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Liquid-gas equilibrium is considered using the global isomorphismwith the Ising-like (lattice gas) model. Such an
approach assumes the existence of the order parameter in terms of which the symmetry of binodal is restored
not only in the vicinity of the critical point (critical isomorphism) but also globally in the whole coexistence
region. We show how the empirical law of the rectilinear density diameter of the liquid-gas binodal allows us
to derive a rather simple form of the isomorphism transformation between the fluid and lattice gas model of
Ising-type. The relations for critical parameters which follow from such isomorphism are tested on a variety of
fluid systems, both real andmodel ones. Moreover, we consider the phase equilibrium in polymer solutions and
the Flory 𝜃-point as the extreme state of such equilibrium within our approach. The most crucial testing in 2D
case is using the Onsager exact solution of the Ising model, and we represent the results of our approach to the
calculation of critical point parameters of monolayers for noble gases and the surface tension.
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1. Introduction

Symmetry is a unified concept in physics and plays a great role in the study of phase transitions. If
the correlation functions of two equilibrium states have the same symmetry, then there is no restriction
to the transformation of one phase into another under a continuous change of state parameters [1]. The
liquid-gas equilibrium in simple fluids is a characteristic example here. The statement that there is no
qualitative difference between liquid and gas is due to van der Waals [2]. It led him to the seminal
equation of state which for the first time predicted a critical point purely analytically. On this basis,
the principle of corresponding states (PCS) was formulated. The further development of the theory of
critical phenomena has stressed the importance of symmetry, where Ising-like lattice models [3, 4] played
a crucial role in establishing the universality classes of criticality [5]. The origin of universal critical
behaviour is the correlation length divergence, which makes the difference between the discrete lattice
model and the continuous fluid irrelevant for the leading singular terms of thermodynamic quantities
in the vicinity of the critical point. Beyond the asymptotic region, the main difference is caused by the
absence of particle-hole symmetry for real and model fluids which leads to the asymmetry of a liquid-gas
density binodal. The short-range hard-core part of the interparticle potential is treated differently from
the attractive long-range part, as it causes an entropic effect of the excluded volume [6, 7]. The natural
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characteristic of such an asymmetry between coexisting phases is the density diameter:

�̃�𝑑 =
𝜌𝑙 + 𝜌𝑔

2 𝜌𝑐
, (1.1)

where 𝜌𝑙,𝑔 are the densities of liquid and gas phases and 𝜌𝑐 is the critical density. Different regions in
the thermodynamic state space can be characterized with respect to the prevalence of hard-core repulsive
or attractive contributions to pressure 𝑃 (we assume a common case of a simple fluid with central
interparticle interaction potential Φ(𝑟)):

𝑍 =
𝑃

𝜌 𝑇
= 1 − 2π 𝜌

3𝑇

∫
𝑟3 𝜕Φ(𝑟)

𝜕 𝑟
𝑔2(𝑟; 𝜌, 𝑇) d 𝑟 , (1.2)

where 𝑇 is the temperature of a fluid and 𝑔2 is its correlation function. These regions can be labelled as
soft (𝑍 < 1) and hard (𝑍 > 1) fluid regimes, correspondingly. The so-called Zeno-line:

𝑍 =
𝑃

𝜌 𝑇
= 1 (1.3)

serves as the separatrix between these regimes [9]. This line can be easily obtained for any equation of
state (EoS) and tested via comparison with the available thermodynamic data [10]. For the van der Waals
(vdW) EoS, it is exactly straight, which was first noted by Batschinsky [11]:

𝑍 = 1 ⇒ 𝜌

𝜌𝑍
+ 𝑇

𝑇𝑍
= 1, (1.4)

with 𝑇𝑍 = 𝑎/𝑏 , 𝜌𝑍 = 1/𝑏 and 𝑎, 𝑏 are standard parameters of the vdW EoS [1]. According to [9]:

𝐵2(𝑇𝑍 ) = 0 , 𝜌𝑍 =
𝑇𝑍

𝐵3 ( 𝑇𝑍 )
d𝐵2
d𝑇

����
𝑇=𝑇𝑍

, (1.5)

where 𝐵2,3 are corresponding virial coefficients. As thermodynamic data analysis shows [10], the Zeno-
line (1.3) has an approximate linear character for many real fluids.

Notably, beyond the fluctuational region where �̃�𝑑 has a singular behaviour [12–14], the density
diameter (1.1) also displays a linear temperature dependence known as the law of the rectilinear diameter
(LRD) [15]:

�̃�𝑑 = 1 + 𝐴

(
1 − 𝑇

𝑇𝑐

)
, 𝐴 > 0, (1.6)

where 𝑇𝑐 is the critical temperature.
Both empirical regularities (1.3), (1.6) are very instrumental in locating critical points in numerical

simulations [16] and in systems such as metals where they are beyond the reach of a real experiment
[17–19]. It should be noted that while the LRD (1.6) refers to the coexistence line, the Zeno-line
regularity (1.3) spans from supercritical fluid region to dense liquid region and lies well beyond the
critical point (𝑍𝑐 ≈ 0.3). Thus, the concept which would encapsulate both these regularities must deal
with the global nature of the fluid state. The ubiquity of these regularities in such different fluid systems,
from simple fluids to liquid metals, hints at the underlying symmetry which could serve as the basis for
extended PCS.

The aim of this work is to present some recent results on the global isomorphism between simple
fluid and the Ising-like model (lattice gas). This approach is based on a simple geometrical picture where
the regularities (1.1) and (1.4) appear as images of corresponding elements of the lattice gas phase
diagram [20, 21].

The paper is organized as follows. In section 2 we give a simple global isomorphism transforma-
tion picture using the triangle of liquid-gas states [22] and its basic corollaries for the liquid-vapour
equilibrium. This includes the relations between parameters of the transformation and critical point, the
influence of quantum effects on the binodal asymmetry, and the relation between critical parameters of
3D and 2D fluids. In section 3 we outline the microscopic nature of the global isomorphism between
fluid and lattice Ising-like models. The results are discussed in the concluding section.
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2. Global isomorphism transformation and its parameters

The (approximate) linearity of the Zeno line and its parameters, augmented with its tangency to the
liquid branch of the binodal at low temperature [23], leads to the concept of a liquid-gas triangle of states
into which the binodal is “inscribed” [22]. In fact, in such a picture, one does not need the Zeno line itself
with the parameters 𝑇𝑍 and 𝜌𝑍 defined by (1.5) since its linearity is not a universal law. Instead, one can
use what we call the Zeno element:

𝑇

𝑇∗
+ 𝜌

𝜌∗
= 1 , (2.1)

with 𝑇∗ and 𝜌∗ as the corresponding parameters of this line due to its construction (see figure 1). Thus,
the line (2.1) is defined directly as the tangent to the analytical continuation of the liquid branch of the
binodal to the low-temperature region 𝑇 → 0. Such a continuation is possible via mapping the symmetric
binodal of the Ising-like model of lattice gas with the Hamiltonian

𝐻 = −
∑︁
⟨ 𝑖 𝑗 ⟩

𝐽𝑖 𝑗 𝑛𝑖 𝑛 𝑗 − ℎ
∑︁
𝑖

𝑛𝑖 (2.2)

onto the symmetrized liquid-gas binodal of the fluid [20]. In (2.2), 𝐽 is the interaction energy, 𝑛𝑖 = 0, 1
is the site occupation variable and ℎ is the chemical potential. Assuming LRD (1.6), the mapping takes
a simple form:

𝜌 = 𝜌∗
𝑥

1 + 𝑧 𝑡
, 𝑇 = 𝑇∗

𝑧 𝑡

1 + 𝑧 𝑡
, (2.3)

of the projective transformation with 𝑧 being the skewness parameter. Here, 𝑥 = ⟨𝑛𝑖⟩ is the lattice gas
density and 𝑡 = 𝑡/𝑡𝑐 is its temperature 𝑡 normalized to the critical one 𝑡𝑐. Such a transformation defines
the correspondence between two pairs of concurrent triples of straight lines:

ideal gas line: 𝜌 = 0 ⇒ 𝑥 = 0 ,
binodal diameter: �̃�𝑑 ⇒ 𝑥 = 1/2 ,

Zeno-element: 𝑇
𝑇∗

+ 𝜌

𝜌∗
= 1 ⇒ 𝑥 = 1 .

Therefore, from (2.3), the critical temperature and density are as follows:

𝜌𝑐 =
𝜌∗/2
1 + 𝑧

, 𝑇𝑐 = 𝑇∗
𝑧

1 + 𝑧
. (2.4)

Density parameter 𝜌∗ represents the highest density state associated with the characteristic temperature
𝑇∗, and, for model systems with a given interaction potential, it can be estimated as:

𝜌∗ =
𝑇∗

𝐵3 ( 𝑇∗ )
d 𝐵2
d𝑇

����
𝑇=𝑇∗

. (2.5)

In view of global isomorphism, 𝜌∗ corresponds to a fully occupied state 𝑥 = 1 of the lattice gas.
This defines the number of cells N = 𝜌∗𝑉 for the isomorphic lattice gas model in a volume 𝑉 of a
fluid. Further, we use conventional dimensionless units for the temperature 𝑇 → 𝑇/𝜀 and the density
𝜌 → 𝜌𝜎3, where 𝜀 is the characteristic energy scale of the interaction, e.g., the minimum of the potential,
and 𝜎 is the hard-core diameter of a particle. In such a picture for real fluids, the Zeno-element (2.1) can
be easily constructed (see figure 1). The fluid binodal rescaled with the Zeno-element parameters 𝑇∗, 𝜌∗
instead of common critical parameters 𝑇𝑐, 𝜌𝑐 explicitly displays regularities (see figure 2). In the global
isomorphism approach, 𝑇∗ can be determined as the Boyle temperature in the vdW approximation:

𝐵
(vdW)
2 (𝑇∗) = 0 , 𝑇∗ = 𝑇

(vdW)
𝐵

=
𝑎

𝑏
, (2.6)

with

𝑎 = −2π
+∞∫
𝜎

Φattr(𝑟) 𝑟2 d𝑟 . (2.7)
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Figure 1. (Colour online) Tangent construction of the Zeno-element (2.1) using NIST binodal data [24]
for some molecular fluids in table 1.
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Figure 2. (Colour online) NIST binodal data [24] for molecular fluids listed in table 1 (a) reduced to𝑇∗, 𝜌∗
and (b) symmetrized with respect to diameter. Critical points (CP) are marked with red.

Here, Φattr(𝑟) is the attractive part of the interaction potential Φ(𝑟), 𝜎 is particle diameter so that
𝑏 = 2π

3 𝜎3. The reason for using (2.5) and (2.6) instead of standard virial ones (1.5) as the parameters
of the transformation (2.3) comes from the very idea of the fluid-lattice gas global isomorphism. By the
definition, 𝑇∗ includes the attractive part of the potential only in coherence with the structure of the lattice
gas Hamiltonian (2.2).

Obviously, the following relations:

𝑧 =
𝜌∗ 𝑇𝑐

2 𝜌𝑐 𝑇∗
=

𝑇𝑐

𝑇∗ − 𝑇𝑐
=

𝜌∗
2 𝜌𝑐

− 1, (2.8)

are direct inferences of (2.3) and therefore the following relation is fulfilled:

2
𝜌𝑐

𝜌∗
+ 𝑇𝑐

𝑇∗
= 1. (2.9)

Note that (2.9) does not depend on 𝑧 and this directly can be tested using the available thermodynamic
data to confirm the validity of (2.3) and tangent construction for finding density parameter 𝜌∗. The results
are presented in table 1 and demonstrate that (2.9) takes place with good accuracy.

Additional argument in favour of (2.6) comes from the comparison of 𝑇∗ in (2.4) with the Flory
𝜃-point in a dilute polymer solution where the binodal itself degenerates into triangle in 𝑇 − 𝜙 plane with
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Table 1. Checking the relations (2.8) and (2.9) for molecular fluids using NIST data [24].

Fluid 𝑧𝑇 =
𝑇𝑐

𝑇∗−𝑇𝑐 𝑧𝜌 =
𝜌∗

2𝜌𝑐 − 1 𝑧 =
𝜌∗

2𝜌𝑐
𝑇𝑐
𝑇∗

2 𝜌𝑐
𝜌∗

+ 𝑇𝑐
𝑇∗

= 1 𝑇∗/𝑇𝑐 𝜌∗/𝜌𝑐
CO2 1.23 1.08 1.15 1.03 1.81 4.15

C12H26 1.04 1.14 1.09 0.98 1.96 4.28
C10H22 1.03 1.06 1.04 0.99 1.97 4.12

SF6 1.12 0.97 1.04 1.04 1.9 3.94
NH3 0.95 1.06 1. 0.97 2.05 4.11

PhCH3 1.03 0.97 1. 1.02 1.97 3.94
N2O 1.03 0.95 0.99 1.02 1.97 3.9

C6H14 0.99 0.98 0.98 1. 2.01 3.96
SO2 0.96 0.99 0.98 0.99 2.04 3.98

C6H12 0.99 0.93 0.96 1.01 2.01 3.87
C5H12 0.95 0.93 0.94 1.01 2.05 3.86
C6H6 0.91 0.89 0.9 1. 2.1 3.79
Ne 1. 0.79 0.9 1.06 2. 3.59

CCl2F2 0.89 0.89 0.89 1. 2.13 3.77
CO 0.92 0.85 0.89 1.02 2.09 3.71
H2S 0.9 0.87 0.89 1.01 2.12 3.75
Kr 0.9 0.82 0.87 1.02 2.11 3.65
Xe 0.9 0.83 0.86 1.02 2.12 3.65

C4H10-iso 0.84 0.88 0.86 0.99 2.19 3.76
Ar 0.91 0.8 0.86 1.03 2.1 3.6

C4H10 0.83 0.88 0.85 0.98 2.21 3.76
CFCl3 0.8 0.89 0.84 0.98 2.24 3.77
COS 0.86 0.82 0.84 1.01 2.17 3.63
NF3 0.78 0.9 0.83 0.97 2.28 3.8

CClF3 0.8 0.85 0.82 0.98 2.25 3.7
N2 0.84 0.8 0.82 1.01 2.18 3.59
F2 0.86 0.74 0.8 1.04 2.16 3.47

CH4 0.81 0.76 0.79 1.02 2.23 3.53
C2H6 0.73 0.8 0.76 0.98 2.36 3.6
CF4 0.72 0.78 0.75 0.98 2.39 3.57
O2 0.7 0.75 0.72 0.98 2.42 3.5

para-H2 0.46 0.41 0.44 1.02 3.19 2.83
H2 0.44 0.41 0.43 1.01 3.26 2.83
He 0.09 0.09 0.09 1. 12.23 2.17

𝜙 being the polymer volume fraction [25]. It is clear that 𝑇𝑐 → 𝑇∗ as 𝑧 → ∞. Therefore, an analogy
appears between (2.4) and the Flory-Huggins theory result for the critical temperature and 𝜃-point of
polymer solutions [25]:

𝑇𝑐 =
𝜃(

1 + 1√
𝑁

)2 , 𝜙𝑐 =
1

1 +
√
𝑁
, (2.10)

where 𝑁 is the degree of polymerization. Indeed, comparison (2.4) and (2.10) within such an approxi-
mation leads to a correspondence:

𝑇∗/𝜃 = 1 +𝑂

(
𝑁−1/2

)
, 𝑧 ∝

√
𝑁/2 , (2.11)

and obviously we have:
𝜃∗ = lim

𝑁→∞
𝑇∗. (2.12)
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Figure 3. (Colour online) (a) Coexistence curves of [27] (b) mapped onto 3D Ising model binodal (c)
coexistence curves (a) scaled in coordinates 𝑇/𝑇∗, 𝜙/𝜙∗ and (d) absolute deviations of the mapped 3D
Ising binodal from the experimental data.

We consider this result as a pretty natural one within our approach, since 𝜃-temperature is defined in a
way similar to 𝑇∗ (see, e.g., [26]). Here, we use (2.3) to directly demonstrate how the data of [27] for
binodals of polymer solutions can be represented within the concept of the triangle of liquid-gas states
used for molecular liquids above. At first, we symmetrize the binodals with respect to diameters (see
figure 3c) and map them onto the 3D Ising model (simple cubic lattice data of [28] were used) binodal,
thus finding 𝑧𝑁 parameter of the projective transformation for each degree of polymerization 𝑁 . Note that
this symmetrization is exact and does not use any fitting parameters. Finally, the symmetrized binodals
are mapped back into the original coordinates (see figure 3b) scaled with the corresponding values 𝑇∗
and 𝜌∗ ↔ 𝜙∗ as the analogue of 𝜌∗:

𝑇∗ = 𝑇𝑐 (𝑁)
1 + 𝑧𝑁

𝑧𝑁
, 𝜙∗ = 2 𝜙𝑐 (1 + 𝑧𝑁 ), (2.13)

for each 𝑁 . The results of data fitting are in table 2. Such a procedure differs from nonlinear redefinition
of the order parameter:

𝜓 =
𝜙

𝜙 + 𝑅𝑐 (1 − 𝜙) , (2.14)

used in [29], where 𝑅𝑐 is the adjusted parameter of symmetrization. Moreover, in our approach, the data
fit the universal curve (see figures 3 c, d) with clear physical meaning in lieu of a pure empirical fitting
curve in terms of parameter 𝜓 (2.14) [27]. Flory 𝜃-temperature was determined using relation (2.9).

23603-6



Liquid-gas state regularities viewed from the Ising model perspective

Table 2. Values of 𝑧𝑁 according to data fitting with the use of (2.13).

𝑁 269 486 950 1430 2270 5960
𝑧𝑁 7.12 11.93 15.62 22.62 27.95 47.71
𝜙∗ 2.53 3.23 3.26 3.97 4.28 4.87

𝜃, ◦C 66.1

Table 3. Diameter slope for different fluids (data from NIST database).

Fluid He para-H2 H2 D2 CH3OH Ne F2 Ar
Slope 0.10 0.39 0.40 0.50 0.57 0.67 0.70 0.74
Fluid: CH4 O2 N2 Kr Xe CO CO2 H2O
Slope: 0.74 0.76 0.77 0.78 0.79 0.82 0.95 0.96

2.1. Quantum corrections

From a physical point of view, the quantum delocalization due to particle-wave duality being taken
into account should lead to a more symmetric liquid-gas binodal because this effect tends to reduce the
difference between “particles” and “holes”. Experimental data for real fluids demonstrate this clearly (see
table 3) with helium as a canonical example of a quantum fluid for which the diameter slope is almost an
order of magnitude less than the one for other fluids. In this section we quantitatively demonstrate in the
first order on the delocalization parameter:

𝜘 = (𝜆(𝑇∗)/𝜎)3 ≪ 1 , 𝜆(𝑇) = ℎ
√

2π𝑚𝑇
.

Our main result is that such a delocalization increases the ratio 𝑆∗ = 𝑇∗/𝜌∗ which is the skewness of
the liquid-gas triangle. This makes the binodal more symmetric. To demonstrate this, we assume Bose-
Einstein statistics, which is obviously the case here. Thus, expanding 𝑇∗, 𝜌∗ in quantum parameter 𝜘, we
can write:

𝑇∗/𝑇 (0)
∗ = 1 + 𝑇𝑞 𝜘 + 𝑜(𝜘) , 𝜌∗/𝜌 (0)

∗ = 1 + 𝜌𝑞 𝜘 + 𝑜(𝜘) , (2.15)

with 𝑇𝑞 and 𝜌𝑞 as expansion coefficients on the quantum delocalization parameter 𝜘 (subscript “q” stands
for “quantum”). Here, 𝑇 (0)

∗ is the classical Zeno temperature and 𝜌
(0)
∗ is the classical Zeno density, which

are defined by the equations (2.6) and (2.5), respectively. The change of 𝑇∗ is due to quantum correlations
for an ideal Bose gas which lead to an effective attraction [30]. The change of the density parameter 𝜌∗
is determined by the corresponding shift of 𝑇∗ in (2.5). Thus,

𝑆∗/𝑆 (0)
∗ = 1 + 𝑠𝑞 𝜘 + 𝑜(𝜘),
𝑠𝑞 =𝑇𝑞 − 𝜌𝑞 . (2.16)

In case of the Lennard-Jones potential,

ΦLJ(𝑟) = 4 𝜀
((𝜎

𝑟

)12
−
(𝜎
𝑟

)6)
, (2.17)

the calculation gives:
𝑆∗/𝑆 (0)

∗ = 1 + 1.03 𝜘 . (2.18)

This indicates the tendency to symmetrization of the binodal caused by quantum delocalization.
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Figure 4. (Colour online) Binodal data for (a) argon and (b) xenon processed by mapping (2.19) with (2.3)
(dashed line).

Table 4. Critical temperatures for monolayers modelled as 2D LJ fluid.

Ar Kr Xe

3D: 𝑇 (exp)
𝑐 , K , [24] 150.8 209.48 289.7

2D: 𝑇 (exp)
𝑐 , K , [37] 59 86 117

2D: 𝑇 (GI)
𝑐 , K 57 79 109

2.2. Application to 2D fluid case

Two-dimensional fluid systems are crucial for testing the global isomorphism (GI) predictions in view
of numerous exact results for lattice systems [4]. Surprisingly, the binodal of liquid-gas equilibrium in a
2D fluid system with the corresponding critical exponent of the Ising model is hard to obtain analytically
within the general integral equation approach of liquid state theory [31, 32].

The Onsager solution of 2D Ising model [3] with the binodal equation:

𝑡 (𝑥)/𝑡𝑐 =
arcsinh(1)

arcsinh
(
(1 − (2𝑥 − 1)8)−1/4) , 𝑡𝑐 =

2
arcsinh(1) (2.19)

can be used to obtain information for planar fluid systems, both the model and the real ones. The latter
can be obtained as the adsorbed molecular monolayers of different fluids on graphite substrate [33, 34].
Now, we demonstrate how one can establish the relation between critical parameters of 3D fluid and its
2D monolayer using global isomorphism relations on the basis of the previous results [35]. We use MC
simulation data on Ar and Xe films on graphite substrate [36] where the Lennard-Jones potential (2.17)
was used with the following parameters:

𝑢
(Ar)
0 = 120 K , 𝜎Ar = 3.4 Å , 𝑢

(Xe)
0 = 221 K , 𝜎Xe = 4.1 Å .

For the LJ potential in 2D according to [35], the theoretical values for parameters of (2.3) and the critical
point are:

𝑧2D = 1/3 , 𝑇∗/𝜀 = 2 , 𝜌∗ ≈ 0.94 , 𝑇𝑐 = 0.5 , 𝜌𝑐 ≈ 0.353 . (2.20)
We substitute (2.19) into (2.3) with 𝑇∗ fixed but treating 𝑧 and 𝜌∗ as fitting parameters. Thus, the
parametric representation for the binodal of LJ fluid is obtained and compared with the known numerical
simulation results (see figure 4). Now, it is easy to relate the bulk-monolayer fluid critical temperature for
Lennard-Jones fluid with the value for the bulk phase: 𝑇2𝑐 = 3/8𝑇3𝑐. This gives a rather good agreement
with the simulation data (see table 4) though the values are lower by ∼ 5÷8% [37]. This can be attributed
to the difference between real and model interaction potentials [38].
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Figure 5. (Colour online) Data of [39, 40] and theoretical curve (2.22).

Another important property of liquid-gas equilibrium, for which our approach may be applied, is the
surface tension. Based on the relation between thermodynamic potentials of the LJ fluid and the lattice
gas [21], the following correspondence between the surface tensions of the LJ fluid and the lattice model
takes place:

𝛾LJ(𝑇) = 𝛾latt(𝑡 (𝑇)) , 𝑡 (𝑇) = 𝑡𝑐

𝑧

𝑇

𝑇∗ − 𝑇
, (2.21)

provided that geometrical sizes of the corresponding systems are the same.
In the following analysis we use the dimensionless units for the surface tension: 𝑠latt = 𝛾latt 𝑙/𝐽, where

𝐽 is the interaction constant of the Ising model and 𝑙 is the lattice spacing. The surface tension of the LJ
fluid is measured in the corresponding units: 𝑠LJ = 𝛾LJ𝜎/𝜀, where 𝜀 and 𝜎 are the parameters of the LJ
potential (2.17).

In the context of the global isomorphism, equation (2.21) allows one to get the information about
the surface tension of the LJ fluid on the basis of the corresponding lattice model. In particular, for the
surface tension of the 2D LJ fluid using the Onsager’s solution [3], we have:

𝑠
(2D)
LJ (𝑇) = 1

4

(
2 + 𝑡 (𝑇) ln

(
tanh

1
𝑡 (𝑇)

))
. (2.22)

The factor 1/4 appears due to the redefinition of the interaction constant in the lattice gas with respect
to the Ising model [4]. From (2.22) and (2.20), we get the following critical asymptotic for the surface
tension:

𝑠
(2D)
LJ = 𝑠

(0)
LJ |𝜏 | + 𝑜(𝜏) , 𝜏 = 1 − 𝑇/𝑇𝑐, (2.23)

and its critical amplitude is 𝑠 (0)LJ = 4/3. We check the validity of our approach by applying equation (2.22)
to the results of molecular simulations [39] using 𝑇∗ and 𝑧 as the fitting parameters. The result is shown in
figure 5. We see that the simulation data agree quite well with the predictions of the global isomorphism
approach. In addition, the value of the critical amplitude in the 2D case, 𝑠 (0)LJ ≈ 1.318 which follows from
the simulations [39], is also in good agreement with the theoretical value, 𝑠 (0)LJ = 4/3. We can conclude
that the application of the global isomorphism to the surface tension of the 2D LJ fluid gives much better
results than the other theoretical approaches used to analyze the results of the simulations [39], since
they fail to reproduce both the binodal and the surface tension data.

3. Microscopic nature of global isomorphism

Here, we outline the possibility of reducing the consideration of continuum fluid to the “lattice”
model, leaving the details for further studies.
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Let us consider the starting point of statistical theory — the partition function:

ΞFluid =
∑︁
𝑁

e𝛽 𝜇 𝑁

𝑁!

∫
e
−𝛽

𝑁∑
𝑖< 𝑗

Φ(𝑟𝑖 𝑗 ) ∏
𝑖, 𝑗

dr𝑖 𝑗 . (3.1)

The coordinate variables here are the dummy ones and particle configuration is completely encoded into
the values Φ𝑖 𝑗 of the potential. Therefore, we can consider the fixed lattice structure with the distribution
of interaction constants induced by the disorder in particle coordinates. This way one can represent the
grand partition function of a fluid in terms of the lattice model with additional averaging on the “site-site”
interaction constants. Indeed, (3.1) can be written as:

Ξ(𝑇, 𝜇,𝑉) = Ξ0(𝑇, 𝜇,𝑉) Ξint , (3.2)

where

Ξ0(𝑇, 𝜇,𝑉) =
∑︁
𝑁

𝑉𝑁 e𝛽𝜇𝑁

𝑁!
, Ξint =

∫
e
𝛽

∑
⟨ 𝑖, 𝑗 ⟩

J𝑖 𝑗

𝑝𝑁 ( {J}) dJ .

The probability distribution for interaction values is:

𝑝𝑁 ( {J} ) =
∫ ∏

𝑖, 𝑗

𝛿
(
Φ(𝑟𝑖 𝑗 ) + J𝑖 𝑗

)
dΓ𝑁 , dΓ𝑁 =

1
𝑉𝑁

𝑁∏
𝑖

dr𝑖 . (3.3)

Note that this does not depend on the temperature though the dependence on the volume is present. It
seems natural that in view of thermodynamic limit 𝑁 ≫ 1, 𝑁/𝑉 = 𝑛 it is reduced to the dependence on
the particle density only. Certainly, the exact determination of distribution 𝑝𝑛 in general is not possible,
although in one dimensional case this should not be a problem. Now, we can go a little bit further and
split the distribution of absolute values of J𝑖 𝑗 from their signs by introducing the discrete variables:

J𝑖 𝑗 = 𝐽𝑖 𝑗 𝜏𝑖, 𝑗 , 𝜏𝑖, 𝑗 = sign J𝑖, 𝑗 = ±1 ,

�����∑︁
𝑗

𝜏𝑖, 𝑗

����� ⩽ 𝑁 − 1.

This very idea appeared to be very useful in the theory of bind-random Ising model and spin glasses,
though the analytical situation therein is easier because bond interactions 𝐽𝑖 𝑗 are considered as indepen-
dent variables [41, 42]. Now, we may integrate over 𝐽-configuration:

G𝑁 [{𝜏}; 𝛽, 𝑛] =
∫

e
𝛽

∑
⟨ 𝑖, 𝑗 ⟩

𝐽𝑖 𝑗 𝜏𝑖, 𝑗

𝑝𝑁 ( {J}) d 𝐽 =

〈
e
𝛽

∑
⟨ 𝑖, 𝑗 ⟩

𝐽𝑖 𝑗 𝜏𝑖, 𝑗
〉
𝐽

, (3.4)

considering (3.4) as the characteristic functional of 𝜏-distribution, so the 𝜏-Hamiltonian is given by the
cumulant expansion of the characteristic function G𝑁 :

H𝑁 [{𝜏}] = − 1
𝛽

logG𝑁 [{𝜏}; 𝛽, 𝑛] . (3.5)

Here, 𝛽 is the temperature parameter redefined in accordance with the corresponding redefinition of the
fluid chemical potential 𝜇. The latter plays the role of the external “magnetic” 𝜏-field. Certainly, such a
formal consideration cannot be considered as a proof for (2.3), but it demonstrates the very possibility to
state the exact isomorphism between continuous fluid and discrete lattice gas or some pseudo-spin model.
The linearity of the density diameter, as we have seen above, plays an important role here, simplifying the
resulting transformation. Thus, the relations between thermodynamic potentials of a fluid and isomorphic
lattice system suggested in [21] can possibly be derived this way.
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4. Conclusion

The results presented show that the law of rectilinear diameter augmented with the global isomorphism
approach can be effectively used to describe the liquid-gas equilibrium in fluids on the basis of information
for the lattice gas. Additionally, we note that the Nishimory line in spin glass systems [41] is very similar
to the Zeno-line. Along both lines, we have some kind of the “ideal-gas” behaviour, which means that the
calculation of the partition function becomes miraculously trivial. In essence, the global isomorphism
approach states that the concept of the symmetrical order parameter widely used in the vicinity of
the critical point can be extended to the whole region of liquid-gas equilibrium. The existence of
such a canonical “magnetization” order parameter seems trivial if the binodal diameter is analytic in
temperature. Note that the absence of particle-hole symmetry does not necessarily mean the non-analytic
behaviour [43] but rather means that density fluctuations are orthogonal to entropy ones [44]. In general,
the order parameter is the composite field of density and entropy fluctuations, so the effective Hamiltonian
is a functional of these two fields. In comparison with density fluctuations, the ones of entropy are short-
ranged and weaker. Therefore, integration over them effectively leads to the asymmetry of the density
field Hamiltonian, which is commonly represented by 𝜑4 field theory model. However, as was shown
in [45] (see also [46, 47]) the inclusion of asymmetrical terms like 𝜑5 is also needed, which obviously
requires the consideration of asymmetry within 𝜑6 Hamiltonian. The latter appears naturally also in
I. R. Yukhnovskii’s collective variable approach (see, e.g., [48]). In this sense, our consideration of the
asymmetry of polymer solution equilibrium, with parameter 𝑧 related to the polymerization degree, gives
a unified view, bearing in mind that for molecular fluids 𝑧 depend on their association degree [49]. Indeed,
the effective field theory for the tricriticality in the Flory 𝜃-point is described by 𝜑6 Hamiltonian [50].
Thus, we hope that the global isomorphism approach provides a unified scheme for the consideration of
fluid asymmetry. We are going to explore these topics in future works.
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Регулярностi рiдинно-газового стану як прояв глобального
iзоморфiзму з моделлю Iзiнга

Л. А. Булавiн1, В. Л. Кулiнський2,3, А. М. Катц2, А. М. Маслечко2
1 Київський нацiональний унiверситет iменi Тараса Шевченка, просп. академiка Глушкова,
03022 Київ, Україна

2 Одеський нацiональний унiверситет iменi I. I. Мечникова, вул. В. Змiєнка 2, 65026 Одеса, Україна
3 Одеський нацiональний технологiчний унiверситет, вул. Канатна 112, 65039 Одеса, Україна

Рiвновага рiдина-газ розглядається в рамках глобального iзоморфiзму за допомогою моделi Iзiнга (ґра-
тчастий газ). Такий iзоморфiзм можна розглядати з огляду на iснування параметра порядку, за яким си-
метрiя бiнодалi вiдновлюється не тiльки в околi критичної точки (критичний iзоморфiзм), але й глобаль-
но у всiй областi спiвiснування. Ми показуємо, як емпiричний закон прямолiнiйного дiаметра густини
рiдинно-газової бiнодалi дозволяє вивести досить просту форму перетворення iзоморфiзму мiж рiдиною
та моделлю граткового газу типу Iзiнга. Спiввiдношення для критичних параметрiв, якi випливають iз та-
кого iзоморфiзму, перевiряються на рiзноманiтних рiдинних системах як реальних, так i модельних. Також
ми розглядаємо фазову рiвновагу в розчинах полiмерiв i 𝜃-точку Флорi як крайнiй стан такої рiвноваги в
рамках нашого пiдходу. Найважливiшим є тестування у випадку 2D з використанням точного розв’язку
Онзагера моделi Iзiнга, i ми представляємо результати нашого пiдходу до розрахунку параметрiв крити-
чної точки моношарiв для благородних газiв i поверхневого натягу двовимiрного флюїду.

Ключовi слова: глобальний iзоморфiзм, рiвновага рiдина-пара, прямолiнiйний дiаметр, Зено-лiнiя,
модель Iзiнга
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