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Honoring the hundredth anniversary of the birthday of Ihor R. Yuknovskii we analyze new developments in
the statistical thermodynamics of Coulomb systems. The basic idea of this work is to demonstrate that the
exponential potential used in the first papers of Yukhnovskii is an appropriate reference system for a description
of classical and quantum charged particle systems. We briefly discuss the collaboration between the groups of
Ihor R. Yuknovskii in Lviv and Günter Kelbg in Rostock and analyze several approaches based on pair correlation
functions and cluster expansion in the classical as well as in the quantum case. Finally, we discuss the progress
in the statistical description of bound states of three particles as in helium plasmas and in MgCl2-solutions in
the classical case and present new results regarding the influence of three-particle bound states. In particular,
we give new expressions for the cluster integrals and the mass action functions of helium atoms and ionic triple
associates as well as for the equation of state (EoS).
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Dedicated to the 100th birthday of Ihor R. Yukhnovskii (01.09.1925–26.03.2024)

1. Ihor Yukhnovskii and the statistical theory of systems of charged par-
ticles

The “Statistical theory of equilibrium systems of charged particles” is one of the main topics of the
work of Ihor R. Yuknovskii and is also the title of his habilitation thesis, which he defended in 1965 at
the Taras Shevchenko University in Kyiv [1]. We want to show here that besides his big influence on
the development of science and society in Ukraine, Ihor Yukhnovskii had a large international impact,
in particular on a scientific school at Rostock University. At this University near the coast of the Baltic
Sea, the research on charged particles also had a high priority due to the pioneering work of Prof.
Hans Falkenhagen (1895–1971) and Günter Kelbg (1922–1988). At this time the basic ideas in this field
were developed in the school of Peter Debye, the teacher of Hans Falkenhagen. The “Debye–Hückel–
Onsager–Falkenhagen theory” was quite successful in interpreting data. However, this theory was still
very much based on intuitive methods [2–4]. Only in the 40–50th of the 20th century the statistical theory
of many-particle effects in Coulombic systems was systematically developed using distribution functions
by Nikolai N. Bogoliubov [5, 6] and in a different line based on a graph technique by Mayer, Haga, and
Poirier, and, most systematically, by Harold Friedman [7]. The third line of systematic statistical approach
to Coulomb systems was based on collective variables and is due to Ihor R. Yukhnovskii in Lviv and
Günter Kelbg in Rostock.
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The idea to model ions in solution interacting as effective charged spheres was proposed by Peter De-
bye, Erich Hückel and Lars Onsager and since then is a standard tool of electrolyte theory [2–4, 7, 8].
The common idea of the works of Günter Kelbg and Ihor Yukhnovslii was to use potentials possessing
a Fourier transform and describes this way the screening effects in a most elegant way. The method
also allows one to introduce collective variables and to develop a quite effective mathematical technique
following the methods by Bohm, Pines and Zubarev [9–18].

Günter Kelbg’s and Ihor R. Yukhnovskii’s students Norbert Albehrendt, Hartmut Hetzheim and Gri-
gori Bigun continued this work [19–23]. In particular, the late Hartmut Krienke (1943–2023), developed
their work for the classical case with many fruitful applications to electrolytes [24]. He also continued
collaboration between the groups in Rostock and in Lviv and researched together with Myroslav Holovko,
e.g., generalized virial expansions and solvation effects [25, 26]. Further, he developed and analyzed
several more general models of effective interactions for electrolytes with non-additive radii [27, 28, 31–
34]. In some common work with Hartmut Krienke we discussed several more general models of effective
interactions for electrolytes. For example, we discussed in detail the model of charged spheres with
non-additive radii [27, 28].

In their first approach to electrolytes, Kelbg and Yukhnovskii used the strict expansions regarding
the plasma parameter which were developed in 1946 by Nikolai N. Bogoliubov, solving the so-called
BBGKY hierarchy with systematic expansion methods [5, 6] and developed applications to the indi-
vidual macroscopic properties of ionic species. Individual activity coefficients and individual electrical
conductivities of ions are of high relevance for many problems connected with electrolytes. Some basic
elements of an extension from Coulomb systems to the more general exponential potentials were given
in [24]. A detailed description of the Glauberman–Yukhnovskii–Kelbg theory including an extensive
representation of many successful applications to a comparison of the experimental data is given in
special chapter in the monograph of Falkenhagen [2, 3]. Here one finds 20 pages of a comprehensive
presentation of the Glauberman–Yukhnovskii–Kelbg theory. Despite much success in the description
of data, the work on the exponential potential should still be continued [30]. In his heritage, Hartmut
Krienke left some notes with the plans for proceeding with the exponential potential. The general idea
was to consider a species-independent simple exponential potential as some reference system and treat
the short range perturbation by some type of generalized cluster expansion, similar to the one devised
in [22, 24, 25].

This work led, in particular, to a summary of the existing theoretical knowledge on the activity
coefficients of electrolytes and extended also the theory to mean-spherical approximations and led to
applications to transport properties. Special interest was devoted to the consequences of charge asymmetry
and of higher charging for the individual ionic properties. This way new information was obtained about
the hydration sphere which strongly depends on the charges. The unfinished plan of Hartmut Krienke was
to proceed along the same line for species-dependent exponential interactions [30]. The collaboration
between the groups of Kelbg in Rostock and Yukhnovskii in Lviv has also been continued in the field of
quantum statistics of Coulomb systems [21, 35–39]. Some results of this collaboration, as well as recent
developments, will be discussed here.

2. Classical systems with exponential interactions

2.1. Basic assumptions and model

In the 1950’s, Ihor R. Yukhnovskii developed together with his adviser Glauberman [1, 8] a theory
of electrolytes based on the method of Bogoliubov [5, 6]. This theory was later extended to the range of
higher concentrations in many subsequent works, in particular by using collective coordinates [1, 11]. For
the description of the forces between charged particles Yukhnovskii and Glauberman used the effective
potential, that had already been proposed in 1927 by Kramers in quantum theory [40] and in 1934 by
Hellman in quantum chemistry [41–43]. We refer to this class of potentials as exponential potentials and
consider first the simplest form

𝑉𝑖 𝑗 (𝑟) =
𝑍𝑖𝑍 𝑗𝑒

2

4π𝜖0𝜖𝑟𝑟
[1 − exp(−𝛼𝑟)], (1)
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where 𝑍𝑖 are the charge numbers. The exponential potential introduced by Kramers and Hellmann has a
finite height at 𝑟 = 0. Glauberman and Yukhnovskii [8, 11] used this potential for solving equilibrium
problems of electrolyte theory and Kelbg developed successful applications to transport problems, in
particular, applications to conductance and viscosity of electrolytes [2, 3, 12, 13]. Kelbg extended the
potential to the quantum-statistical case and studied the applications to plasmas.

Figure 1. Ihor Yukhnovskii was fond of nature and liked to walk or to jog in woods. Here we see him
on a visit to University of Rostock in 1972 walking in the forest near the Baltic Sea and walking along
the beach with his colleagues Günter Kelbg (left-hand) and Werner Ebeling (right-hand) (Fotos: Dorit
Hagen).

These calculations were based on the general concepts of the Mc Millan–Mayer theory of solutions [7].
We used approximations of the nonlinear Debye–Hückel and Onsager–Fuoss type, then calculated pres-
sure, osmotic coefficient, electrical and free energy [22]. By Debye-charging we obtained the Helmholtz
free energy, and the individual activity coefficients of electrolytes with concentration 𝑛0, the ion densities
𝑛𝑖 = 𝜈𝑖𝑛0, the ion charges 𝑒𝑖 = 𝑍𝑖𝑒, and the ionic strength 𝐼 = 𝑛0

∑
𝑖 𝜈𝑖𝑧

2
𝑖
/2 . The potentials of the

average force between the ions 𝑖 and 𝑗 , 𝜓𝑖 𝑗 , are usually separated into the long-range Coulomb potential
and a short-range potential 𝑉 ′

𝑖 𝑗
(𝑟). Here we proceed by including an additional exponential part and a

short-range part

𝜓𝑎𝑏 =
𝑍𝑎𝑍𝑏ℓ

𝑟
𝑘B𝑇 [1 − exp(−𝛼𝑟)] +𝑉 ′

𝑎𝑏 (𝑟); ℓ =
𝑒2

4π𝜖0𝜖𝑟 𝑘B𝑇
. (2)

Here, ℓ is the Coulomb length and 𝜖𝑟 (𝑇, 𝑝) is the relative dielectric constant of pure water or solvent. The
length ℓ is also called Landau length or (double) Bjerrum length and is a function of temperature and
pressure. Here, most calculations are for the temperature 𝑇 = 298.15 K (i.e., 25◦C) and 𝜖𝑟 = 78.36, the
Coulomb length is then ℓ = 715.4 pm. The simplest possibility in our framework is to identify the long
range part 𝑉𝑖 𝑗 with the exact Coulomb potential and to model the short-range repulsion by hard spheres
with adaptable constact distances [22, 27, 28]. In order to better describe the physical situation around
an ion, in the older work square well and step potentials were introduced [2–4, 31–33]. The hard-core
distances were fixed for this model as the sum of Pauling radii. The remaining free potential parameters
for the square-well potential were fitted to thermodynamic data, and the parameters of the step potential
ℎ𝑖 𝑗 were fitted to both thermodynamic data and to the conductance data for 𝑐 ⩽ 0.3 mol/l for alkali
halides. The only fixed parameter was for iodid ions 𝑑𝐽𝐽 = 0 which corresponds to ℎ𝐽𝐽 = 1.28 (in units
𝑘B𝑇). Physically, this corresponds to the a priori assumption that the iodide-ion is not hydrated.
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Replacing here the pure Coulomb potential by an exponential potential allows one to take into account
several effects, such as strong deviations at small distances from Coulomb’s law due the hydration in
solutions and due to Heisenberg uncertainty effects in quantum plasmas. As shown in particular by Kelbg,
the first order theory for the exponential potential is aso analytically solvable as for the pure Coulomb
potential but leads already to an enormous improvement.

Note that more appropriate for the description of the situation in the solvation region and near it may
be the more flexible versions of the exponential potential [24, 33]:

𝑉𝑖 𝑗 (𝑟) = 𝑍𝑖𝑍 𝑗 𝑘B𝑇 (ℓ/𝑟) [1 − exp(−𝛼𝑖 𝑗𝑟)] (3)

or the equivalent “ansatz”

𝑉𝑖 𝑗 (𝑟) = 𝑍𝑖𝑍 𝑗 𝑘B𝑇 (ℓ/𝑟) [1 − 𝐵𝑖 𝑗 exp(−𝛼𝑟)], 𝐵𝑖 𝑗 = exp[𝛼 − 𝛼𝑖 𝑗 ] . (4)

An alternative reference system is the Debye–Hückel model [57]:

𝑉𝑖 𝑗 (𝑟) = 𝑍𝑖𝑍 𝑗 𝑘B𝑇
ℓ

𝑟
+𝑉 ′

𝑖 𝑗 (𝑟); 𝑉 ′
𝑖 𝑗 (𝑟) = ∞ if 𝑟 < 𝑅𝑖 𝑗 , else 𝑉 ′

𝑖 𝑗 (𝑟) = 0, (5)

where ℓ is the Coulomb length and 𝑅𝑖 𝑗 is the contact distance. Nowadays, the Debye–Hückel model of
charged hard spheres is a kind of standard model with many succesful applications [31–34]. On the other
hand, in comparison with the Debye–Hückel model, the exponential potentials have several important
advantages [24]:

(i) The exponential potentials are rather smooth and possess a simple Fourier-transform. Therefore, it
seems to be also well-suited for the treatment of all screening and collective effects.

(ii) For systems with exponential potential, there exist strict Bogoliubov-type expansions with respect
to the plasma parameter.

(iii) The existence of a simple screening equation permits cluster expansions around the first exponential-
type approximation similar to those for Debye–Hückel-type systems [22].

(iv) As shown by Kelbg, the exponential potential is quite useful in applications to quantum plasmas [14–
17].

In general, in what follows we prefer to use exponential potentials with just one 𝛼. We want to show
that this basic case is already very flexible and permits, if adapted in the best possible way to the system,
to reach excellent descriptions of real systems already in the first approximation. The easiest way to map
a binary system to an approriate 𝛼-parameter is the following choice of the 𝛼-parameter:

(i) 𝛼 = 𝛼+− . This choice is related to the so-called opposite charge approximation in plasma theory.

(ii) More appropriate may be the request that the exponential potential covers the first deviation of
important thermodynamic and transport quantities from the limiting law, in an exact way. We show
how we may go from a matrix system with many 𝛼-parameters, to a reference system with just one
parameter. The request in the case of thermodynamic functions leads to the choice

1
𝛼

=

∑
𝑖

∑
𝑗 𝑒

2
𝑖
𝑒2
𝑗
(1/𝛼𝑖 𝑗 )∑

𝑖

∑
𝑗 𝑒

2
𝑖
𝑒2
𝑗

. (6)

A different, even more efficient way, which we introduce herein later, is averaging of the screening
functions at the level of pairs similar to equation (6). The most important advantage of the exponential
potential as a reference system is based on the fact that the Fourier transform is so simple:

�̃�𝑖 𝑗 (𝑘) = 𝑍𝑖𝑍 𝑗𝑉 (𝑘) = 𝑍𝑖𝑍 𝑗 𝑘B𝑇ℓ
[4π
𝑘2 − 4π

𝑘2 + 𝛼2

]
. (7)
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We note that our potential includes a weak short-range repulsion having a Fourier-transform. In spite of
the simplicity of an extension by matrix terms, the screening problem is then much more difficult. The
question about the choice of a charge-independent 𝛼-parameter is to decide from case to case that the
leading aspect should be that the encounters of opposite charges are well described.

The question whether two potential models A and B are equvalent is not trivial. Most often one uses
the rule that the two 2nd virial coefficients for the two potentials are similar or even identical. This,
however, does not work for Coulomb systems, since the 2nd virial coefficients do not exist. Therefore, we
use the prescription that two potential models for the ionic interaction are equivalent, if the first deviations
from Debyes limiting law are equal.

We start as in [24] from the case of no additional short-range corrections and use the Bogoliubov
approximation 𝐹𝑖 𝑗 (1, 2) = 1 + 𝑔𝑖 𝑗 (1, 2):

𝑔𝑖 𝑗 (1, 2) + 𝛽𝑉𝑖 𝑗 (1, 2) + 𝛽
∑︁
𝑘

𝑛𝑘

∫
𝑉𝑖𝑘 (1, 3)𝑔 𝑗𝑘 (2, 3) d3 = 0. (8)

This approximation may be considered as the first term of a Bogoliubov-type expansion with respect to
the plasma parameter [2, 3]. In some sense, the Bogoliubov equation for the correlaton function 𝑔𝑖 𝑗 is
related to the Ornstein-Zernike equation which is the basis of HNC and MSA-related theories [4]. We
have to note, however, that the Bogliubov-type approach is historically the first systematic approach to
Coulomb systems and is related too, but in detail it is quite different from MSA-type approximations [4].

In the general case that 𝛼 is a matrix, the correlation function was obtained by solving the integral
equations [2, 3, 57]. In the simplest case, that all 𝛼 are equal, or that we use an averaged one, the solution
is particularly easy and reads

𝑔𝑖 𝑗 = −𝑍𝑖𝑍 𝑗
ℓ𝛼2

𝑟 (𝑝2 − 𝑠2)
[

exp(−𝑝𝑟) − exp(−𝑠𝑟)
]
. (9)

The parameters 𝑠 and 𝑝 are solutions of a 4th order polynomial. At very small densities, the solutions are
𝑠 = 𝛼 and 𝑝 = 𝜅 = 1/𝑟𝐷 . At intermediate densities we have [2, 3]

𝑝 =
𝛼

2

[√︂
1 + 2

𝜅

𝛼
−

√︂
1 − 2

𝜅

𝛼

]
; 𝑠 =

𝛼

2

[√︂
1 + 2

𝜅

𝛼
+

√︂
1 − 2

𝜅

𝛼

]
. (10)

We study now the thermodynamic functions for the case that we have only one 𝛼. The Coulomb energy
is

𝑈𝐶 =
𝑉

2
𝑘B𝑇

∑︁
𝑖 𝑗

𝑛𝑖𝑛 𝑗𝑍𝑖𝑍 𝑗

∫
ℓ

𝑟12
𝑔𝑖 𝑗 (1, 2)d2 = −𝑘B𝑇

∑︁
𝑖 𝑗

𝑛𝑖𝑛 𝑗𝑍
2
𝑖 𝑍

2
𝑗 ℓ

2 𝛼2

(𝑝2 − 𝑠2)

[
1
𝑝
− 1
𝑠

]
. (11)

The most easy way to extend this formula to mixtures with parameter 𝛼𝑖 𝑗 avoiding a matrix calculation is
the averaging at the level of the screening functions of pairs instead of averaging the 𝛼−1

𝑖 𝑗
as in equation (6)

𝑈𝐶 = −𝑘B𝑇
∑︁
𝑖 𝑗

𝑛𝑖𝑛 𝑗𝑍
2
𝑖 𝑍

2
𝑗 ℓ

2
𝛼2
𝑖 𝑗

(𝑝2
𝑖 𝑗
− 𝑠2

𝑖 𝑗
)

[
1
𝑝𝑖 𝑗

− 1
𝑠𝑖 𝑗

]
. (12)

Further results and applications will be given below. The success of the description by exponential
potentials is based on the fact that an essential part of the short-range effects is included by an optimum
choice of the exponential potential. According to Yukhnovskii and Kelbg, we get for the contribution of
the Kramers–Hellmann potential [1, 12, 13]

𝛽𝐹𝐾𝑌 = 𝛽𝐹id −
𝜅3

12π
𝜏

( 𝜅
𝛼

)
; 𝛽𝑝 = 𝑛 − 𝜅3

24π
𝜑

( 𝜅
𝛼

)
, (13)

𝜑(𝑥) = 1
𝑥3

(
1
4
𝑋3 − 2

3
𝑋 − 3

4𝑋

)
; 𝜏(𝑥) = 3𝛼3

4π𝜅3

(
𝑌2 − 2𝑌 + 2

3
𝑌3 − 1

2
𝑌4 + 5

6

)
, (14)

𝑥 =
𝜅

𝛼
; 𝑋 =

√︂
1 + 2

𝜅

𝛼
; 𝑌 = 2 + 𝑋. (15)
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For the excess chemical potential of an ion and the mean activity coefficient there follows a simple
form [8]

𝜇ex
𝑖 = −

𝑒2
𝑖
𝛼

4π𝜖0𝜖𝑟 𝑘B𝑇𝜅

[
1 − 1√︁

1 + 2(𝜅/𝛼)

]
, log 𝑓± = − |𝑒1𝑒2 |𝛼

4π𝜖0𝜖𝑟 𝑘B𝑇𝜅

(
1 − 1

𝑋

)
. (16)

Remember that we have for the Debye–Hückel model for the mean activity and the free energy function

ln 𝑓 DH
± = − |𝑍1𝑍2 |ℓ𝜅

(1 + 𝜅𝑎) ; 𝜏DH(𝜅𝑎) = 1 − 3
4
(𝜅𝑎) + 3

5
(𝜅𝑎)2 − 3

6
(𝜅𝑎)3 + . . . (17)

For comparison of the Debye–Hückel reference system with the simple exponential system, we may define
𝑎-parameter conjugated to our 𝛼-parameter by 𝑎 = (3/2𝛼) or in the case of mixtures by 𝑎𝑖 𝑗 = (3/2𝛼𝑖 𝑗 ).

Further corrections by a short-range and a hard core part of the potential may be included by the
second virial contribution [4]. This will be discussed below. The case of complex 𝛼 which corresponds
to oscillating potentials remains to be discussed.

2.2. Individual electrolytic conductivities

As known already to Nernst, the effect of nonideality on the conductivity is structurally closely
related to the effect on the osmotic pressure. Including external electrical fields is an extra big chapter
of the electrolyte theory [2–4] which we can only touch upon here, making use of the many parallels
between individual osmotic coefficient and transport. As a matter of fact, not only historically but also
systematically, the extension of the equilibrium theory of electrolytes to weak external field effects is
based on quite similar tools of statistical physics. In our case, the relevant tools are the pair distribution
functions and the tools of density and interaction. Here we haven’t got enough space to repeat the transport
theory [2, 3, 29], we give only the key ideas and present some extrapolations.

Under the influence of weak external electrical fields 𝐸 , the pair distribution is split into an equi-
librium and a non-equilibrium part which is a solution of differential equations formulated by Onsager.
The perturbation is different from zero only for oppositely charged ions and is known in several approxi-
mations [33]: in order to get the effects of nonideality on conductivity we have to calculate by standard
methods [2, 3] the relaxation force and the electrophoretic force and the corresponding contributions to
the specific conductivity [27, 28]:

𝜎𝑖

𝜎𝑖0
= �̄�𝑖 + 𝑆elp

𝑖
+ 𝑆rel

𝑖 ; 𝜎𝑖0 =
𝑛𝑖𝑒

2
𝑖

𝜌𝑖
, (18)

where 𝜎𝑖0 is the ideal conductivity and 𝜌𝑖 is the friction parameters of the ions. The first term reflects
the decrease of conductivity due to association. This is the Arrhenius effect which is parallel to the effect
of the osmotic coefficient. As far as the association is weak, we may just take over the earlier found
expression. The next correction which is dominant is due to hydrodynamic interactions and is called
electrophoretic effect. For the estimation of the electrophoretic force action on the ion 𝑖 may use the
expression for the Coulombic energy per ion since (𝜂0 — viscosity) [2, 3]:

𝑆
elp
𝑖

= −𝑘B𝑇
𝜌𝑖𝑍

2
𝑖

3π𝜂0

∑︁
𝑗

𝑛 𝑗𝑍
2
𝑗 ℓ

2
[

1
𝑝
− 1
𝑠

]
. (19)

Note that in the case that the the short-range components of the forces are species-dependent, the solution
for the correlation function is more complicated and strictly speaking needs a matrix theory.

Our approach will be applied now to conductivities using, in particular, the fact that individual
conductivities are structurally related to the individual energies and osmotic pressures. We show that
we can proceed this way to concentrations of interest for the description of measured conductance data.
Further we also include some applications of the exponential potential to quantum statistics which go
back to Kelbg [14, 15]. We use as measures of concentration the molar concentration 𝑐𝑖 in mol/dm3 in
the solute as well as the density 𝑛𝑖 = 𝑁𝑖/𝑉 of the species 𝑖. The first term reflects the Arrhenius effect,
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i.e., a decrease of conductivity due to association. As far as field effects are weak, we may just take
over the expression for the degree of ionization given above. The next correction is due to hydrodynamic
interactions. Its contribution to the specific conductivity is negative and can be expressed by the electrical
part of the electrical energy density. This way, two nonideality contributions are already known from
equilibrium results. Expressions for the relaxation part of conductivity are known for ions with non-equal
contact distances 𝑎𝑖 𝑗 = 𝑅𝑖 𝑗 :

𝑆rel
𝑖 = − ℓ𝜅𝑞

3(1 − 𝑞)
∑︁
𝑗

𝜁0
𝑗

(
1 + |𝑍𝑖 |

|𝑍 𝑗 |

) (
1

1 + 𝜅𝑎𝑖 𝑗
−

√
𝑞

1 + √
𝑞𝜅𝑎𝑖 𝑗

)
. (20)

The free parameters are here the contact distances and the friction constants 𝜌𝑖 , which are related to the
Stokes radii and to the limiting molar conductivities 𝜎𝑖0 by classical relations and 𝑞 = 1/2 [2, 3]. We
approximated here the relaxation part of the conductivity as a sum of binary contributions and refer to
this as a partial fraction representation.

The corresponding expressions for the exponential potential are also known in part. Particularly easy
is the electrophoretic part which is expressed by the known Coulomb 𝑢el

𝑖
given above. In order to find

the relaxation part of conductivity for more general exponential potentials, we have to calculate the
perturbation of the correlation function in the external field (here in 𝑥-direction). For our exponential
potential we find

𝑔12(𝑟) ∼
𝜕

𝜕𝑥

{
𝐴0

[
exp(−𝑝𝑟)

𝑟
− exp(−𝑠𝑟)

𝑟

]
+ 𝐴1

[
exp(−𝑝′𝑟)

𝑟
− exp(−𝑠′𝑟)

𝑟

]}
. (21)

The calculation of the relaxation term is easy for 𝐵12 = 1; the two relevant roots are [2, 3, 12, 13]:

𝑝′ =
𝛼

2

(√︂
1 + 2√𝑞 𝜅

𝛼
−

√︂
1 − 2√𝑞 𝜅

𝛼

)
; 𝑠′ =

𝛼

2

(√︂
1 + 2√𝑞 𝜅

𝛼
+

√︂
1 − 2√𝑞 𝜅

𝛼

)
.

Based on this result, we may obtain the conductivity for the exponential potential. An application to
NaCl in aqueous solution is shown in figure 2 representing the results due to Kelbg. We see a very good
agreement of theory with the data up to 1 mol/l [2, 3]. Kelbg found as adapted parameter 𝛼−1 = 370 pm.
One may be sure that the model with more than 1 adaptable 𝐵𝑖 𝑗 -parameters describes for NaCl the data
even up to 1.5 mol/l. In figure 2 we show the theory for charged spheres, corresponding to the parameters
𝑅NaNa = 479 pm, 𝑅NaCl = 350 pm, 𝑅ClCl = 360 pm found by fitting contact distances in [27, 28].
The model of charged hard cores is in reasonable agreement with the data only up to 𝑐 = 0.2 mol/l.
Beyond this concentration, the theoretical curve starts to deviate from the data for NaCl at 𝑐 > 0.3 mol/l,
although the exponential potentail model still fits well. We may conclude that the exponential potential
describes the effective forces somewhat better. We note that the Pauling radii of the corresponding ions
are 𝑅Na = 95 pm, 𝑅Cl = 167 pm, which means that the fitted contact distances substantially deviate from
the sums of the Pauling radii. In conclusion, we may say that the exponential potential used by Kelbg and
Yukhnovskii is well suited, and probably a combination of exponential potential and hard core potentials
has best perspectives.

Our figure 2 which is due to Kelbg [2, 3], demonstrates an excellent description of the data up to
1 mol/l for the mean activity coefficients and for the conductivity. Anyhow, we see that the given theory
for the exponential potential given above provides a most simple and useful first approximation which
agrees well with more advanced theories of the ionic conductivities discussed above [27, 28]. A different
successful strategy is to combine an exponential potential with one free parameter with a hard core
potential. In all cases it is highly recommended to use for the fit not only one set of data for a specific
property but much better several data series for different properties, e.g., activities and conductivities.
Note that conductivities permit very precise measurements and are more sensitive to association and to
anion-cation interactions.

2.3. Virial expansions for classical charged particles

More recently several thermodynamic and transport properties have been calculated for models
of charged partcles. For simplicity, here we use charged spheres with adaptive non-additive contact
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Figure 2. Left-hand: mean activity coeffiient according to Kelng [2, 3] for different parameters 𝛼−1 =

1.85, 2.50, 4.09, 4.50 Å (from below) as well as several exprimental curves for LiOH–A, NaOH–B,
NaBr–C HCl–D [2, 3]. Right-hand: the conductivity of NaCl with the Kelbg’s theory for this potential
with adapted 𝛼−1 = 3.1 Å [2, 3].

distances 𝑅𝑖 𝑗 [27, 28]. The long-range part 𝑉𝑖 𝑗 is identified with the exponential potential of Kramers
and Hellmann and consider the contact distance 𝑅𝑖 𝑗 as an adaptable parameter. This is the route we
considered in the papers [27, 28, 34]. The statistical theory applied to our model potentials is based
on the classical work of Mayer, extended by Friedman [7] and, in particular, by the collaboration
Yukhnovskii–Kelbg [11, 19, 20]. This theory based on cluster expansions provided several exact results
for the thermodynamic functions valid for small ionic densities. General expressions from statistical
thermodynamics for the cluster contributions 𝑆 to the negative free excess energy of hard charged spheres
read [2, 3, 7, 11, 19, 20]

𝐹ex = 𝐹𝐷𝐻 + 𝐹2 + 𝐹3 + . . . = −𝑘B𝑇𝑉

[
𝜅3

12π
𝜏

(
𝜅

𝛼

)
+

∑︁
𝑖,𝑘

𝑆
(𝑘 )
𝑖

]
, (22)

where 𝜏(𝑥) is the so-called ring function. The cluster integrals are expressed by the cluster pair functions𝜓
which are in Kelbg–Yukhnovskii approximation

𝜓𝑖 𝑗 = exp[𝑔𝑖 𝑗 − 𝛽𝑉 ′
𝑖 𝑗 ] − 1 − 𝑔𝑖 𝑗 ; 𝜏(𝑥) = 1 − 9

8
𝑥 + 3

2
𝑥2 − 21

12
𝑥3 + . . . (23)

The sums should be extended over the species of ions 𝑖 and all orders of clusters 𝑘 . The strong coupling
contributions of ions 𝑖 read in the cluster order 𝑘 = 2, 3 [2, 3, 7, 11, 19, 20]

𝑆
(2)
𝑖

=
1
2
𝑛𝑖

∑︁
𝑗

𝑛 𝑗

∫
dr 𝑗g[𝜓𝑖 𝑗 −

1
2
𝑔2
𝑖 𝑗

]
,

𝑆
(3)
𝑖

=
1

2 · 3
𝑛𝑖

∑︁
𝑗𝑘

𝑛 𝑗𝑛𝑘

∫
dr 𝑗 dr𝑘

[
𝜓𝑖 𝑗𝜓𝑖𝑘𝜓 𝑗𝑘 + 𝑔𝑖 𝑗𝜓𝑖𝑘𝜓 𝑗𝑘 + 𝑔𝑖𝑘𝜓 𝑗𝑘𝜓𝑖 𝑗 + 𝑔 𝑗𝑘𝜓𝑖 𝑗𝜓𝑖𝑘

]
. (24)

The basic elements is the cluster function 𝜓𝑖 𝑗 which is of the order𝑂 (𝑒4) in the interactions. We see here
that the 2nd cluster integral starts with the order 𝑒4 and the 3rd virial coefficient with the order 𝑒8 [34].

Several values for the contact distance were fitted to the data [27, 28, 34]. We notice important
deviations from additivity of individual radii.

23101-8



Statistical theory of charged particle systems

Calculation of triple integrals and mass action functions: We come now to the derivation of mass
action constants for the triple formation. Our basic assumption is that the convergent part of the cluster
integrals is directly related to the mass action function of triple formation. More presicely, analyzing
the triple cluster integral we have to select those parts which are non-negative, grow exponentially for
𝜖 𝑘B𝑇 → ∞ and depend only on the energy units, which are classically the Bjerrum energy 𝑈𝐵 𝑗 =

𝑒2/4π𝜖𝜖0𝑅± or the Rydberg energy Ry in the quantum case. In figure 3 we show several Mayer-like
diagrams which are possible candidates for bound state contributions of 3 charged particles of type
(2+,−,−) since they contain at least one 4-fold (+−)-bound. From the 2-particle bound state problem,
we know that a 4-fold (+−)-bound provides a tight (+−)-binding of two particles. The investigations
of the diagrams with 3 or 4 nodes with only one 4-fold binding shows, however, that the integrals are,
according to Friedmans estimates, evidently divergent. Including, however, two 4-fold (+−)-bounds, we
arrive at the graphs (the lower diagrams) which are for sure convergent even without screening. This is
the reason why we may include them in the classical and in the quantum case as the lowest order binding
contributions of 3 or more particles. The basic assumption of the present paper is that the mass action
constant is related to an asymptotic part of the 3rd virial coefficient, which should be convergent and
non-negative and a exponentially growing function of the reciprocal Bjerrum temperature 𝛽 = 𝑈𝐵 𝑗/𝑘B𝑇
or Rydberg temperature 𝛽 = 𝑅𝑦/𝑘B𝑇 . The technique of concrete evaluation of the virial coefficients is
quite complicated [4, 7]. The method we used in [27, 28, 34] is based on expansions with respect to 𝑒2.
We provided in [34] only the coefficient of 𝑒10 ∼ 𝛽5. Here we generalize the approach and also obtain the
coefficients of 𝑒8 ∼ 𝛽4. In the fugacity series which is relevant for the determination of the mass action
coefficients there appear reducible and irreducible terms (see [44] and figure 5), which both should be
evaluated.

Figure 3. (Colour online) Typical 3-particle diagrams which we study here. The diagrams show one 2-fold
charged positive ions as Mg++ or He++ and 2 negative single-charged ions as Cl− or electrons connected
by interaction bonds. The 2-fold and 4-fold lines stand for 2nd order and 4th orders of the expansions of
the 𝜓-functions. .

We may give this way the missing order 𝛽4 which is quite relevant. In the integrals there appear a
strong coupling exponential function 𝜓𝑖 𝑗 analyzed in detail in [34] which is of a higher order 𝑂 (𝑒4) in
the interactions. One of the reducible terms in the 3rd virial coefficient is just a square of the second
virial coefficient. This provides a contribution 𝛿𝐾 (3) (𝑇) ∼ [𝑆 (2)

𝑖
]2. With a correct normalization we get

𝛿𝐾 (3) (𝑇) ∼ 50𝛽4. For calculation of the irreducible graphs we have to solve 2-center integrals of the
following type

𝛿𝐾 (3) (𝑇) ∼
∞∫
1

d𝑟 ′ (1/𝑟 ′)𝑛−1
∞∫
1

d𝑠′ (1/𝑠′)𝑚−1
𝑟 ′+𝑠′∫

|𝑟 ′−𝑡 ′ |

d𝑡′ (1/𝑡′) . (25)

The case 𝑚 = 𝑛 = 4 was calculated in [34] leading to 𝑎5 = 3.1. We add here the calculation for the case
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𝑛 = 2, 𝑚 = 4 finding the integral

𝐶𝑛=2,𝑚=4 = π2
∞∫
1

d𝑟 ′ (1/𝑟 ′)3
∞∫
1

d𝑠′ (1/𝑠′)2 ≃ π2

2
≃ 4.93. (26)

This provides the coefficients which are the sum of reducible and irreducible graph (48.92)

𝑎4 = (35.1 + 48.9) = 84; 𝑎5 = 15.3. (27)

Completing the previous paper we calculated the lowest order in the Taylor expansion of the triple mass
action constant which permits to find a complete expression for the triple mass action constant

𝐾 (3) = 𝑎4𝛽
8 + 𝑎5𝛽

10 +
∑︁
𝑘=6

(7𝛽)2𝑘

2(2𝑘)! (28)

for all (reduced) temperatures. Note that in comparison with reference [34], the new values for the
triple association constant are larger than the results obtained earlier for MgCl2 and for Na2SO4. Cor-
respondingly, the new estimates give also larger values for the degree of triple association using the
expressions

𝛿 (3) = 2𝑛+𝑛2
− 𝑓

2
±𝐾

(3) (𝑇); ln 𝑓± = − 𝑧+𝑧−
2

𝜅ℓ

(1 + 𝛾±)
. (29)

Here, 𝑓± are the activity coefficients in electrical oppositely charge approximation [27, 28].

3. Quantum statistics and cluster expansions

3.1. Kelbg potential and cluster expansions

At the end of the 60th and in particular after the first visit of Ihor Yuknovskii to Rostock University in
1968, quantum-statististical investigations were included into the collaboration beween the two schools.
The collaboration led an exchange of students and aspirants and to many remarkable results [21, 25, 35–
39, 45, 47]. One of the tasks was to extend the virial expansions in the canonical ensemble developed
by Ihor Yukhnovskii [10, 11] and Günter Kelbg [14, 15]. In particular, the development of the method
of fugacity virial expansions which we will present now, started in 1969 at a seminar in the Institute on
the Dragomanov street in Lviv founded by Ihor R. Yukhnovskii. Since Prof. Yukhnovskii was of a high
opinion about the prospects of this new “ansatz” based on fugacity virial expansions, he proposed to
publish the 2 lectures in Lviv as Preprints of the Ukrainian Institute of Theoretical Physics [38, 39]. Here
we summarize how the method presented for the first time in 1969 in a seminar at the Institute in Lviv,
has developed over the years. In order to take into account the screening effects into statistical expansions
we need to sum up an infinite number of ring-type diagrams in the grand-canonical ensemble.

For quantum-statistical Coulomb systems, the pair potential consists, the same as for the classical
case, of a long-range part 𝑉𝑎𝑏 which contains a Coulomb tail and has a Fourier transformable part and a
short-range part. Following the work of Kelbg [14, 15, 18], the quantum form of the exponential potential
is in the first approximation given by

𝑉𝐾𝑖 𝑗 (𝑟) =
𝑒𝑖𝑒 𝑗

4π𝜖0𝑟

[
1 − exp

(
− 𝛼𝐾𝑖 𝑗𝑟

) ]
; 𝑎𝐾𝑖 𝑗 =

2
3𝛼𝐾

𝑖 𝑗

=

√
π

9
𝜆𝑖 𝑗 ; 𝜆𝑖 𝑗 =

ℎ̄

2𝑚𝑖 𝑗 𝑘B𝑇
. (30)

Here, we introduced, besides the 𝛼-parameter, a corresponding distance parameter 𝑎𝐾
𝑖 𝑗

; which is a kind
of effective hard core diameter for charges in a quantum plasma [35–37, 47, 57]. Note that in many
applications instead of a manifold of 𝛼 parameters, only one 𝛼± is used. This is the simple opposite-
charge approximation (OPA), which works well for two component plasmas in the region of partial
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ionization [57]. The quantum potential has a finite height in 𝑟 = 0. A more precise quantum-statistical
caculation leads Kelbg to the expression [18]

𝑉𝐾𝑖 𝑗 (𝑟) =
𝑒𝑖𝑒 𝑗

4π𝜖0𝑟

{
1 − exp

(
𝑟2

𝜆2
𝑖 𝑗

)
+
√
π
𝑟

𝜆𝑖 𝑗

[
1 −Φ

(
𝑟

𝜆𝑖 𝑗

)]}
. (31)

We used here the standard definition of the error function Φ(𝑥). For the Fourier transform, we get [14,
15, 38, 39]

𝑉𝐾𝑎𝑏 (𝑡) =
𝑒𝑎𝑒𝑏

𝜖0𝑡2
𝑀

(
1,

3
2
,−1

4
𝜆2
𝑎𝑏𝑡

2
)
, (32)

where 𝑀 = 1𝐹1 is the well known confluent hypergeometric function, which is also called Kummer
function. This first result by Kelbg which still neglects the exchange effects had been given already
in 1963. The Kummer function may be represented in integral form or using a Taylor expansion or
alternatively the asymptotics shows a decay like 𝑥−2:

𝑀

(
1,

3
2
,−𝑥2

)
=

1
2

1∫
0

d𝑢
exp(−𝑢𝑥2)
√

1 − 𝑢
= 1 − 1

6
𝑥2 + 1

30
𝑥4 + . . . ≃ 1

(1 + 𝑥2/6)
. (33)

We see that the Kummer function may be approximated by a simple rational function corresponding to
equation (1), i.e., to an exponential form of the potential. This way the rational approximation leads us
back to the previous exponential approximation with

𝛼−1
𝑖 𝑗 = (

√
π/6)𝜆𝑖 𝑗 .

This indeed shows a close relation between the full Kelbg quantum potential and the exponential potential,
inspite of the quite different mathematical form. We have shown that the Fourier transforms of both
potentials are quite similar and differ only for large Fourier vectors. Therefore, in applications, which are
based on the Fourier transform as the screening procedure, we may replace the original Kelbg potential
by the exponential potential and use the Kelbg–Yukhnovskii screening theory.

Besides we note that Kelbg also included the exchange effects and provided the Fourier transforms
using hypergeometric functions, although the back transform to real space has not yet been found. A
generalization to nondiagonal representations is the so-called Filinov approximation which is of much
interest for numerical applications in path integral calculations [57, 58].

The fact that the main part of the potential 𝑉𝐾
𝑎𝑏
(r) has a Fourier transform

𝑉𝐾𝑖 𝑗 (r) =
1
𝑉

∑︁
𝑘

exp(−ikr)𝑉𝐾𝑖 𝑗 (k) (34)

suggests a special mathematical technique for the evaluation of the classical or quantum partition function
which is based on the method of collective variables. This method was developed for Coulomb systems
suggested first by Bohm, Pines and Zubarev and worked out then by Yukhnovskii and Kelbg. This method
works in the classical as well as in the quantum case and typically leads to the following structure of the
general partition function [10, 14, 15]:

log 𝑍 (𝑇,𝑉, 𝑁) = log[𝑍id𝑍0] + log 𝑍ring(𝑇,𝑉, 𝑁) +
∞∑︁
𝑛=2

log 𝑍𝑛 (𝑇,𝑉, 𝑁). (35)

Here, 𝑍0 is the lowest order term which is of the order 𝑒2 in the interaction and is connected with the
contribution of the zero wave vector k = 0 to the Fourier transform [11, 68]. This contribution is denoted
as the self-energy of the long-range field [68]. It comprises the Hartree–Fock terms as well as possibly
some ideal quantum terms (in dependence on the definition of the term 𝑍id). The following ring term
comprises a set of contributions typical of Coulomb systems which describe the screening effects and
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Figure 4. (Colour online) Left-hand: equation of state (EoS) of hydrogen plasmas from a fugacity expan-
sion (upper thin curve c) in comparison with the density expansion (lower fat curve a) and the cover of
the Preprint ITF-7093P (Kiev, 1970) [38]. Right-hand: the EoS of hydrogen plasmas calculated by using
Padé approximations [47, 56] for 𝑇 = 30 000 K (red curve) and for 50 000 K (green curve) as a function
of log(𝑛𝑖).

contain the Debye contribution and generalizations. The contributions 𝑍0(𝑇,𝑉, 𝑁) and 𝑍ring(𝑇,𝑉, 𝑁)
are mainly determined by the Fourier transform of the long-range part of the effective potential and are
essentially determined by contributions of order the 𝑒4 in the interaction. This procedure traditonally
performed in the canoncical ensemble. In connection with the task to treat the bound states in an effective
way, in lively discussions in the Yukhnovslii seminars in 1969 in his Institute in the Uliza Dragomana
the idea arose to transfer the whole procedure to the grand canonical ensemble [38, 39].

This way this fruitful new method was first demonstrated in the mentioned seminars in Lviv under
the auspices of Ihor Yukhnovskii [38, 39, 44]. Extensive applications to real plasmas were given later by
Rogers and DeWitt in the Livermore group [49–52, 54]. We explain here only the basic ideas and several
analytical results. In order to have a closer relation between fugacities and densities, from now on we use
the fugacities which are not dimenisonless as above but have a dimension of densities. For the definitions
of new fugacities 𝑧𝑖 we use the relation with the chemical potentials 𝜇𝑖 by

𝑧𝑖 =
(2𝑠𝑖 + 1)

Λ3
𝑖

exp(𝛽𝜇𝑖); Λ𝑖 =
ℎ

√
2π𝑚𝑖𝑘B𝑇

. (36)

In terms of these new fugacities, we may derive a statistical expansion of the pressure [38, 39, 44, 47, 56]
using as in [44] the Debye screening. However, much better is an approximation by screening the full
exponential potential as in the classical case. For the ring contributions to the partition function, according
to [14, 15] for one-component plasmas we find

log 𝑍ring(𝑇,𝑉, 𝑁) =
𝑉

4π2

∞∫
0

d𝑡 𝑡2{𝑤(𝑡) − ln[1 + 𝑤(𝑡)]}; 𝑤(𝑡) = 𝜅2

4π
�̃�𝐾 (t). (37)

The ring expression reduces in zeroth approximation to the Debye result. Here, we include the higher
orders corresponding to the full exponential potential which leads to an substantial improvement. In a first

23101-12



Statistical theory of charged particle systems

approximation, we use the exponential approximation for the Kelbg potential and identify all elements
of the matrix 𝛼𝑖 𝑗 by just the one cooresponding to the pair of opposite charges 𝛼 = 𝛼𝑖 𝑗 → 𝛼±. In this
approximation, we avoid the matrix theory. A charging procedure in connection with the graph expansion
leads to

𝑝ring = − 𝐾3

24π
𝑓
(𝐾
𝛼

)
; 𝑓 = 1 − 3

√
π

16
(𝐾𝜆±) +

1
10

(𝐾𝜆±)2 + . . . (38)

The ring function has been expressed here by an expansion [71, 72]. The full expression for the pressure
consists, apart from the Fermi–Dirac part, of the ring term and the cluster series.

𝛽𝑝 = 𝛽𝑝FD + 𝛽𝑝HF + 𝛽𝑝ring +
∑︁
𝑎,𝑏

𝑧𝑎𝑧𝑏𝑏𝑎𝑏 (𝐾) +
∑︁
𝑎,𝑏,𝑐

𝑧𝑎𝑧𝑏𝑧𝑐𝑏𝑎𝑏𝑐 (𝐾) + . . . (39)

As the basic statistical quantity we consider the grand potential Ω = 𝐹 − ∑
𝑁𝑖𝜇𝑖 which neglecting the

fluctuations corresponds to the pressure Ω = −𝑝𝑉 . The grand potential Ω is a thermodynamic potential
if the variables are 𝑇,𝑉 and the chemical potential 𝜇 or the fugacity 𝑧 = exp(𝛽𝜇). Note that the sums
run here over all species. The ring function is of the same form as in the classical case equation (15).
However, we have a grand-canonical screening quantity, instead of the canonical

𝐾2 =
∑︁
𝑏

𝐾2
𝑏, 𝐾2

𝑏 = 4πℓ𝑍2
𝑏𝑧𝑏 . (40)

Note that we may have a more complicated dependence on the masses. As already mentioned, we sim-
plified here and have only a dependence on the relative mass 𝑚± of oppositeley charged pairs (OPA) [57,
71, 72].

Completing the earlier studies we are mostly interested in the bound state contributions which are
contained in the virial coefficient. This was already demonstrated by Kelbg and this author in in the
mentioned lecture in Lviv 1970 and is seen in figure 4. As shown in these figures, the relative pressure
has characteristic shoulders which are signals of changes of the effective particles numbers in the system.
In order to study these effects in detail, we first study a simple model system created by cutting all
Coulomb forces at a finite distance 𝑟cut, assuming 𝑉𝑖 𝑗 (𝑟) = 0 if 𝑟 > 𝑟cut. This way we avoid the
divergences connected with the long range Coulomb interaction, which are regularized considering the
screening effects but still keep the essence of the bound states. We introduce new fugacities 𝑧 which are
normalized to converge at low densities to the densities at finite dilution [47]. As is well known, cluster
expansions wihtin the grand ensemble lead to the series in terms of fugacities, which have a similar shape
as the series in terms of densities but contain more terms stemming from reducible diagrams. We want
to show here that expansions with respect to fugacities may be more appropriate for the description of
the bound states than the well known virial expansions with respect to densities. We use here fugacities
𝑧 which are normalized in the way that they converge to densities at infinite dilution.

𝛽𝑝 =

∞∑︁
𝑗=1

𝑏 𝑗 𝑧
𝑗 =

1
𝑉

(
�̃�1𝑧 +

1
2!
�̃�2𝑧

2 + . . .
)

− 1
2𝑉

(
�̃�1𝑧 +

1
2!
�̃�2𝑧

2 . . .

)2
+ 1

3𝑉

(
�̃�1𝑧 +

1
2!
�̃�2𝑧

2 . . .

)3
. (41)

We see that the coefficients of the order 𝑧𝑁 are essentially given by 𝑁-particle traces. By comparison of
equal powers 𝑧𝑘 , we get

𝑏1 =
1
𝑉
�̃�1, 𝑏2 =

1
2𝑉

(
�̃�2 − �̃�2

1

)
, 𝑏3 =

1
6𝑉

(
�̃�3 − 3�̃�1�̃�2 + 2�̃�3

1

)
, . . . . (42)

The general relations follow from Thiele’s semi-invariants. The partition functions which are con-
stituents of the virial coefficients are expressed by the 𝑠-particle traces

�̃�𝑠 (𝑇,𝑉) = Tr1,2,..𝑠 [exp(−𝛽𝐻𝑠)] = Tr1,2,..,𝑠 [exp(−𝛽ℎ̄2𝜏𝑠 − 𝛽𝑒2𝜑𝑠)], (43)
𝐻𝑠 = 𝑇𝑠 +𝑉𝑆 , 𝜏𝑠 = 𝑇𝑠/ℎ̄2, 𝜙𝑠 = 𝑉𝑠/𝑒2. (44)
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Figure 5. Graphs representating the fugacity expansion of the pressure in a Mayer-like Kelbg–Morita
representation. The coefficient of 𝑧3 corresponds to reducible and irreducible graphs which represent the
3rd virial coefficient. The convergent part of these diagrams provides the partition function of helium.
The wavy lines represent Coulomb- (or Kelbg-) interactions and the normal lines stand for 𝜓-functions
like in equations (23–24) [44].

In this way all our partition functions (𝑄-functions) have the structure of the basic trace function
equations (46–48) and may be represented graphically as in figure 5. We remember the relation

(−1)𝛽𝑒2𝜑𝑠 =
∑︁

1<𝑖< 𝑗<𝑠

𝜉𝑖 𝑗

|r′
𝑖 𝑗
| ; r′𝑖 𝑗 =

(ri − rj)
𝜆𝑖 𝑗

, ; 𝜉𝑖 𝑗 = −𝑍𝑖𝑍 𝑗
ℓ

𝜆𝑖 𝑗
, (45)

and see that the contributions to equations (44–45) after resolvent expansion have the following structure

�̃�𝑠 (𝑇,𝑉) =
∑︁

1⩽𝑖⩽ 𝑗⩽𝑠

∑︁
𝑛

(−1)𝑛𝜉𝑛𝑖 𝑗
1

2πi

∫
𝑐

d𝑧 exp(−𝛽𝑧)Tr1,2,..𝑠

(
1

|r′
𝑖 𝑗
| ·

1
( ℎ̄2𝜏𝑠 − 𝑧)

)𝑛
. (46)

The present structure consists of the sums of particle pairs connected by 𝜉𝑖 𝑗 interaction factors and should
be considered as a series with respect to the powers 𝜉𝑛

𝑖 𝑗
. We may graphically represent all expressions by

a sum of Mayer-like graphs consisting of points or bubbles (traces) and lines (interactions) which is quite
similar to the 𝜆-expansions analyzed in detail by Balescu [48]. The basic topological structure corrsponds
to Mayers graph technique. However, the circles and lines we use do not have exactly the same meaning
as we speak regarding the Kelbg–Morita diagram technique [14, 15]. Examples for the simplest Morita–
Kelbg graphs are given in figure 5. The terminus Mayer-like means here that the diagrams are structurally
similar to the Mayer diagrams for the classical case. However, the wavy lines represent Kelbg interactions
instead of Coulomb interactions and the lines representing 𝜓-functions contain Slater functions instead
of classical Boltzmann factors [57, 58]. The triangles in the center of a graph stand for proper 3-particle
non-additive interactions, which we approximate here by pair products. We already see in the graph
structure the roots of the cropping methods developed later. Cropping means formally that in bond state
configurations, low order contributions in terms of 𝑒2 should not be included into partition functions.
The other coefficients are defined by cluster integrals, e.g., [23, 35–37, 44, 47, 56]. The coefficients in
terms of fugacity and density expansions are up to a certain order exactly known [7, 23, 53, 54, 56]. In
this quite complicated expansion, the coefficients 𝐴2, 𝐴6, 𝐴10, . . . represent the unscreened second and
third virial coefficients which we need to extract the mass action constants for the formation of pair and
triple bound states. Since all higher orders 𝐴𝑘 with 𝑘 > 5 are only approximately known, we already
have to find for helium and lithium, the appropriated approximations describing the binding effects.
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3.2. Identifying the free and the bound state contributions

Assuming in the lowest order a Kelbg-like screening, we may write the statistical thermodynamics
in the form of cluster expansions in the canonical ensemble which also had already been discussed in
the preprint [38, 39] and was worked out later [56–58]. The negative free excess energy of classical and
quasi-classical systems reads in the canonical ensemble [7, 56–58, 68]

𝐹 = 𝐹FD + 𝐹HF + 𝐹ring +
∑︁
𝑖

S(𝑘 )
𝑖
, (47)

where the first 3 terms are the Fermi–Dirac, Hartree–Fock and Montroll–Ward contribution, which
collects the contributions of ring diagrams [71, 72]. These contribitons are studied more in detail
elsewhere [56, 57]. The sums should be extended over the species of ions 𝑖 and also to all orders of
clusters 𝑘 . The cluster integral of 3rd order may be expressed by screened 2- and 3-particle Slater
functions

𝑆𝑖 𝑗 = 𝑆𝑖 𝑗 exp(𝑔𝑖 𝑗 − 𝛽𝑉𝑖 𝑗 ); 𝑆𝑖 𝑗𝑘 = 𝑆𝑖 𝑗𝑘 exp[(𝑔𝑖 𝑗 − 𝛽𝑉𝑖 𝑗 ) + (𝑔𝑖𝑘 − 𝛽𝑉𝑖𝑘) + (𝑔𝑘 𝑗 − 𝛽𝑉𝑘 𝑗 )] . (48)

The final form of the 3-particle cluster integral including 3-particle quantum interactions is in the quantum
case given by

𝑆
(3)
𝑖

=
1

2 · 3
𝑛𝑖

∑︁
𝑗𝑘

𝑛 𝑗𝑛𝑘

∫
dr 𝑗 dr𝑘

(
𝑆𝑖 𝑗𝑘 + 𝑆𝑖 𝑗𝑔 𝑗𝑘𝑔𝑘 𝑗 + 𝑔𝑖 𝑗𝑆 𝑗𝑘𝑔𝑘 𝑗 + 𝑔𝑖 𝑗𝑔 𝑗𝑘𝑆𝑘𝑖 − 2𝑔𝑖 𝑗𝑔 𝑗𝑘𝑔𝑘𝑖

)
. (49)

Here, the first term which also includes proper 3-particle interactions gives the largest terms at a strong
binding and provides the asymptotics. Evaluating the integrals, the cluster series have the following
structure in the grand-canonical density representation

𝛽𝑝(𝑧𝑖 , 𝑇) = 𝛽𝑝FD + 𝛽𝑝FD +
∑︁
𝑖

𝑧𝑖𝑍
2
𝑖

{∑︁
𝑗

2πℓ2

3
𝑧 𝑗𝑍

2
𝑗 𝑓𝑖 (𝐾𝜆𝑖𝑒) + 2π

∑︁
𝑗

𝑧 𝑗𝜆
3
𝑖 𝑗

[
𝐺𝑖 𝑗 (𝜅) + 𝐾20(𝜉𝑖 𝑗 )

]
+ 8π2

∑︁
𝑗𝑘

𝑧 𝑗𝜆
3
𝑖 𝑗 𝑧𝑘𝜆

3
𝑖𝑘

[
�̃�𝑖 𝑗𝑘 (𝜅) + �̃�30(𝜉𝑖 𝑗 , 𝜉𝑖𝑘 , 𝜉 𝑗𝑘)

]
+ . . .

}
. (50)

In a different form, we may represent the cluster expansion of the pressure within the canonical ensemble
in terms of densities [56, 59–61]

𝛽𝑝(𝑛𝑖 , 𝑇) = 𝛽𝑝FD + 𝛽𝑝HF −
∑︁
𝑖

𝑛𝑖

{
2πℓ2

3𝜅
𝑍2
𝑖

∑︁
𝑗

𝑛 𝑗𝑍
2
𝑗𝜑𝑖 (𝜅𝜆𝑖 𝑗 ) + 2π

∑︁
𝑗

𝑛 𝑗𝜆
3
𝑖 𝑗

[
𝐺𝑖 𝑗 (𝜅) + 𝐾20(𝜉𝑖 𝑗 )

]
+ 8π2

∑︁
𝑖𝑘

𝑛 𝑗𝜆
3
𝑖 𝑗𝑛𝑘𝜆

3
𝑖𝑘

[
𝐺𝑖 𝑗𝑘 (𝜅) + 𝐾30(𝜉𝑖 𝑗 , 𝜉𝑖𝑘 , 𝜉 𝑗𝑘)

]
+ . . .

}
.

Here, 𝜑(𝑥) is in Debye–Hückel-like approximation 𝜑(𝑥) = 1 − 3
√
π/8 + (3/10)𝑥2 + . . .. We do not

specify the screening functions 𝐺, and �̃�, which depend on the screening parameters 𝜅 (canonical) and
𝐾 (grand canonical ) which are irrelevant in the present context of bound states and refer to [56]. We
note that the graphs of Feynman-type like in figure 3 representating the terms in the pressure expansion
for hydrogen plasmas and for helium plasmas which we should calculate contain at least one 4-ring
ladder [76]. Figure 4 shows, as demonstrated already in 1970 at a seminar in Lviv, that fugacity cluster
expansions are an appropriate instrument for the description of bound states without using any chemical
tools such as mass action laws. A few years later this approach was taken up by the school of De Witt
and Rogers in Livermore for the development of big astrophysical program packets ACTEX. Note that
in his approach Rogers used numerical estimates of the cluster integrals equations (26) and (41) in the
fugacity expansion [49–54]. The program packet ACTEX (activity expansions) developed by Rogers has
been used as one of the fundaments for the big project OPAL used for astrophysical calculations of the
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composition and opacity of stars and in particular for the NASA Astrophysics Data Systems (ADS) [49–
52, 54]. However, the OPAL equation of state is limited with respect to two aspects. Firstly, it is only
available in the form of pre-computed tables that are provided by the Lawrence Livermore National
Laboratory. However, these numerical applications require interpolations, which always lead to a loss of
accuracy. Secondly, the OPAL equation of state is proprietary and is not freely available. Our method
is with respect to the theoretical tools comparable to OPAL. It is, however, completely analytical and
freely available [73, 74]. Further we notice in this context that it was developed first in Lviv under the
auspices of Ihor R. Yukhnovskii [38, 39]. Here, we use only analytical estimates in order to proceed to a
better understanding and also give a comparison with the method of mass action laws on the basis of the
canonical ensemble.

3.3. The partition functions

We define here the partition functions and the corresponding mass action functions as the convergent
part of the virial coefficients in the fugacity expansion. Following this idea in a recent work [76]
we developed a new method for calculating partition functions of atoms which is an alternative to
the traditional chemical approach. Our basic assumption is that the partition function of the atoms of
hydrogen, helium and lithium can be represented by a convergent series with respect to the dimensionless
reciprocal temperature

𝛽 = Ry/𝑘B𝑇, (51)

resulting from the quantum statistical expressions for virial coefficients:

𝜎atom(𝑇) =
∞∑︁
𝑠0

𝐴𝑠0𝛽
𝑠0 , (52)

with 𝑠0 = 2, 4, 6 for hydrogen, helium, and lithium plasmas.
Hydrogen: The information about two-particle bound states is contained in the virial function𝐾20(𝜉),

which can be split in a contribution of free and bound states. Note that in the present definition of the
2nd virial function, the linear and the quadratic terms are missing since they are already included into
the Hartree–Fock and the Debye–Hückel term. Formally we get the bound state part first by splitting into
the negative contributions of lower orders which are influenced by the screening effects and the positive
contributions of the bound states [56]

𝐾20(𝜉) = −
𝐶𝑝

12
𝜉3 +

√
π

∑︁
𝑚⩾4

𝜁 (𝑚 − 2)
2𝑚Γ(𝑚/2 + 1) 𝜉

𝑚. (53)

The bound state part of the 2nd virial function 𝐾2𝑏 is given by the even part of the virial function

𝐾2𝑏 =
1
2
[𝐾20(𝜉) + 𝐾20(−𝜉)] =

√
π

∑︁
𝑚=4,6,..

𝜁 (𝑚 − 2)𝜉𝑚
𝑖 𝑗

2𝑚(𝑚/2)! = 2
√
π

∞∑︁
𝑠=1

[
exp

(
𝜉2

4𝑠2

)
− 1 − 𝜉2

4𝑠2

]
.

The full function 𝐾20(𝜉) may be decomposed into a bound and a free state part, alternatively we may
split it into a direct and an exchange part [56]. The point where these aymptotic representations are
non-analytic is 𝜉𝑖 𝑗 = 0, since here the forces change from positive to negative values and at the same
time the character of the symmetry changes. The quantum virial functions 𝑄(𝜉) and 𝐸 (𝜉) are discussed
in detail in [56–58]. The Taylor series for the quantum virial functions are convergent for any physical
meaningful value of the interaction parameter 𝜉. This is ensured, since for large powers the terms show
the same behaviour as the series of the well-known exponential function. This way the coefficients of our
series are known and have the values

𝐴0 = 𝐴1 = 0, 𝐴2 = 1.0967, 𝐴3 = 0.1078, 𝐴4 = 0.0056, . . . , 𝐴𝑠 = 4𝑠 [𝜁 (2𝑠 − 2)/(2𝑠)!] . (54)
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The series are convergent since the 𝜁 functions converge to one. This means that the coefficients converge
to those of an exponential series. We use the approximation

𝜎𝐻 = 1.097𝛽2 + 0.108𝛽3 +
[

exp(𝛽) − 1 − 𝛽 − 0.5𝛽2 − 0.166𝛽3] . (55)

The basic assumption of this work is that the partition functions of He and higher atoms follow the same
scheme. We evaluate the lowest coefficients as the binding parts of the cluster coefficients in quantum-
statistical fugacity expansions of the pressure, by evaluating the convergent graphs. Based on the analysis
of these virial coefficients, we identified the atomic partition functions and mass action constants as
convergent higher-order contributions to the unscreened virial coefficients. The most important selection
criterion among the large number of graphs is that the contributions are strictly positive and increase
strongly with 𝛽 = 1/𝑘B𝑇 . The problem with this method is that the corresponding higher order diagrams
are difficult to calculate since they include unknown three- and four-body quantum problems and further
since the number of relevant diagrams increases with the particle number.

Comparing the new partition function with the traditional approach of chemical physics to define the
partition functions as sums of terms exp(−𝛽𝜖𝑛) where the 𝜖𝑛 are expressed by the known energy levels of
the atom, we find that the new partition functions are modified in the spirit of Planck–Brillouin–Larkin
(PBL) by introducing the elements of cropping. In other words, the exponential functions are replaced
by functions without the lowest powers in 𝛽 = Ry/𝑘B𝑇 . In this way, we retain the basic features and the
low-temperature behavior of the traditional approach. However, on the other hand, we avoid any double
counting of terms of lower order in 𝑒2, which in Coulomb systems are used for purposes of screening
and electroneutrality and are no more free for the purposes of binding.

As already shown above, considering [75, 76], we have nowadays a complete understanding of the
problem for hydrogen based on the exact results from the quantum statistics of hydrogen [47]. The
complete series for the partition function of H are known, and we see that a low-order Rydberg expansion
obtained from quantum statistics works for 𝛽 ⩽ 2 and agrees well with the correct PBL partition
function. A representation by two Taylor terms works already well at high temperatures with 𝛽 < 2. On
the other hand, the naive exponential approach agrees with the Planck partition for 𝛽 ⩾ 3. We find that the
transition occurs in a rather interesting region covering for hydrogen temperatures around 75 000 K where
the binding effects are weak. The first orders in the Taylor expansion with respect to Ry correspond to
the so-called ladder diagrams of quantum statistical graph expansions (see figures 3 and 5). The quantum
statistical analysis confirmed Planck’s results from 1924 [56] as well as the findings of Klimontovich for
weak deviations from equilibrium [55].

We consider now the partition functions for helium: Here, the calculations are not yet fully finished.
The results given in [75, 76] based on diagrammatic calculations of the lowest binding diagrams including
ireducible diagrams (shown in figures 3 and 5) as well as reducible diagrams (shown in figure 5) provided
the estimate [75, 76]

𝜎He ≃ 14.90𝛽4 + 373𝛽5. (56)

On the other hand, the asymptotics are determined by the ground state of the helium atoms 𝜖He ≃ 5.087
and we find:

𝜎He ∼ exp(𝛽𝜖He). (57)

We combine both results and propose to take the lower order terms from the evaluation of the graphs and
the higher order terms from the asymptotics to find [75, 76]

𝜎He = 14.90𝛽4 + 373𝛽5 +
[

exp(𝛽𝜖He)
] ′

= 14.90𝛽4 + 373𝛽5 +
∞∑︁
𝑘=6

(𝜖He𝛽)𝑘
𝑘!

. (58)

On the other hand, we have a different estimate based on the tables of the excitation energies of helium
taken from [63, 75] as well as on the theoretical insight, that cropping should be applied to each of the
electrons extra. These representations suggest that Taylor expansion in the dimensionless 𝛽-parameter as
well as the asymptotics start for helium with the terms [75]:[

exp(4𝛽) − 1 − 4𝛽
]
·
[

exp(1.807𝛽) − 1 − 1.807𝛽
]
. (59)
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Avoiding any overlap of the lower orders, we find another estimate

𝜎He(𝑇) ≃ 14.90𝛽4 + 373𝛽5 +
[

exp(4𝛽) − 1 − 4𝛽 − 8𝛽2] (60)
×
[

exp(1.807𝛽) − 1 − 1.807𝛽 − 1.622𝛽2] .
This gives, e.g., 𝜎He(100 000 K) ≃ 20464. We have applied here extra cropping steps to the exponent of
each of the electrons to obtain the terms of the order 𝛽𝑛 with 𝑛 ⩾ 6 which complement our diagrammatic
calculations. To obtain better results, we need to calculate more diagrams of the order 𝛽𝑛 with 𝑛 = 5, 6, . . ..
In figure 6, we compare the low order expansions for hydrogen and for helium with approximations, that
interpolate between a power law and exponential functions. Note that the corresponding mass action
function is

𝐾He(𝑇) = (2
√
π𝜆3
𝑖𝑒)2

{
14.90𝛽4 + 373𝛽5

+
[

exp(4𝛽) − 1 − 𝛽 − 8𝛽2] [ exp(1.807𝛽) − 1 − 1.807𝛽 − 1.622𝛽2]}. (61)

Figure 6. (Colour online) Partition function of H (left-hand) and He (right-hand). The green curves show
the first terms of a Taylor expansion, the blue curves show the exponential approximation and the red
curves interpolate between the Taylor series and the asymptotic exponential representation.

The new results are generally much lower than the naive exponential approach without cropping. Due
to these differences, we recommend for further applications the formulae which interpolate between the
Taylor expansions and the asymptotics, i.e., between higher and lower temperatures. The interpolating
formulae are shown as red curves. For lower temperatures, the new formulae are practically identical to the
asymptotics and for higher temperatures to the estimates calculated from the diagram expansions. We can
see for hydrogen that the low-order diagrams are only first approximations and should be supplemented
by calculating further diagrams. We show later that the at high temperatures the concentrations, predicted
for the atom formation, are lower than in previous calculations. This can be important for estimating
ionization in stars and the fusion devices, for example.

From the point of view of our cluster analysis, the consideration of bound states requires the following
steps:

(i) Identify the convergent contributions of two-, and three- particle clusters to the coefficients of the
fugacity or density expansions.

(ii) Identify the positive definite and, at low 𝑇 , asymptotically large contributions that define the mass
action constants. Note that the candidates for the contributions of bound states are diagrams with an
even number of lines. They should contain at least one 4-fold (+−) interaction line like in figure 3.
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(iii) Most important: quantum statistics of Coulomb systems teaches us that a class of diagrams which
are, e.g., of linear order in 𝑒2 or are of ring type are consumed by processes of screening or cancelled
out by electro-neutrality. Such diagrams should not be included into the binding expressions like
mass action functions. This is the origin of the cropping steps, which we applied. Following
Onsager’s postulates, any double-counting of contributions should be strictly avoided. A graph can
either provide a contribution of free states or of the bound states.

4. The equation of state for hydrogen plasmas

Analyzing equation (50) we find the structure

𝛽𝑝(𝑛𝑖 , 𝑇) = 𝛽𝑝FD + 𝛽𝑝HF + 𝛽𝑝sc + 𝛽𝑝bo, (62)

with a bound state (discrete state) contribution

𝛽𝑝bo = +2π
∑︁
𝑗

𝑛 𝑗

{
𝜆3
𝑖 𝑗

[
𝐾2𝑏 (𝜉𝑖 𝑗 )

]
+ 8π2

∑︁
𝑖𝑘

𝑛 𝑗𝜆
3
𝑖 𝑗𝑛𝑘𝜆

3
𝑖𝑘

[
𝐾3𝑏 (𝜉𝑖 𝑗 , 𝜉𝑖𝑘 , 𝜉 𝑗𝑘)

]
+ . . .

}
,

and a contribution of scattering states (free states)

𝛽𝑝sc = −
∑︁
𝑖

𝑛𝑖

{
2πℓ2

3𝜅

∑︁
𝑗

𝑛 𝑗𝑍
2
𝑖 𝑍

2
𝑗𝜑𝑖 (𝜅𝜆𝑖 𝑗 ) + 2π

∑︁
𝑗

𝑛 𝑗𝜆
3
𝑖 𝑗

[
�̃�𝑖 𝑗 (𝜅) + 𝐾2 𝑓 (𝜉𝑖 𝑗 )

]
+ 8π2

∑︁
𝑖𝑘

𝑛 𝑗𝜆
3
𝑖 𝑗𝑛𝑘𝜆

3
𝑖𝑘

[
�̃�𝑖 𝑗𝑘 (𝜅) + 𝐾3 𝑓 (𝜉𝑖 𝑗 , 𝜉𝑖𝑘 , 𝜉 𝑗𝑘)

]
+ . . .

}
.

Let us now consider the simplest case of low-density hydrogen plasmas. Based on th present analysis, the
EoS for hydrogen plasmas reads in the lowest order in the density, i.e., including only quadratic terms in
the density [47, 56] (𝑛𝑖-density of the nuclei):

𝛽𝑝 = 2𝑛𝑖 − 𝐴0(𝑇)𝑛3/2
𝑖

− 𝑛2
𝑖 𝐵2(𝑇) + . . . , (63)

𝐴0(𝑇) = (
√

8π/3)ℓ3/2; 𝐵2(𝑇) =
[
8π

√
π𝜆3
𝑖𝑒𝜎𝑃𝐵𝐿 (𝑇) + 𝐾∗(𝑇)

]
. (64)

Here, the bound state contribitons are the PBL-partition function and the contributions of scattering
states in the correction function 𝐾∗(𝑇) which is numerically relatively small. Larkin has shown that in
the classical case 𝐾∗(𝑇) = 0. A simple low-temperature approximation is

𝐾∗(𝑇) ≃ −
√
π𝜆3
𝑖𝑒𝜉

2
𝑖𝑒 . (65)

We may use this expression to define a quantum length (Kelbg length) by

𝐾∗(𝑇) = −4πℓ2𝑎𝐾 (𝑇). (66)

The Kelbg length 𝑎𝐾 (𝑇) is a kind of quantum Debye–Hückel distance between the charges. The full
quantum function 𝐾∗(𝑇) is exactly known; it can be expressed by the quantum virial functions defined
above [47, 56]. The functions are also tabulated [47]. This way, the quantum statistical analysis confirms
Planck’s results from 1924 [47] as well as the findings of Klimontovich [55]. Evidently there are no open
problems left for hydrogen.

For a more convenient way of calculating the free densities of electrons, ions (protons) and atoms 𝑛∗𝑒,
𝑛∗
𝑖
, 𝑛∗0, we go to the chemical picture introducing free and bound particles.

𝛽𝑝 = 𝑛∗𝑖 + 𝑛∗𝑒 + 𝑛∗0 −
𝜅∗3

24π

[
1 − 3

2
𝜅∗𝑎𝐾 (𝑇) + . . .

]
, 𝑛∗0 = 𝑛∗𝑒𝑛

∗
𝑖 8π

√
π𝜆3
𝑖𝑒𝜎𝑃𝐵𝐿 (𝑇). (67)

Here, 𝜅∗2 = 4πℓ(𝑛∗𝑒 + 𝑛∗𝑖 ) defines the Debye quantity of the free particles, and the conservation relations
are 𝑛𝑒 = 𝑛∗𝑒 + 𝑛∗𝐻 , 𝑛𝑖 = 𝑛∗𝑖 + 𝑛∗𝐻 .
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The Kelbg length is an aggregated quantity which includes several contributions from the scattering
states. Using the analogies between the classical Debye–Hückel theory and this quantum approach to
plasmas we get as in [47, 57] the so-called quantum Debye–Hückel approximation QDHA which was
obtained in [47, 57] by summing up further higher order terms in the density

𝑝 = 𝑛∗𝑖 + 𝑛∗𝑒 + 𝑛∗0 −
𝜅∗3𝜑(𝜅∗𝑎(𝑇))

24π
; 𝜅∗2 = 4πℓ(𝑛∗𝑒 + 𝑛∗𝑖 ); (68)

𝑛∗0
𝑛∗𝑒𝑛

∗
𝑖

= 8π
√
π𝜆3
𝑖𝑒𝜎𝑃𝐵𝐿 (𝑇) exp

[
− 𝜅∗ℓ𝐺 (𝜅∗𝑎(𝑇))

]
; (69)

𝐺DH =
1

1 + 𝑥 ; 𝜑DH(𝑥) = 1 − 3
2
𝑥 + 9

5
𝑥2 − 2𝑥3 + . . . (70)

Note that this convenient approximation which is often used for hydrogen calculations of free densities [47,
57] is at low densities equivalent to the exact equations (63–66) and differs only in the approximative
higher orders. An essential insight is that the correction to the PBL-expression 𝐾∗(𝑇) is not a contribution
to binding but stems from the scattering states and should be treated together with the Debye term [47, 62].
This is possible, since the contributions depend only on 𝜅∗, the Debye parameter of the free plasma. The
QDHA is based on the analogies and an exptrapolation [71, 72]. Now we derive a better founded
approximation within the schema of the exponential potential. This way we proceed from the DH-
approximation to the new KY (Kelbg–Yukhnovskii) approximation. Following Kelbg, we define the
quantities

1
𝛼𝐾 (𝑇) =

2
3
𝑎𝐾 (𝑇) = −2𝐾∗(𝑇)

12πℓ2 ≃
√
π

6
𝜆𝑖𝑒 (71)

and a dimensionless quantum Kelbg parameter and a quantum Kelbg distance

𝑥 = 𝑞𝐾 = 𝜅𝑎𝐾 (𝑇) = (
√
π/4)𝜅𝜆±; 𝑎𝐾𝑖 𝑗 = (

√
π/4)𝜆𝑖 𝑗 . (72)

We define further the Kelbg–Yukhnovskii functions with 𝑋 =
√︁

1 + 2𝜅/𝛼𝐾 =
√︁

1 + (4/3)𝜅𝑎𝐾 (𝑇) in
analogy to the Debye–Hückel functions:

𝐺KY(𝑥) =
6

√
π𝑥

[
1 − 1√︁

1 + (
√
π/3)𝑥

]
= 1 −

√
π

4
𝑥 + . . . , (73)

𝜏KY(𝑥) =
1
𝑥3

(
1
4
𝑋3 − 3

2
𝑋 + 2 − 3

4𝑋

)
= 1 − 3

√
π

8
𝑥 + . . . . (74)

This way we get the new formulae for the EoS of hydrogen plasmas denoted as Kelbg–Yukhnovskii
approximation:

𝑝 = 𝑛∗𝑖 + 𝑛∗𝑒 + 𝑛∗0 −
𝜅∗3

24π
𝜑KY(𝜅∗𝑎𝐾 (𝑇)); 𝜅∗2 = 4πℓ(𝑛∗𝑒 + 𝑛∗𝑖 ), (75)

with the mass action law
𝑛∗0
𝑛∗𝑒𝑛

∗
𝑖

= 8π
√
π𝜆3
𝑖𝑒𝜎𝑃𝐵𝐿 (𝑇) exp

[
− 𝑍𝑖ℓ𝜅∗𝐺KY(𝜅∗𝑎𝐾 (𝑇))

]
. (76)

Graphical representations show that the QDHA and the QKYA are similar in shape, although the QKYA
is characterized by a longer range of the correlations as the QDHA and as the ring functions derived
in [71, 72]. The transition from the earlier ring functions QDHA [71, 72] to the present QKYA is in our
view an improvement, since the Kelbg–Yuknovskii functions are stemming from a systematical evaluation
of ring diagrams and are better founded. We calculated with the new KY approximations the pressure
of an hydrogen plasmas and show the results for the two temperatures 𝑇 = 31250 K and 𝑇 = 63500 K
in comparison with the recent results from Path Integral Monte Carlo (PIMC) calculations. We see in
figure 7 that the agreement is rather good up to 𝑛𝑖 = 1021 cm−3.
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Figure 7. (Colour online) The EoS of hydrogen calculated within the Kelbg–Yukhnovskii approximation
(QKYA) for the temperatures𝑇 = 31250 K (turquoise line) and 62500 K (red line), and a comparison with
data from recent Monte Carlo PIMC calculations [64, 65]. The two additional lines (magenta and green)
show the density expansion including only the terms up to the quadratic order after equations (64–65).

We worked so far with just one quantum parameter, namely 𝜅∗𝑎𝐾 (𝑇). This gives already quite
satisfactory results. We show now that the method of averaging at the level of screening functions for
pairs leads to better approxinations. Let us start with the excess part of the chemical potential which is
determined by the ring contributions. In extended QDHA, we have

𝐺𝑖 𝑗 =
𝑒2
𝑖
𝑒2
𝑗( ∑

𝑖

∑
𝑗 𝑒

2
𝑖
𝑒2
𝑗

) 1
1 + 𝜅∗𝑎𝐾

𝑖 𝑗

. (77)

The KY-theory gives the mass action law

𝑛∗0
𝑛∗𝑒𝑛

∗
𝑖

= 8π
√
π𝜆3
𝑖𝑒𝜎𝑃𝐵𝐿 (𝑇) exp

[
− 𝑍𝑒𝑍𝑖ℓ𝜅∗𝐺 (𝜅∗𝑎𝐾± )

]
. (78)

A graphical representation shows that the approximations QDHA and QKYA are similar in shape,
although the QKYA based on the true ring functions for the Kelbg potential is characterized by a longer
range of correlations as the QDHA which was based on the ring functions derived in [71, 72]. We may
represent the new expressions for 𝜏 and 𝐺 as functions of the quantum length 𝑎𝐾 = 3/2𝛼𝐾 and find

𝐺KY(𝜅𝑎) =
3

2𝑎

(
1 − 1√︁

1 + 4𝑎/3

)
= 1 − (𝜅𝑎) + 10

9
(𝜅𝑎)2 − 35

27
(𝜅𝑎)3 + . . . , (79)

𝜑KY(𝜅𝑎) = 1 − 3
2
(𝜅𝑎) + 2(𝜅𝑎)2 − 70

27
(𝜅𝑎)3 − . . . . (80)

Note that the DH and the KY theories are similar in shape but have different asymptotics

𝐺KY ∼ 3
2𝜅𝑎

; 𝐺DH ∼ 1
𝜅𝑎

; 𝜑KY ∼ 2
3
√

3(𝜅𝑎)3/2
; 𝜑DH ∼ 3

(𝜅𝑎)2 . (81)
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The excess part of the chemical potentials which determines the Saha equation is now given by

𝜇ex
𝑖 = 𝜇

ring
𝑖

= −𝑘B𝑇𝑍𝑖ℓ𝜅
∗
∑︁
𝑗

𝐺𝑖 𝑗 (𝜅∗𝑎𝐾𝑖 𝑗 ; 𝑛𝑖). (82)

An explicite form is

𝜇ex
𝑖 = −

3𝑒2
𝑖
𝛼

4π𝜖0𝜖𝑟 𝑘B𝑇2𝑎𝐾 𝜅2

[
1 − 1√︁

1 + (4/3) (𝜅𝑎𝐾 )

]
. (83)

In the same way we may calculate the Coulomb energy.

5. The equation of state for helium plasmas

We consider the example of hydrogen as a good plan how to proceed for helium and begin with
the virial expansion in the density. An extension of the virial series for 𝑍 > 1 elements reads with the
notation 𝑛 = 𝑛𝑒 + 𝑛𝑖 = (1 + 𝑍)𝑛𝑖 , where 𝑛𝑖 is the density of the nuclei [56]:

𝛽𝑝 = 𝑛 − 𝐴0(𝑇)𝑛3/2 − 𝑛2𝐵2(𝑇) −
3
2
𝐴3(𝑇)𝑛3/2 ln 𝑛 − 𝐴4(𝑇)𝑛5/2

− 2𝐴5(𝑇)𝑛3 ln 𝑛 − 𝐵3(𝑇)𝑛3 + . . . (84)

The concrete values of the temperature functions 𝐴𝑖 (𝑇), 𝐵𝑘 (𝑇) follow by a comparison with the cluster
expansion and are given for 𝑖 = 1, 2, 3, . . ., 𝑘 = 2, 3, e.g., in [23, 56]. Our basic idea is that the basic
convergent part of the 3rd virial coefficient 𝐵3(𝑇) can be identified with the partition function and
the mass action function of the helium formation. The problem is that the coefficients 𝐵3(𝑇) and the
coefficients beyond are not well studied yet. Therefore, the partition functions are often approximated
by elementary expressions based on the known energy levels [63]. Often these calculations neglect so
far the compensation effects between the high discrete and the low scattering states except, e.g., in [76].
We know from the studies for hydrogen, that for 𝑇 > 𝐼/𝑘B, which is the ionization temperature, the
way of cropping is essential and the compensation effects determine the value of the partition functions.
We should expect that for helium the compensation effects between high discrete and low scattering
effects play an essential role, too. We must expect that these compensation effects dominate beyond the
ionization temperatures, i.e., for helium about 𝐼/𝑘B ≃ 630000 K. Let us consider first a representation
for high temperatures where the bound states are irrelevant. Note that the contributions of bound states
start with the power 𝜉4

𝑖𝑒
. The first terms of the pressure read

𝛽𝑝(𝑛𝑖 , 𝑇) =
∑︁
𝑖

𝑛𝑖 −
2πℓ2

3𝜅

∑︁
𝑖 𝑗

𝑛𝑖𝑛 𝑗𝑍
2
𝑖 𝑍

2
𝑗𝜑𝑖 (𝜅𝜆𝑖 𝑗 ) −

∑︁
𝑖 𝑗

𝑛𝑖𝑛 𝑗𝑍
3
𝑖 𝑍

3
𝑗 ln

[
𝜅

𝛼𝑖 𝑗

]
(85)

− 2π
∑︁
𝑗

𝑛 𝑗𝜆
3
𝑖 𝑗𝐾

′′
20(𝜉𝑖 𝑗 ) + . . .

The bound state contributions are defined only for 𝜉𝑖 𝑗 > 0. We assume that the 3rd virial functions have
the same structure as the 2nd virial coefficients, having a bound state and a free state contribution

𝐾30(𝜉) = 𝐾3𝑏 (𝜉) + 𝐾3 𝑓 (𝜉). (86)

We identify the contribution of the bound states to the 3rd virial function following the lines developed
above for the partition function of hydrogen.

We calculate now the EoS of helium plasmas and start with an ideal approximation. For He-plasmas
we have the following relations between the species including mass action laws:

𝑛𝑒 = 𝑛∗𝑒 + 𝑛∗He+ + 2𝑛∗He, 𝑛𝑖 = 𝑛
∗
He++ + 𝑛

∗
He+ + 𝑛

∗
He,

𝑛∗He+ = 𝑛∗𝑒𝑛
∗
He++𝐾He+ (𝑇), 𝑛∗He = 𝑛

∗
𝑒

2
𝑛∗He++𝐾He(𝑇). (87)
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Figure 8. (Colour online) Left-hand: comparison of several estimates for the partition functions of helium.
The relevant new results are for high temperatures in the left-hand lower corners, where the new results
(blue curves) deviate from the traditional exponential partition functions (red curves). The new (blue)
curves were obtained by interpolations between a low order polynomial (green line) and the high order
exponential term (red line). Right-hand: comparison of the present new approximation for the Coulomb
energy (blue line) with the Unsöld aymptotics (magenta line), the estimate by Brilliantov (red line) and
the Debye energy (green line) which is correct mainly for small densities.

Charge neutrality means 𝑛𝑒 = 𝑍𝑛𝑖 = 2𝑛𝑖 so that the properties of the He plasma are determined only
by 𝑇 and the total density of nuclei 𝑛𝑖 . The ionization degree may be introduced as the relation between
free electron density and total electron density 𝛼𝑒 = 𝑛∗𝑒/𝑍𝑛𝑖 . For the pressure, we have within the
approximation of ideal particles

𝛽𝑝 = 𝑛∗𝑖 (1 + 𝑍) + 𝑛∗He+ + 𝑛
∗
He. (88)

Here, the density 𝑛𝑖 and the temperatute 𝑇 are the relevant independent variables and 𝑛∗
𝑗
, 𝑛∗He+ , 𝑛

∗
He are

dependent variables. We go now to a chemical description including nonideality effects, which follows
the lines of our fugacity expansion. Using this analogy we get the new formulae for the EoS of helium
plasmas 𝑍 = 2 with 𝑛𝑖 = 𝑛∗He++ :

𝑝 = 𝑛∗𝑖 + 𝑛∗𝑒 + 𝑛∗He+ + 𝑛
∗
He −

2πℓ2

3𝜅∗
[
𝑍4
𝑖 𝑛

∗
𝑖 𝜑(𝜅∗𝜆𝑖𝑖) + 𝑛∗2

𝑒 𝜑(𝜅∗𝜆𝑒𝑒) (89)

+𝑛∗𝑒𝑛∗He+𝜑(𝜅
∗𝜆𝑒,He+) + 𝑍2

𝑖 𝑛
∗
𝑖 𝑛He+𝜑(𝜅∗𝜆𝑖,He+) + 𝑍2

𝑖 𝑛
∗
𝑖 𝑛

∗
𝑒𝜑(𝜅∗𝜆𝑖𝑒)

]
(90)

with the sccreening parameter defined by the concentrations of all charged species

(𝜅∗)2 = 4πℓ(𝑛∗𝑒 + 𝑛∗He+ + 4𝑛∗He++). (91)

Following the line of our fugacity expansion, we get now two mass action laws

𝑛∗He+

𝑛∗𝑒𝑛
∗
𝑖

= 8π
√
π𝜆3
𝑖𝑒𝜎

PBL
He+ (𝑇) exp

[
− ℓ𝜅∗𝐺KY(𝜅∗𝑎𝐾𝑒,𝑖+(𝑇))

]
, (92)

and
𝑛∗He

(𝑛∗𝑒)2𝑛∗
𝑖

= 8π
√
π𝜆3
𝑖𝑒𝜎He(𝑇) exp

[
− 2ℓ𝜅∗𝐺KY(𝜅∗𝑎𝐾𝑖𝑒 (𝑇))

]
. (93)
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Here, the 𝑎𝐾
𝑖 𝑗
(𝑇) are appropriately chosen Kelbg lengths. We underline that the main source for this

derivation is the comparision with the exact fugacity cluster expansion. We have ensured that the chemical
representation using the species 𝑛∗

𝑖
, 𝑛∗𝑒, 𝑛∗He+ , 𝑛

∗
He is at low densities fully equivalent to the exact fugacity

expansion and this way also to the exact density expansion. A direct comparison of the partition functions
and the EoS for He with other sources is difficult since in most applications, e.g., to stellar athmospheres
(see, e.g., [77]) a different normalization is used. The mentioned authors follow in most cases the
traditional definitions of Eggert, Saha and Unsöld. Relative partition functions are defined for each
ionization step 𝑘 and are denoted by 𝑈𝑘 (𝑇, 𝑛𝑒). The relative partition functions depend on temperature
and on densities, corresponding to density-dependent cutting of the summations over atomic states.
Therefore, it may be easier to compare the particle densities predicted by different methods. Due to our
predicion of lower values of our mass action constants, we find at high 𝑇 smaller densities of free charged
particles as in standard calculations. In other words, corresponding to figures 6 and 8, we predict at higher
temperatures smaller atom densities than in the standard approaches [77]. This provides us with the basic
part of the EoS of helium.

Figure 9. (Colour online) EoS of helium plasmas from the chemical approximation given above rep-
resented in the form of the relation of total pressure to the ideal Boltzmann pressure at densities
𝑛𝑖 < 1021 cm−3. We show the relative pressure 𝛽𝑝/(𝑛𝑒 + 𝑛𝑖) for 𝑇 = 50000, 80000 K (red, green
curves) as a function of log(𝑛𝑖). The shoulders correspond to the formation of helium ions.

In the last part of this chapter we want to show how our theory can be made compatible with Unsöld’s
work on astrophysical plasmas. As shown in [67–70], we find for 𝑍 ≫ 1 and strong ion-ion correlations
for the Coulomb energy and the corresponding lowering of ionization energy the asymptotics:

𝑈𝑖,𝐶 = −𝑎(𝑁𝑘B𝑇)Γ; 𝑝𝑖,𝐶 = −𝑎
3
(𝑛𝑖𝑘B𝑇)Γ𝑖 . (94)

There exist several estimates for the coefficient [67]. The theory of Berlin and Montroll provides 𝑎 =

(3/2)4/3 = 1.7171, Unsöld finds 𝑎 = 1.7861 and Brilliantov 𝑎 = 0.881 [57, 66, 67]. We see that the slopes
predicted by Berlin, Montroll and Unsöld are in resonable agreement. On the other hand, the estimate
by Brilliantov agrees well with a numerical fit of simulation data for classical plasmas by De Witt which
provide 𝑎 = 0.899 and what may be even more convincing, with the bound given by Onsager in 1937
𝑎 = 0.9 [57]. Sinnce the differences are not well understood, we use here the analytically obtained slope
by Brilliantov [68]. We compare in figure 8 r.h.s. different analytical approximations for the Coulombic
energy of a plama with the asymptotic by Brilliantov [57] and the Debye energy.
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We need a generalization of the KY theory which is appropriate for multi-charged ions as has
been developed in [57, 68]. Let us consider a plasma with multi-charged ions denoted by indices 𝑖.
According to Brilliantov, we do not permit the realization of high 𝑘-modes 𝑘 > 𝑘𝑖 = (9π2𝑛𝑖)1/3, since
the corresponding plasma modes cannot ne realized. Then, the integration should be restricted to lower
modes and we get for the contribution of these species to the Coulomb energy and to the chemical
potentials [58, 68]

𝑈𝐶𝑖 = −𝑘B𝑇𝑛𝑖𝑍
2
𝑖

∑︁
𝑗

𝑍2
𝑖

𝜅2

𝑝2
𝑖 𝑗
− 𝑠2

𝑖 𝑗

𝑚𝑖 𝑗 . (95)

Here, the matrix 𝑚𝑖 𝑗 is defined by

𝑚𝑖𝑖 =

[
1
𝑝𝑖𝑖

arctan
(
𝑘𝑖

𝑝𝑖𝑖

)
− 1
𝑠𝑖𝑖

arctan
(
𝑘𝑖

𝑠𝑖𝑖

)]
, (96)

𝑚𝑖 𝑗 =

[
1
𝑝𝑖𝑖

− 1
𝑠𝑖𝑖

]
if 𝑖 ≠ 𝑗 , 𝑘𝑖 = (9π2𝑛𝑖)1/3. (97)

Note that this variant of the theory contains the free parameters 𝛼𝑖 𝑗 and 𝑘𝑖 and may be adapted this way
to specific tasks. The 𝑝𝑖 𝑗 and 𝑠𝑖 𝑗 are given by

𝑝𝑖 𝑗 =
𝛼𝑖 𝑗

2

(√︂
1 − 2

𝜅

𝛼𝑖 𝑗
−

√︂
1 + 2

𝜅

𝛼𝑖 𝑗

)
; 𝑠 =

𝛼𝑖 𝑗

2

(√︂
1 + 2

𝜅

𝛼𝑖 𝑗
+

√︂
1 − 2

𝜅

𝛼𝑖 𝑗

)
. (98)

We remember the relations [2, 3]

𝑠𝑖 𝑗 𝑝𝑖 𝑗 = 𝜅
2; (𝑠𝑖 𝑗 + 𝑝𝑖 𝑗 ) (𝑠𝑖 𝑗 − 𝑝𝑖 𝑗 ) = 𝛼𝑖 𝑗

√︃
1 − 4𝜅2/𝛼2

𝑖 𝑗
. (99)

We mention that the method of mode restriction is of particular interest for the treatment of heavy ions
in plasmas, since ions behave in plasmas in a completely different way than electrons and tend to form
lattice-like structures, which leads to a dependence on 𝑛1/3

𝑖
. However, we will not discuss this problem

here in detail and refer to [57, 58, 67–70]. Note, that in general, the transition to restricted modes, i.e., to
including arctan-functions, may be relevant only in case of strong ion-ion correlations

6. Conclusions

In this work we discuss the collaboration between the groups of Ihor R. Yukhnovskii in Lviv and
Günter Kelbg in Rostock and analyze several approaches based on pair correlation functions and cluster
expansion in the classical as well as in the quantum case. An essential role in this collaboration played
the exponential potential which has an easy Fourier transform and is in the quantum case equivalent
to the Kelbg potential. Finally, we discuss the progress in the statistical description of bound states of
three particles as in MgCl2-solutions in the classical case and in quantum helium plasmas. We presented
new results about the effects of three-particle bound states, in particlular new expressions for the cluster
integrals and the mass action functions of ionic triple associates and helium atoms.

We use here a chemical description derived from the fugacity expansion, having in mind Onsager’s
view that we have some freedom in defining the chemical species. Like in writing the ledger for a
company, we may write some effects on a left-hand page of the lecture and some on a right-hand page.
This has the same effect as far as a correct summation is observed. A chemical description is some kind
of optimum arrangement between left-hand and right-hand (free and bound), since a minimization of the
free energy is considered, which, however, like in the case of a ledger, is strictly forbidden, and is any
double counting of the terms. In the case of a ledger, this is against the law, while in the case of nature,
it violates the laws of nature! Our cropping procedure is a direct consequence of avoiding the double
counting of terms. Not observing this, means to admit errors.

Our new results for the equation of state of hydrogen and helium plasmas are essential based on the
lectures given by Günter Kelbg and this author on a seminar directed by Ihor R. Yukhnovskii in 1970 in
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the Institute on the Dragomanov street in Lviv. This way we demonstrate here the key results of about
60 years of collaboration between two groups working in Lviv and in Rostock, which was full of hard
work connected as well as with many unforgettable warm personal meetings with Ihor Rafailovich and
his colleagues.
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Статистична теорiя систем заряджених частинок,
включаючи потрiйнi зв’язанi стани, та спiвпраця
Львiв–Росток

В. Ебелiнг
Iнститут фiзики, Унiверситет Гумбольдта, Берлiн, Нiмеччина

Вшановуючи сторiчний ювiлей вiд дня народження Iгоря Р. Юхновського, ми аналiзуємо новi досягнен-
ня в статистичнiй термодинамiцi кулонiвських систем. Основна iдея цiєї роботи полягає в демонстрацiї
того, що експоненцiальний потенцiал, використаний у перших статтях I. Р. Юхновського, є адекватною
системою вiдлiку для опису класичних та квантових систем заряджених частинок. Ми коротко обговорю-
ємо спiвпрацю мiж групами Iгоря Юхновського у Львовi та Гюнтера Кельба в Ростоку та аналiзуємо деякi
пiдходи, що грунтуються на парних кореляцiйних функцiях та кластерних розвиненнях як у класичному,
так i в квантовому випадку. Насамкiнець, ми розповiдаємо про прогрес у статистичному описi зв’язаних
станiв трьох частинок, таких як у плазмi гелiю та в розчинах MgCl2 у класичному випадку, та представля-
ємо новi результати щодо впливу тричастинкових зв’язаних станiв. Зокрема, ми наводимо новi вирази
для кластерних iнтегралiв та констант рiвноваги. у випадку атомiв гелiю та iонних потрiйних асоцiатiв, а
також для рiвняння стану.

Ключовi слова: кореляцiйнi функцiї, розклади за фугiтивнiстю, константи хiмiчної рiвноваги, утворення
атомiв
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