46] and in new applications [12]. In the present work, it was chosen due to its
simplicity that allows us to study the influence of interactions most clearly, because the aim of the study is
to comprehend the influence of the interactions between monomers of different blocks on their universal
properties.

The layout of the paper is as follows: it starts by introducing the model and method in section 2,
followed by the results and their discussion in section 3, and finally closing with concluding remarks in
section 4.

2. Model and methods

The bead-spring coarse-grained model with two [47] types of beads (see figure 1) is considered. The
molecule contains equal parts of both. The beads are connected into the chains by springs described with
the finitely extensible nonlinear elastic (FENE) potential:

𝑉 FENE(𝑟) = −0.5𝑘𝑟2
0 ln [1 − (𝑟/𝑟0)2] . (2.1)

The interaction between nonconnected beads is introduced by the Lennard-Jones potential that was
shifted and truncated, known as a Weeks-Chandler-Anderson (WCA) interaction:

𝑉WCA(𝑟) = 4𝜖𝐿𝐽
[
(𝜎𝐿𝐽/𝑟)12 − (𝜎𝐿𝐽/𝑟)6 − (𝜎𝐿𝐽/𝑟cut)12 + (𝜎𝐿𝐽/𝑟cut)6] 𝜃 (𝑟cut − 𝑟), (2.2)
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Figure 1. (Colour online) Simulation screenshot of diblock copolymer.

where 𝑟 is the distance between the centers of the beads with diameter 𝜎𝐿𝐽 , 𝜖𝐿𝐽 is an energy scale, and
the constants are 𝑘 = 30𝜖𝐿𝐽/𝜎2

𝐿𝐽
and 𝑟0 = 1.5𝜎𝐿𝐽 . 𝜃 is a Heaviside step function, and 𝑟cut is a cutoff

distance for the LJ potential. It is 2.5𝜎𝐿𝐽 for the type one beads, corresponding to the “poor” solvent,
and has both attractive and repulsive parts of the Lennard-Jones interaction. The second type of beads
corresponds to the “good” solvent, and thus only the repulsive part of the interaction, the cutoff distance
for it, is 21/6𝜎𝐿𝐽 . Interaction between the types is set to be either only repulsion or both repulsion
and attraction. Symmetric diblock copolymers of length up to 900 beads in a molecule (50/50 split
between the types) are considered. In total these potentials are known as Kremer-Grest potentials [48]
𝑉KG(𝑟) = 𝑉 FENE(𝑟) +𝑉WCA(𝑟).

The simulations were performed using the Large-scale Atomic/Molecular Massively Parallel Simula-
tor (LAMMPS) [49], which solves a set of Newton’s equations of motion implementing the velocity-Verlet
algorithm with the iteration step Δ𝑡 = 0.005𝜏. In each run, the temperature 𝑇 was kept constant due to
the introduction of the Langevin dumping term with the coefficient 𝜁 = 0.5𝑚𝜏−1, where 𝜏 =

√︁
𝑚𝜎2/𝜖 is

the LJ time unit and 𝑚 = 1 is monomer mass. The simulations were performed for a number of different
fixed temperatures, both below and above the theta temperature. The periodic boundary conditions in all
three dimensions for the cubic box were implemented during the simulation.

Each simulation box contained 27 molecules, with the interactions between the molecules turned
off to describe dilute solution conditions. Simulations run time was not less than three auto-correlation
times plus an extra 107 steps, with the latter part used for the calculation of the observable. Note that the
observables were calculated after every 104 steps, making in total at least 1000 different samples per one
chain. An average value is calculated over an ensemble of all samples from all chains.

3. Results and discussion

The gyration radius of the whole molecule is calculated using a definition:

⟨𝑅2
𝑔⟩ =

〈 1
𝑁

𝑁∑︁
𝑖=1

( ®𝑟𝑖 − ®𝑟CM)2〉, (3.1)

where 𝑁 is a number of beads and ®𝑟𝑖 is a coordinate of a bead 𝑖 and ®𝑟CM is the position of the center of
mass. ⟨. . .⟩ defines an ensemble average.

As was mentioned in the introduction, in general, for copolymers, there are three rather than one
scaling exponent; however, since in experiments they are next to impossible to measure, it is more
practical to consider an effective scaling exponent [34, 37], which, in a crude manner, can be calculated
by simply looking at a slope of the data for the gyration radius versus the number of beads in a log-log
scale. Such a calculation can be easily done using the data from either simulations or experiments. Results
for such calculations for the data collected in simulations in the present work are presented in figure 2,
where the figure on top contains calculated values of the effective exponents, while at the bottom one, the
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Figure 2. (Colour online) Top: effective scaling exponent as a function of the dimensionless tempera-
ture 𝑇∗. Bottom: gyration radius of diblock copolymer as a function of the total number of beads in a
log-log scale for a case of 𝑟cut = 2.5.

corresponting fittings in the log-log scale are provided for a diblock copolymer with attractive interaction
between the blocks (𝑟cut = 2.5). To test the accuracy of the fit, a quantity

1 −
∑(𝑅2

𝑔, sim − 𝑅2
𝑔, fit)

2∑(𝑅2
𝑔, sim − 𝑅2

𝑔, sim)2
,

where 𝑅2
𝑔, sim is the data from simulation, 𝑅2

𝑔, fit is the data predicted by the fit and (. . .) denotes an average
over all samples, is considered for the fit. The smallest value of this quantity received was 0.985 for a case
of 𝑟cut = 2.5 and temperature 𝑇∗ = 2.5. As the temperature increases, the exponent increases for both
considered cases. Here, in the case of an attractive interaction present between the monomers of different
types (𝑟cut = 2.5), we see a classical transition from a “poor” to a “good” solvent. Note, however, that
in the present work we are interested only in the fact that both “poor” and “good” solvent behaviors are
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Figure 3. (Colour online) Top: distributions 𝑃(𝑅𝑥) as a function of observables normalized by the mean
value of the gyration radius. The plots are given for 𝑟cut = 21/6 (on the left) and for 𝑟cut = 2.5 (on the
right) for two different temperatures. Bottom: monomer density distribution function 𝜌(𝑟) as a function
of distance from at the center of mass normalized by the mean value of the gyration radius. The plots are
given for 𝑟cut = 21/6 (on the left) and for 𝑟cut = 2.5 (on the right) for two different temperatures. In the
bottom plots solid lines show distributions for the whole molecule, while “red” beads and “green” beads
are represented by dashed and dotted lines, correspondingly.

present. The details of the transition require a deeper analysis and a second virial coefficient calculation,
which is not the subject of this study.

A more interesting behavior is observed for the case when only the repulsive interaction is considered
between the monomers of different types (𝑟cut = 1.12). At the point of 𝑇∗ = 1, the scaling exponent
for the part with an attractive interaction (see red beads in figure 1 on the left) is characterized by the
scaling exponent 1/3 typical of a polymer in a “poor” solvent, while at the point of 𝑇∗ = 3 it is very
close to 1/2 (see red beads in figure 1 on the right) undergoing an expected transition. However, the
effective exponent remains the same until both parts reach a good solvent behavior. The exponent for
𝑇∗ = 1 is 𝜈eff = 0.562(5) and for 𝑇∗ = 3 it is 𝜈eff = 0.564(3). Both are in good agreement with the
results from MC simulations that considered a case of random walk plus self-avoiding walks models of
copolymer [34, 37].

So far, we looked separately at effective exponents and those that described the scaling of each block;
however, it is important to note that in general, gyration radius can be presented as:

⟨𝑅2
𝑔⟩ =

𝑁2
red
𝑁

⟨𝑅2
𝑔, red⟩ +

𝑁2
green

𝑁
⟨𝑅2

𝑔, green⟩ +
2𝑁red 𝑁green

𝑁
⟨𝑅𝑔, red 𝑅𝑔, green⟩.

Each of those terms are characterized by its own scaling exponent. The first two are trivial and were
mentioned above, and the third is often close in value to the effective one [34, 37], thus not really providing
any additional information. That is why in order to look a bit deeper into the conformational properties
of the model, the largest system of 900 monomers is considered at two temperatures 𝑇∗ = 2 and 𝑇∗ = 3:
just below the transition and at the point of transition.
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Figure 4. (Colour online) Left: asphericity as a function of the dimensionless temperature 𝑇∗. Right: pro-
latness as a function of the dimensionless temperature 𝑇∗.

To begin with, let us compare the distributions of ⟨𝑅𝑔, red 𝑅𝑔, green⟩ and the corresponding gyration
radii (see the top panels in figure 3). Here the distribution of the gyration radius is given with a dotted line.
Note that on the left-hand panel (𝑟cut = 21/6), distributions for different temperatures are quite similar in
shape to each other and to the distributions of the mixed contributions, with the latter being only slightly
shifted to the left. This indicates that for a case of only repulsive interaction between monomers of
different types, the squared distances between them are the leading contributions to the gyration radius.
From the samples of the trajectories (see figure 1) it can be seen that an increase of the temperature
also leads to some swelling in the red part of the molecule. The overall distances between red and green
remain rather similar due to the green part being mostly unaffected by temperature, with only a slight
change in size from 1.01⟨𝑅2

𝑔⟩chain to 1.05⟨𝑅2
𝑔⟩chain, where ⟨𝑅2

𝑔⟩chain is a gyration radius of a free chain of
the same mass as the block.

Note that on the right-hand panel ⟨𝑅𝑔, red 𝑅𝑔, green⟩ provides a smaller contribution to the gyration
radius for lower temperature and a significant contribution for a higher temperature, since all parts of the
molecule undergo a transition due to the presence of interaction between the blocks.

Another way to look inside the molecule is by calculating the monomer density distributions (see the
bottom row in figure 3). On the left, results for a copolymer with 𝑟cut = 21/6 for interactions between
different types are provided, and on the right, results are presented for a copolymer with 𝑟cut = 2.5. The
“𝑥”-axis is normalized by a gyration radius for a corresponding temperature. Note that for all cases the
“red” monomers (dashed lines) are much closer to the center of mass, as expected; however, an overall
change in monomer densities on the left-hand panel is smaller than on the right (solid lines). In fact,
for a temperature 𝑇∗ = 2 on the left-hand panel, 70% of monomers are closer to a center of mass than
the average (gyration radius), whereas on the right, it is 80%. An increase of the temperature leads to a
decrease of those numbers to the corresponding 68% and 69%. This expectedly indicates a much stronger
change when there is an attractive interaction between monomers of different types, but there is only a
small change when there is only a repulsion interaction.

It is also noteworthy that, in the case of 𝑟cut = 21/6 (left-hand panel), the most likely distance of the
“red” and “green” monomers from the center of mass (position of a maximum on the distribution) is
nearly the same, while, for lower temperatures, there is a noticeable difference on the right.

Having explored the spatial distribution of the monomers, we now turn our attention to the overall
shape of the system, quantified by its asphericity and prolatness. The first one distinguishes between
spherical and rod-like shapes, and the second one distinguishes between oblate and prolate ellipsoids.
Here, the results were calculated using the finite size approximation 𝐴𝑑 (𝑁) = 𝐴𝑑 + 𝐵𝑁−1/2 and are
provided in figure 4. Note that for high temperatures, both characteristics reach typical values for a
polymer in a “good” solution, while predictably for a copolymer with attractive interaction between the
blocks, there is a transition from spherical to elliptical shape. Once more, a copolymer with repulsive
interaction between blocks exhibits a more intriguing behavior, since the shape characteristics exhibit
somewhat higher values at lower temperatures. This indicates a more prolate shape, caused by the
repulsive interaction that stretches the solvable block. Also note that for 𝑇∗ = 2 and 𝑇∗ = 3, the scaling
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exponents are the same, but the shapes are different, pointing to a difference in the impact of a globule
and ideal chains on the shape characteristics.

To close this consideration, let us point out that considering one block as ideal instead of collapsed
in case when interaction between blocks is repulsive, it does not affect the scaling behavior. This allows
continuous chain models and Monte Carlo models to be powerful methods in studying those copolymers
in a dilute solution. However, block-to-block attraction cannot be treated in the same way.

4. Conclusions

In the present work, we consider a bead-spring model of diblock copolymer in a dilute solution,
in order to understand the influence of different types of monomer-monomer interactions onto its size
characteristics, in particular, the effective scaling exponent. One part of the diblock is considered to be
in poor solvent while the other one is in good.

The main attention is paid to the differences between monomers of different types, and whether there
is an attractive interaction between them. The influence of these interactions is studied as a function of
the temperature in the range that covers a theta point.

As expected, we find a strong influence of an attractive interaction on the effective scaling exponent,
with behavior being similar to homopolymers. On the other hand, in the case when there is only a repulsive
interaction between the monomers of different types, the effective scaling exponent changes only slightly
around the theta temperature and stays the same as the temperature drops down. This is caused by an
expanded crown of monomers for which the solvent is good that is much more extended than the other
type. Numerical values received in simulations are in good agreement with Monte Carlo simulations
conducted for the macromolecules modelled as random walk (theta solvent) plus self-avoiding walk
(good solvent).

On the other hand, the shape characteristics reach different values when one of the blocks is in
either “poor” or theta solvent, which indicates that only for the case of effective scaling exponents, the
random-walk-like and colapsed states can be equated. This, however, shows that analytical calculations
of effective scaling exponents within a continuous chain model can be of potential scientific interest.

In addition, at this stage, a connection between dilute solution properties and the properties in a
concentrated state are implied in the literature, but to the author’s knowledge the evidence for the
connection or the lack thereof is sparce, and thus it is the author’s hope that this small work may be a
building block for further studies.
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Властивостi скейлiнгу для диблок кополiмерiв: молекулярна
динамiка

Х. Гайдукiвська1,2
1 Iнститут фiзики конденсованих систем Нацiональної академiї наук України, 79011, м. Львiв, вул.
Свєнцiцького, 1, Україна

2 Iнститут Фiзики, Сiлезький унiверситет, вул. Першого полку пiхоти 75, 41-500 Хоржув, Польща

У роботi вивчається вплив взаємодiї мiж мономерами на скейлiнговi показники та характеристики форми
полiмеру в розчинi з використанням методу молекулярної динамiки. Зокрема, вивчається вплив взаємо-
дiї мiж мономерами на рiзних блоках на конформацiйнi властивостi полiмеру при рiзних температурах.
Результати показують, що у випадку макромолекул з притягальною взаємодiєю мiж блоками зi зростан-
ням температури спостерiгається перехiд подiбний до характерного для однорiдного полiмеру; натомiсть,
коли мiж блоками є лише вiдштовхувальна взаємодiя, її вплив є нехтовно малим, а ефективний скейлiн-
говий показник буде таким же, незважаючи на те, чи блоки є глобула i клубок, чи це iдеальний i набухлий
клубки.

Ключовi слова: полiмери, скейлiнг, унiверсальнi властивостi, числове моделювання
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