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For the systemwith inhomogeneous distribution of macroscopic parameters we obtain thermodynamic relation
which depends on the spatial point (coordinate). In our approach, to obtain such a relationwe use the basic ideas
of the method of nonequilibrium statistical operator combined with the Hubbard–Stratonovich transformation.
First of all, we define the thermodynamic relation for the system with homogeneous distribution of particles.
Possible behavior peculiarities of systems with different character of interaction in nonequilibrium case are
predicted. By saddle-point method we find the dominant contributions to the partition function and obtain all
thermodynamic parameters of the systems with different character of interaction. The formations of saddle
state in all systems of interacting particles at different temperatures and particle distributions have the same
physical nature and therefore they can be described in the same way. We consider the systems with attractive
and repulsive interactions as well as self-gravitating systems.

Key words: local equilibrium partition function, equation of state, self-gravitating system, long-range
interaction

1. Introduction

This article is dedicated to the 100th anniversary of the birth of the outstanding Ukrainian theoretical
physicist, teacher, public and state figure Ihor Yukhnovskii. He made a significant contribution to the
development of statistical theory and thermodynamics of condensed matter systems, using and developing
various methods of theoretical study of such systems — the method of collective variables, the method
of displacement of collective variables, the method of renormalization group, the method of cluster
expansions, etc. (see, for example, [1–4]). One of such methods is the method of nonequilibrium statistical
operator, proposed by D. Zubarev [5]. Using the combination of this method with the kinetic approach,
I. Yukhnovskii proposed a consistent description of nonlinear hydrodynamic fluctuations in many-particle
systems [6]. The basic principles of the method of the nonequilibrium statistical operator is used in our
article in order to describe quasi-equilibrium inhomogeneous steady states.

Statistical description of interacting particles has attracted a permanent attention. The study of
interacting particle systems promotes the development of fundamental ideas of statistical mechanics
and thermodynamics and enables their testing. A few model systems of interacting particles are known,
as far as the partition function can be exactly evaluated, at least, in the thermodynamic limit. Particle
systems with long-range interaction sometimes cannot be described in terms of a usual thermodynamic
ensemble [7, 8]. It means that such systems cannot be treated by standard methods of equilibrium statistical
mechanics. In particular, inasmuch as energy is non-additive, the canonical ensemble is inapplicable of
studying the systems with long-range interactions. The equilibrium states are only local thermodynamic
potential maximum [5]. The system is stable but thermodynamic limit does not exist [9]. In order to
determine the equilibrium states of the systems and to describe the probable phase transitions, the two
approaches, statistical and thermodynamic, have been developed. It is generally believed that for such
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systems the mean-field theory is exact. In this approach any thermodynamic function depends on the
parameters only in terms of dimensionless combinations.

The systems with long-range interactions, e.g., self-gravitating systems or systems with Coulomb
repulsive interaction, do not relax towards usual Boltzmann–Gibbs thermodynamic equilibrium. They
get trapped in quasi-stationary states whose lifetimes diverge as the number of particles increases. A
quantitative description of the instability threshold of spontaneous symmetry breaking for 𝑑-dimensional
systems is given in reference [10]. The homogeneous particle distribution in interacting systems can
be unstable (for example, in the case of systems with long-range attraction potentials) and spatial
inhomogeneity can appear from the beginning. The description of interacting systems within various
equilibrium ensembles should be done in different ways, especially if the quasi-stationary state of
the system is far from equilibrium and the time of relaxation towards equilibrium state is very long.
Nonequilibrium stationary states were described in reference [11]. It was shown that three-dimensional
systems is trapped in quasi-stationary states rather than evolve towards thermodynamic equilibrium.

Thus, a dilemma arises, either to employ the postulates of equilibrium statistical mechanics and
obtain only instability criteria, or to use different approaches which permit the space distributions to be
inhomogeneous. The particle density, temperature and chemical potential in the case of macroscopically
inhomogeneous systems can be described in terms of the nonequilibrium statistical operator approach [5]
that takes into account the probability of local changes of the thermodynamic parameters. Such an
approach does not seem to be consistent inasmuch as the state equation should follow from the par-
tition function which is unknown [12, 13]. The system is nonequilibrium a priori and inhomogeneity
of the distribution of particles can induce distributions of temperature, chemical potential and other
thermodynamic parameters. Using the nonequilibrium statistical operator approach together with the
Hubbard–Stratonovich transformation [14, 15] makes it possible to describe such systems.

The formation of a spatially inhomogeneous distribution of interacting particles is a typical problem in
condensed matter physics. It requires a non-conventional statistical description of a system of interacting
particles to be tailored in a way to allow for an arbitrary spatially inhomogeneous distribution of particles.
The statistical description should employ a procedure of calculation of the dominant contributions to
the partition function and to avoid the local thermodynamic potential divergences for an infinite system
volume. A non-conventional method for the treatment of the problem was proposed in references [16–19].
It employs the Hubbard–Stratonovich representation of the partition function [14, 15], that is extended
and applied to the interacting particles systems to find the solution for the distribution of particles without
necessity to use the spatial box restrictions. It is important that this solution has no divergences in the
thermodynamic limits. For this purpose, one can use the saddle-point approximation with regard to the
conservation of the number of particles in the limited space. The partition functions for both cases of
homogeneous and inhomogeneous distributions of particles were obtained in [17, 18]. This approach,
however, provides only the condition for the formation of probable inhomogeneous distributions in a
system of interacting particles.

In this article we develop a new approach to considering the systems of interacting particles in
local equilibrium states based on the method of the nonequilibrium statistical operator proposed by
Zubarev [5] combined with the Hubbard–Stratonovich transformation [14, 15]. The particular interest
of our approach may consist in the possibility to obtain the necessary relations which are correct for
the case of homogeneous particle distribution (which is shown in the present article) as well as for
the case of inhomogeneous particle distribution. What is important is that our approach permits to
obtain thermodynamic functions when temperature and chemical potential depend on the spacial point
(coordinate), while traditional thermodynamics does not assume spatial dependence of thermodynamic
relations. The method of the Zubarev statistical operator itself has been widely used for the description
of physical systems. As one of examples, it was used to describe the generalized hydrodynamic state of
a magnetic fluid in an external magnetic field [20].

The equation of state and all necessary thermodynamic characteristics are governed by the equations
which contribute mainly to the partition function. Therefore, there is no need to introduce an additional
hypothesis about the density-dependence of the temperature. The last dependence follows from the solu-
tion of the relevant thermodynamic relations that yield the extreme values of the nonequilibrium partition
function. Such an approach was proposed earlier to describe a spatially inhomogeneous distribution in
self-gravitating systems where the only attractive interaction is considered [18, 21–23]. The long-term
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stellar dynamical evolution of self-gravitating systems on the time scales, that are much longer than the
two-body relaxation time, was also studied [24]. However, in our present article we describe the system
with simultaneous attractive and repulsive interaction in the framework of our proposed approach. We
also derive the general local thermodynamic relations for the macroscopic parameters of the system and
determine the conditions for realization of spatially inhomogeneous states on the thermodynamic limit.
The relations which we get in the framework of the local equilibrium partition function approach can be
used for obtaining the local equations of state. In general, the physical applications of local equilibrium
partition function are well described in references [5, 25, 26]. For the equilibrium conditions, the well-
known result [27, 28] for the partition function is reproduced. We provide a detailed description of an
interacting system (in general case with the different type of interaction between particles) based on the
principles of nonequilibrium statistical mechanics and obtain the probable distributions of particles for
a fixed number of particles and energy of the systems. As a few examples of the systems with inhomo-
geneous distribution of particle, which can be described in the approach of local equilibrium partition
function, we could mention the solid solutions, Martensitic alloys with the formation of corresponding
structures [29], first order phase transitions with the formation of origins of a new phase [30].

The paper is organized as follows. The general ideas of the proposed approach, based on the results
of the local equilibrium partition function and the Hubbard–Stratonovich transformation, are presented
in section 2. In section 3, we derive thermodynamic relations for spatially inhomogeneous systems. The
application of the above approach to the description of long-range interacting systems (including the case
of a self-gravitating system) is presented in section 4. The obtained results are briefly described in the
Conclusions. The specific mathematical transformations are presented in the Appendix.

2. Statistical description of nonequilibrium system of interacting parti-
cles

Statistical mechanics of nonequilibrium systems is based on the conservation laws not for the average
values of dynamic variables but particularly for the dynamic variables. To determine the thermodynamic
function of nonequilibrium systems, we should use the presentation of corresponding statistical ensembles
which take into account the nonequilibrium states of the systems. In such a case, one can determine the
nonequilibrium ensemble as the totality of a system that contains the same stationary external action.
This system has the same character of contact with thermostat and possesses all possible values of
macroscopic parameters. In the system, which is in the same stationary external condition, the local
equilibrium stationary distribution will be formed. If the external condition depends on time, then the local
equilibrium distribution is not stationary. The local equilibrium ensemble must accordingly determine
the distribution function or statistical operator of the system [5]. Finally, the stable states on the series of
equilibrium classical particles are only metastable because they correspond to the local maximum of the
local thermodynamic potential from which the behavior of the systems can be determined.

For the classical case, the local distribution function can be written as [5, 31]:

𝑃𝑁 (𝑥𝑁 , 𝑡) = 𝑄−1
𝑙 exp

{
−
∫

[𝛽(r)𝐻 (r) − 𝜂(r)𝑛(r)] dr
}
, (2.1)

where 𝑄𝑙 is the statistical sum of the local equilibrium distribution:

𝑄𝑙 =

∫
𝐷Γ exp

{
−
∫

[𝛽(r)𝐻 (r) − 𝜂(r)𝑛(r)] dr
}
,

where the inverse temperature 𝛽 and chemical potential 𝜂 depend on the spatial point and 𝐻 (r) is the
energy density. The integration in the present formula (2.1) must be performed over all phase space of
the system. We should note that in the case of the local equilibrium distribution, Lagrange multipliers
𝛽(r) and 𝜂(r) are the functions of the spatial point r. The microscopic density of particles can be written
in the standard form:

𝑛(r) =
∑︁
𝑖

𝛿(r − ri). (2.2)
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It is possible to introduce the local equilibrium distribution if the relaxation time in all systems is
larger than the relaxation time of the local macroscopical area which is a part of this system. The
conservation number of particles and energy in the systems can be presented in the form of usual
relations:

∫
𝑛(r) dr = 𝑁 and

∫
𝐻 (r) dr = 𝐸 . When the local equilibrium partition function is determined,

one can obtain all thermodynamic parameters of the nonequilibrium systems. Phenomenological ther-
modynamics is based on the conservation laws for the average values of physical values, such as the
number of particles, energy and momentum. To this end, one can determine the thermodynamic relation
for inhomogeneous systems. After variation of the statistical sum by Lagrange multipliers, we can write
the necessary thermodynamic relations in the form [5]:

−𝛿 ln𝑄𝑙

𝛿𝛽(r) = ⟨𝐻 (r)⟩𝑙 ,
𝛿 ln𝑄𝑙

𝛿𝜂(r) = ⟨𝑛(r)⟩𝑙 . (2.3)

The relations in (2.3) are a general extension of the well-known relation for the equilibrium systems to
the case of inhomogeneous systems.

For further studies, it is natural to determine the quantity

𝐻 (r) =
∑︁
𝑖

[ p2
𝑖

2𝑚
− 1

2

∑︁
𝑗

𝑊 (r𝑖 , r 𝑗 ) +
1
2

∑︁
𝑗

𝑈 (r𝑖 , r 𝑗 )
]
𝛿(r − r𝑖), (2.4)

as a dynamic variable of the energy density. Then, obviously, the Hamiltonian of the system 𝐻 will be as
follows:

𝐻 =

∫
𝐻 (r) dr, (2.5)

with attractive 𝑊 (ri, rj) and repulsive 𝑈 (ri, rj) parts of the interaction energy, correspondingly (see also
Appendix).

Using the Hubbard–Stratonovich transformation, now we rewrite the statistical sum of the local
equilibrium distribution in terms of the additional fields as

𝑄𝑙 =

∫
𝐷𝜑𝐷𝜓 d𝜉 exp [−𝑆(𝜑(r), 𝜓(r), 𝜉 (r), 𝛽(r))] , (2.6)

where the effective local thermodynamic potential can be written in the following form:

𝑆 =
1
2

∬
𝑈 (r, r′)−1𝜑(r)𝜑(r′) dr dr′ − 1

2

∬
𝑊 (r, r′)−1𝜓(r)𝜓(r′) dr dr′

−
∫ {

𝜉 (r)
[

2π𝑚
ℏ3𝛽(r)

]3/2
exp

(√︁
𝛽(r)𝜓(r)

)
cos

[√︁
𝛽(r)𝜑(r)

] }
dr. (2.7)

The mathematical manipulations which were done to derive the expression (2.6) are presented in Ap-
pendix. The functional 𝑆 ≡ 𝑆(𝜑(r), 𝜓(r), 𝜉 (r), 𝛽(r)) depends on the distribution of the field variables
𝜑(r) and 𝜓(r) which describe the repulsive and attractive interaction, the chemical activity 𝜉 (r) and
inverse temperature 𝛽(r). To find the asymptotic value of the statistical sum 𝑄𝑙 for an increasing number
of particles 𝑁 → ∞ we use the saddle-point method. It was shown that the solution in saddle-point can be
viewed as the mean field approximation [16, 17]. Representation of the partition function in terms of the
functional integral over the auxiliary fields corresponds to the construction of an equilibrium sequence of
the probable states with regard to their weights. In such a case, the methods of quantum field theory can
be employed. The extension to a complex plane provides a possibility to apply the saddle-point method
and to select the system states whose contributions in the partition function are dominant [17].

The dominant contribution is given by the states which satisfy the extreme condition for the functional.
It is easy to see that the saddle-point equation presents the thermodynamic relation, and it can be written
in the form of equation for the field variables:

𝛿𝑆

𝛿𝜑(r) = 0,
𝛿𝑆

𝛿𝜓(r) = 0, (2.8)
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for the normalization condition:

𝛿𝑆

𝛿𝜂(r) = −
∫
𝑉

𝛿𝑆

𝛿𝜉 (r) 𝜉 (r) dr = 𝑁, (2.9)

and for the conservation of the energy of the system:

−
∫

𝛿𝑆

𝛿𝛽(r) dr = 𝐸. (2.10)

The solution of the above equation (2.8) fully determines all macroscopic thermodynamic parameters and
describes the general behavior of the system of interacting particles. It does not matter whether the distri-
bution of particles is spatially inhomogeneous or homogeneous. The above set of equations (2.8)–(2.10)
in principle solves the many-particle problem in the thermodynamic limit. The spatially inhomogeneous
solution of these equations corresponds to the distribution of the interacting particles. Such an inhomoge-
neous behavior is associated with the nature and intensity of the interaction. In other words, accumulation
of the particles in a finite spatial region (formation of a cluster) reflects the spatial distribution of the
fields, the activity and temperature. It is a very important note, that only in this approach we can take into
account the inhomogeneous distribution of the temperature and chemical potential, which can depend on
the spatial distribution of particles in the system.

3. Thermodynamic relation

For further consideration we analyze the general form of the local thermodynamic potential (2.7).
We introduce the new field variables Φ(r) =

√︁
𝛽(r)𝜑(r), Ψ(r) =

√︁
𝛽(r)𝜓(r) and rewrite the local

thermodynamic potential in a more simple form:

𝑆 =
1
2

∬
[𝛽(r)𝑈 (r, r′)]−1Φ(r)Φ(r′) dr dr′ − 1

2

∬
[𝛽(r)𝑊 (r, r′)]−1Ψ(r)Ψ(r′) dr dr′

−
∫ [

𝜉 (r)Λ−3(r) expΨ(r) cosΦ(r)
]

dr, (3.1)

where Λ(r) =
[
ℏ2𝛽(r)/2𝑚

]1/2 is the local thermal de Broglie wavelength. From normalization condi-
tion (2.9) we can obtain the relation∫ [

𝜉 (r)Λ−3(r) expΨ(r) cosΦ(r)
]

dr = 𝑁, (3.2)

which provides the macroscopic density function 𝜌(r) given by

𝜌(r) ≡ Λ−3(r)𝜉 (r) cos
[√︁

𝛽(r)𝜑(r)
]

exp
[√︁

𝛽(r)𝜓(r)
]
. (3.3)

In the case of the system without interaction (for free particles Φ(r) = 0, Ψ(r) = 0), if we write the
chemical activity in terms of the chemical potential as 𝜉 (r) = exp[𝜇(r)𝛽(r)], we can obtain the well-
known relation: 𝛽(r)𝜇(r) = ln 𝜌(r)Λ3(r) which generalizes the relation for the equilibrium statistical
mechanics [27].

From thermodynamic relations (2.8), written in terms of the new variables Φ(r) and Ψ(r) instead of
𝜑(r) and 𝜓(r), we can obtain the equations

for the field Ψ(r):
∫
[𝛽(r)𝑊 (r, r′)]−1Ψ(r′) dr′ + 𝜌(r) = 0, (3.4)

for the field Φ(r):
∫
[𝛽(r)𝑈 (r, r′)]−1Φ(r′) dr′ + 𝜌(r) tan[Φ(r′)] = 0. (3.5)
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To define the field variables, we should multiply the first equation (3.4) by
∫
𝑊 (r, r′) dr′ and the second

equation (3.5) by
∫
𝑈 (r, r′) dr′. As a result, we get

Ψ(r) +
∫

𝛽(r)𝑊 (r, r′)𝜌(r′) dr′ = 0, (3.6)

Φ(r′) +
∫

𝛽(r)𝑈 (r, r′)𝜌(r′) tan[Φ(r′)] dr′ = 0. (3.7)

Using (3.6), (3.7) we obtain the local thermodynamic potential 𝛽𝐹 = − ln𝑄𝑙 = 𝑆 as

𝑆 = 𝛽𝐹 =
1
2

∬
𝛽(r)𝑈 (r, r′)𝜌(r) tan[Φ(r)]𝜌(r′) tan[Φ(r′)] dr dr′

− 1
2

∬
𝛽(r)𝑊 (r, r′)𝜌(r)𝜌(r′) dr dr′ −

∫
𝜌(r) dr. (3.8)

The quantity 𝑆(𝜑(r), 𝜓(r), 𝜉 (r), 𝛽(r)) fully determines the free energy on the saddle state of the field
variables. In this sense, the free energy is defined through the macroscopic parameter which is the solution
of saddle equations (2.8) and (2.9) and determines the thermodynamic stable states of the system. From
local nonequilibrium free energy we can also obtain the equation of state of the nonequilibrium system:

𝑃(r) = −𝜕𝐹

𝜕𝑉
=

1
𝛽(r) 𝜌(r) +

∫
𝑊 (r, r′)𝜌(r)𝜌(r′) dr′

−
∫
𝑈 (r, r′)𝜌(r) tan[Φ(r)]𝜌(r′) tan[Φ(r′)] dr′. (3.9)

Equation (3.9) is the local equation of state of nonequilibrium system. Without interaction in the system,
we can reproduce the well-known equation of state 𝑃 = 𝜌(r)/𝛽(r), from which it is easy to see that
the pressure can be negative if the value of tan[Φ(r)] increases. This becomes possible if the field
which describes the repulsive interaction has a specific value which is equal to Φ = π

2 − 𝛿, where
𝛿2 ∼ − 2

π

∫
𝛽𝑈 (r, r′)𝜌(r′) dr′, and it is attained by the special character of repulsive interaction. From

such determination we can conclude that the real local thermodynamic potential can be presented in the
general form:

𝛽𝐹 = −1
2

∫
[𝑃(r) + 𝜌(r)] dr = −1

2

[
𝑁 +

∫
𝑃(r) dr

]
, (3.10)

which in the general case automatically determines the real local free energy of the system of particles
𝐹 = 1

2𝑁𝑘B𝑇 +
∫
𝑘B𝑇𝑃(r) dr, where 𝑘B is the Boltzmann constant. The chemical potential can be written

as functional [32, 33]:

𝜇(r) = 𝛿𝐹

𝛿𝑁
=

1
𝑉

𝛿𝐹

𝛿𝜌(r) =
1

𝛽(r) +
∫
𝑊 (r, r′)𝜌(r′) dr′

−
∫
𝑈 (r, r′) tan[Φ(r)]𝜌(r′) tan[Φ(r′)] dr′. (3.11)

Then, we have all the necessary thermodynamic relations for a description of the behavior of nonequi-
librium system. The dynamic equation for evolution of the nonequilibrium system can be wrtten in the
general form [34]:

𝜕𝜌(r)
𝜕𝑡

= ∇𝑀 (r)∇𝜇(r), (3.12)

where 𝑀 (r) = 𝐷 (r)𝛽(r) is Einstein’s mobility which is determined through the diffusion coefficient
𝐷 (r). Such a presentation leads to the determination of the evolution of nonequilibrium system in
general case, which is impossible. Next, we deal only with the special case which makes it possible to
obtain particular results for few systems. Formally, we can introduce the critical temperature spinodal
decomposition:

𝑘B𝑇sd =

∫
𝑈 (r, r′) tan[Φ(r)]𝜌(r′) tan[Φ(r′)] dr′ −

∫
𝑊 (r, r′)𝜌(r′) dr′, (3.13)
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which is the motive evolution of the local density. If 𝑇 = 𝑇sd we have an equilibrium situation, and only
for such a system any thermodynamic parameter does not change. The motive of any evolution of the
systems is the difference of chemical potentials.

To conclude this section we consider, as a simple example, the case with constant temperature which
is realized in the most conditions related to the equilibrium state. For constant density, we can write the
free energy in a simple form:

𝐹 =
1
2
𝑉𝑢𝜌2 tan2 Φ − 1

2
𝑉𝑤𝜌2 − 1

𝛽
𝑉𝜌, (3.14)

where 𝑢 =
∫
𝑈 (R) dR, 𝑤 =

∫
𝑊 (R) dR and R = r − r′ is radius-vector of the distance between the

interacting particles. For field variables, we must solve the transcendent equation Φ + 𝛽𝑢𝜌 tanΦ = 0. As
it is easy to see, in this special case we can write the equation of state in a very simple form:

𝑃 =
1
𝛽
𝜌 + 1

2
𝜌2𝑤 − 1

2
𝜌2𝑢 tan2 Φ. (3.15)

In figure 1 for illustration we plot the equation of state (3.15). To obtain the values of attractive and
repulsive energy we take a Lennard-Jones potential:

𝑈 = 𝑢(𝑟) + 𝑤(𝑟) = 4𝜖
[(𝜎

𝑟

)12
−
(𝜎
𝑟

)6
]
. (3.16)

Then, for the value of repulsive energy we have𝑢 = 16
9 π𝜖𝜎3(2𝑅∗)−9, where 𝑅∗ = 𝑅/𝜎 is a reduced particle

radius. Correspondingly, the value of attractive energy is 𝑤 = 4π
∫∞

2𝑅 d𝑟 𝑟2𝑤(𝑟) = 16
3 π𝜖𝜎3(2𝑅∗)−3. In

such a case, it is conventional to define dimensionless pressure, density, and temperature by 𝑝∗ = 𝑝𝜎3/𝜖 ,
𝜌∗ = 𝜌𝜎3, and 𝑇∗ = 1/𝛽𝜖 = 𝑘B𝑇/𝜖 . Thus, the equation (3.15) can be rewritten as

𝑝∗ = 𝑇∗𝜌∗ + 1
2
(𝜌∗)2 16

3
π(2𝑅∗)−3 − 1

2
(𝜌∗)2 16

9
π(2𝑅∗)−9 tan2 Φ, (3.17)

and the corresponding equation for Φ is Φ + 1
𝑇∗ 𝜌

∗ 16
9 π(2𝑅∗)−9 tanΦ = 0. We further solve this transcen-

dental equation numerically to obtain the dependence of 𝑝∗ on 𝜌∗.

T*=0.95

T*=1.2

T*=1.6

0.25 0.30 0.35 0.40 0.45 0.50
ρ*

0.6

0.8

1.0

1.2

1.4

1.6

1.8

P*

Figure 1. (Colour online) Dependence of 𝑃∗ on 𝜌∗ according to the equation of state (3.15) for the reduced
temperature of 𝑇∗ = 0.95 (113.8 K), 𝑇∗ = 1.2 (143.8 K), 𝑇∗ = 1.6 (191.7 K). Real units are for argon
with 𝜎 = 3.405 Å and 𝜖/𝑘 = 119.8 K.

The behavior of the curves in figure 1 is in qualitative agreement with the corresponding results of
reference [35].
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On the other hand, we can use the packing fraction 𝜂 = 4
3
𝑁
𝑉
π𝑅3 = 1

6 π𝜌𝜎
3 since it is possible to

express the atomic radius 𝑅 of an atom in terms of its atomic size 𝜎. Then, the equation (3.15) will be
rewritten in the form:

𝑃𝛽

𝜌
= 1 + 16𝛽𝜖𝜂

(
1
3
− tan2 Φ

)
. (3.18)

The dependence of 𝑃𝛽

𝜌
on the packing fraction 𝜂 is shown in figure 2.

T=270 K

T=280 K

T=300 K

0.2 0.3 0.4 0.5 0.6
η

0.5

1.0

1.5

2.0

Pβ

ρ

Figure 2. (Colour online) Dependence of 𝑃𝛽/𝜌 on 𝜂 from the equation (3.18) for the temperature of
𝑇 = 270 K, 𝑇 = 280 K, 𝑇 = 300 K. Real units are for argon with 𝜎 = 3.405 Å, 𝜖/𝑘 = 119.8 K.

If in the equation of state (3.15), Φ = π
2 − 𝛿 and the value 𝛿2 ∼ − 2

π
𝛽𝑢 is small, which is possible for

strong repulsive interaction on a short distance, we can rewrite the equation of state as 𝑃 = 2
𝛽
𝜌 + 1

2 𝜌
2𝑤

which fully determins the behavior of the system of particles with small repulsive interaction on a short
distance and long-range attractive interaction. We can take into account the limited size of the particles in
integration over the volume and the attractive interaction must increase by the order of more than three.
For the systems with different long-range interactions, we use another approach. In the next section we
consider a simple system for which a simple solution can be obtained.

4. The systems with long-range interaction

In the definition of 𝑄int in (2.7), the inverse operator of interaction energy is presented. In the
general case of long-range interactions, such as Coulomb-like or Newtonian gravitational interaction in
continuum, the limiting inverse operator should be treated as a well-known operator

𝑈−1(r, r′) = − 1
4π𝐺𝑚2Δr𝛿(r − r′) = 𝐿

𝜓

rr′𝛿(r − r′), (4.1)

where Δr is the Laplace operator in real space. The number of realistic interactions, for which the inverse
operator can be found, is limited. The difficulties in obtaining the inverse operator can be avoided by
introducing the collective variables that correspond to the relationship between the introduced fields on
the saddle-point trajectory.

In our case of such long-range attractive and repulsive interactions between particles, we can rewrite
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the statistical sum of the local equilibrium distribution function in the form:

𝑄𝑙 =

∫
𝐷𝜑𝐷𝜓 d𝜉 exp

{ ∫
1

2𝑟𝜑
𝜑(r)𝐿𝜑

rr′𝜑(r
′) + 1

2𝑟𝜓
𝜓(r)𝐿𝜓

rr′𝜓(r
′)

+ 𝜉 (r)Λ−3(r) exp
√︁
𝛽(r)𝜓(r) cos

[√︁
𝛽(r)𝜑(r)

]
dr
}
, (4.2)

where all functions 𝛽(r), 𝜑(r), 𝜓(r) depend on the spatial point. Here, we use the definition of interaction
length as 𝑟𝜓 (r) = 4π𝐺𝑚2𝛽(r), 𝑟𝜑 (r) = 4π𝑞2𝛽(r). After general presentation of partition function, we
can describe some real situation and determine the thermodynamic parameters for a nonequilibrium
system with long-range interaction between particles.

The mean field model considering long-range interactions has been also studied. There is a theory
which permits to quantitatively predict the particle distribution in the quasi-stationary states. Such a
theory is applied to various long-range interacting systems, ranging from plasmas to self-gravitating
clusters and kinetic spin models [36]. The quantum-field-theory approach was used to give a statistical
description of a system of interacting particles with arbitrary spatially inhomogeneous configurations.
The formation of structures in a Coulomb-like system was analyzed and applied to the case of dusty
crystals and two-dimensional colloidal crystals [22].

First of all we consider the situation when only a repulsive interaction between particles exists. The
behavior of Coulomb-like system in equilibrium case was well described in reference [22]. Now, we will
study only the peculiarities of the system behavior under nonequilibrium conditions. In this case, the
repulsive interaction 𝜓 = 0 exists. We can rewrite the statistical sum of the local equilibrium partition
function in the form:

𝑄𝑙 =

∫
𝐷𝜑 d𝜉 exp

{∫ [
1
2
𝜑(r)𝐿rr′𝜑(r′) + 𝜉 (r)Λ−3(r) cos

(√︁
𝛽(r)𝜑(r)

) ]
dr
}
. (4.3)

In general case, the statistical sum𝑄𝑙 of the local equilibrium partition function is given by the expression

𝑄𝑙 =

∫
𝐷𝜑 d𝜉 exp [𝑆(𝜑(r), 𝜉 (r), 𝛽(r))] , (4.4)

with the effective nonequilibrium local thermodynamic potential 𝑆:

𝑆 =

∫ {
1
2
𝜑(r)𝐿rr′𝜑(r′) + 𝜉 (r)Λ−3(r) cos

[√︁
𝛽(r)𝜑(r)

]}
dr. (4.5)

From normalization condition
∫
𝜌(r) dr = 𝑁 , one can obtain the macroscopic density function 𝜌(r):

𝜌(r) ≡ Λ−3(r)𝜉 (r) cos
[√︁

𝛽(r)𝜑(r)
]
. (4.6)

In the case of the system without interaction (for free particles 𝜑(r) = 0), if we write the chemical
activity in terms of the chemical potential 𝜉 (r) = exp[𝜇(r)𝛽(r)], we obtain the well-known relation
𝛽(r)𝜇(r) = ln 𝜌(r)Λ3(r) that generalizes the relation in the equilibrium statistical mechanics [27]. The
equation for energy conservation is modified now, and it has the next form:

1
2

∫
𝜌(r)
𝛽(r)

{
3 −

√︁
𝛽(r)𝜑(r) tan

[√︁
𝛽(r)𝜑(r)

]}
dr = 𝐸. (4.7)

Derivation of the energy-conservation equation with respect to the volume yields a relation for the
chemical potential, i.e.,

1
2
𝜌(r)
𝛽(r)

{
3 −

√︁
𝛽(r)𝜑(r) tan

[√︁
𝛽(r)𝜑(r)

]}
=

𝛿𝐸

𝛿𝑉

𝛿𝑉

𝛿𝑁
= 𝜇(r)𝜌(r), (4.8)

hence, the chemical potential is

𝜇(r)𝛽(r) = 3
2
− 1

2
√︁
𝛽(r)𝜑(r) tan

[√︁
𝛽(r)𝜑(r)

]
. (4.9)
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This approach also provides the equation of state for the system within the context of thermodynamic
relation 𝑃 = 1

𝛽
𝛿𝑆
𝛿𝑉

for the case of energy conservation. The local equation of state takes the form:

𝑃(r)𝛽(r) = 𝜌(r)
[
𝜇(r)𝛽(r) − 1

2

]
. (4.10)

In the case of ideal gas we obtain a usual equation of state, because in this case there is no interaction and
hence 𝜑(r) = 0. Thus, we have 𝜇(r)𝛽(r) = 3

2 , and the equation of state reproduces the equation of state
of the ideal gas 𝑃𝛽 = 𝜌. The energy of the system is equal to 𝐸 = 3

2𝑁𝑘B𝑇 , and it is in accord with the
previous well-known results [27]. Within the context of the definition of equation (4.10) we can conclude
that, under the condition 𝜇(r)𝛽(r) < 1

2 , the negative pressure 𝑃(r)𝛽(r) < 0 appears. Such situation is
possible under the realistic condition 2 <

√︁
𝛽(r)𝜑(r) tan[

√︁
𝛽(r)𝜑(r)], for constant temperature and for

the total energy of the system 𝐸 < 1
2𝑁𝑘B𝑇 . This condition implies that the energy of each particle is

lower than the thermal energy. In this special case, the energy of the system is lower than the total thermal
energy of particles. This very special condition may be associated with the very peculiar properties.

If we take into account the definition of the chemical potential, we can rewrite the density in the form:

𝜌(r) ≡ Λ−3
𝑒 (r) exp

[
1
2
𝜎(r) tan𝜎(r)

]
cos𝜎(r), (4.11)

where the new variable 𝜎 =
√︁
𝛽(r)𝜑(r) is introduced and Λ𝑒 =

[
ℏ2𝛽(r)𝑒/2𝑚

] 1
2 is the renormalized

de Broglie wavelength. In the average field approximation, using the local thermodynamic potential in
terms of the new variable for constant temperature, we can write the local thermodynamic potential in
such a form:

𝑆 =

∫ {
1

2𝛽
𝜎(r)𝐿rr′𝜎(r′) + Λ−3

𝑒 exp
[
−1

2
𝜎(r) tan𝜎(r)

]
cos𝜎(r)

}
dr. (4.12)

Now, the equation for the field variable can be rewritten as follows:

𝐿rr′𝜎(r′) − 𝛽
d𝑉 (𝜎)

d𝜎
= 0, (4.13)

where the potential energy 𝑉 = Λ−3
𝑒 exp

[
− 1

2𝜎(r) tan𝜎(r)
]

cos𝜎(r) is a function of the field variable in
the present form. This potential has the minimum under condition 3 sin 2𝜎 = −2𝜎. For a small value of
𝜎 we have two different solutions: 𝜎 = 0 and 𝜎2 = 1. For small 𝜎 the effective potential takes a very
simple form:𝑉 (𝜎) = 1−𝜎2, and the equation for the field variable is 𝐿rr′𝜎(r′) + 2𝜎(r′) = 0. In the case
of Coulomb-like interaction, the solution for the field is of the oscillation character.

In the general, formula (4.5) can describe the condition of new phase formation, the size of the
bubble, and other parameters of the thermodynamic behavior of such systems. This nonequilibrium
statistical description concerns only probable dilute structures of such systems, and it does not describe
the metastable states and does not give any information about the time scales in the dynamic theory.
In this way, however, we can solve the complicated problems of statistical description of interacting
systems. To this end, we must determine the dynamic equation for the field. In this sense we can use the
Ginsburg–Landau equation to introduce the field in a standard form:

𝜕𝜎(r, 𝑡)
𝜕𝑡

= −𝛾 𝛿𝑆

𝛿𝜎(r) = −𝛾 d𝑉 (𝜎)
d𝜎

, (4.14)

where 𝛾 is dynamic viscous coefficient [32–34]. This evolution equation is in fact applicable to a
number of systems with nonconserved order parameter. In such a case, all necessary conditions satisfy
the thermodynamic relation. We can suppose that the motivation of such a dynamics is an increase of
the local thermodynamic potential. The evolution in nonequilibrium case will be guided by the local
thermodynamic potential landscape and the morphological instabilities of the parameter. The dynamics
of the system is dissipative. It will lead to a decrease of the local thermodynamic potential [37].
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4.1. Self-gravitating system

Interesting situations where only attractive interaction is presented are not numerous. One of the
examples of such situations is the behavior of a self-gravitating system. The solution of saddle-point
equation completely determines all thermodynamic parameters for attractive field 𝜓 and describes the
general behavior of self-gravitating system for both spatially homogeneous and inhomogeneous particle
distributions. The above set of equations in principle solves the many-particle problem in the thermody-
namic limit. It is very important to note that only this approach makes it possible to take into account the
inhomogeneity of temperature distribution that may depend on the spatial distribution of the particles
in the systems. In other approaches, the dependence of the temperature on a spatial point is introduced
through the polytrophic dependence of temperature on particle density in the equation of state [38–42]. In
the present approach, such a dependence follows from the necessary thermodynamic condition, and can
be found for various particle distributions. Now, we derive the saddle-point equation for the extreme of the
local thermodynamic functional 𝑆(𝜓, 𝜉, 𝛽) from the statistical sum of the local equilibrium distribution
function:

𝑄𝑙 =

∫
𝐷𝜑𝐷𝜓 d𝜉 exp

{∫ [
1

2𝑟𝜓
𝜓(r)𝐿𝜓

rr′𝜓(r
′) + 𝜉 (r)Λ−3(r) exp

(√︁
𝛽(r)𝜓(r)

)]
dr
}
. (4.15)

The equation for the field variable 𝛿𝑆/𝛿𝜓 = 0 in the case of the absence of repulsive interaction 𝜑 = 0
yields

1
𝑟𝑚

Δ𝜓(r) + 𝜉 (r)
[

2π𝑚
ℏ2𝛽(r)

] 3
2 √︁

𝛽(r) exp
[√︁

𝛽(r)𝜓(r)
]
= 0, (4.16)

where 𝑟𝑚 ≡ 4π𝐺𝑚2. The normalization condition can be written as follows:∫
𝜉 (r)

[
2𝑚

ℏ2𝛽(r)

] 3
2

exp
[√︁

𝛽(r)𝜓(r)
]
dr = 𝑁, (4.17)

and the equation for the energy conservation in the system is given by

1
2

∫ [
2π𝑚
ℏ2𝛽(r)

] 3
2 𝜉 (r)
𝛽(r)

[
3 −

√︁
𝛽(r)𝜓(r)

]
exp

[√︁
𝛽(r)𝜓(r)

]
dr = 𝐸. (4.18)

To get more information about the behavior of a self-gravitating system, we introduce new variables. The
normalization condition

∫
𝜌(r) dr = 𝑁 yields the definition for the density function, i.e.,

𝜌(r) ≡
[

2π𝑚
ℏ2𝛽(r)

] 3
2

𝜉 (r) exp
[√︁

𝛽(r)𝜓(r)
]
, (4.19)

which reduces the equations to a simpler form. The equation for the field variable is given by

Δ𝜓(r) + 𝑟𝑚
√︁
𝛽(r)𝜌(r) = 0. (4.20)

In the case of constant temperature and chemical activity, this equation transforms into equation for
gravitational potential 𝜓 =

√︁
𝛽(r)𝜓 in the well-known form:

Δ𝜓(r) = −4π𝐺𝑚2𝛽𝜌(r). (4.21)

First of all we consider the equilibrium case, where all parameters are independent of the space coordinate.
Thus, the equation for distribution of particles leads to a simple condition

√
𝛽𝜌 = 0, that can be realized

only for 𝑇 → ∞. The particle distribution in a self-gravitating system can be homogeneous only at very
high temperatures. The equation for energy conservation takes the form:

1
2

∫
𝜌(r)
𝛽(r)

[
3 −

√︁
𝛽(r)𝜓(r)

]
dr = 𝐸. (4.22)

33502-11



A. P. Rebesh, B. I. Lev, A. G. Zagorodny

The obtained equations cannot be solved in the general case, but it is possible to analyse many cases of
the behavior of a self-gravitating system under various external conditions. Hereinafter we obtain the
chemical activity in terms of the chemical potential 𝜉 (r) = exp [𝜇(r)𝛽(r)]. After differentiation of the
equation for energy conservation with respect to the volume, we obtain the relation for the chemical
potential:

1
2
𝜌(r)
𝛽(r)

[
3 −

√︁
𝛽(r)𝜓(r)

]
=

𝛿𝐸

𝛿𝑉
=

𝛿𝐸

𝛿𝑁

𝛿𝑁

𝛿𝑉
= 𝜇(r)𝜌(r). (4.23)

The chemical potential is given by the relation:

𝜇(r)𝛽(r) = 3
2
− 1

2
√︁
𝛽(r)𝜓(r). (4.24)

Using the expression for density, the definition of reduced thermal de Broglie wavelength and the
gravitation length, i.e.,

Λ(r) =
[
ℏ2𝛽(r)
2𝑚𝑒

] 1
2

, 𝑅𝑔(r) = 2π𝐺𝑚2𝛽(r), (4.25)

we can rewrite all equations and the normalization condition in terms of density and temperature. Thus,
we have:

Δ

{
ln[Λ3(r)𝜌(r)]√︁

𝛽(r)

}
+

𝑅𝑔(r)√︁
𝛽(r)

𝜌(r) = 0. (4.26)

Some solutions of this equation under special conditions were obtained in reference [18]. An interesting
case is the case when only particle density depends on the coordinate while the temperature is fixed. In
this case, the equation for density takes the form:

Δ
[
lnΛ3(r)𝜌(r)

]
+ 𝑅𝑔𝜌(r) = 0. (4.27)

The above equation (4.27) can be transformed to Δ [ln 𝜌(r)] + 𝑅𝑔𝜌(r) = 0, which has an exact solution,
𝜌(r) = 2/𝑅𝑔r2 but the normalization condition holds only for the case of a fixed box of the size
𝑅 = 𝑁𝐺𝑚2/4𝑘B𝑇 , fixed energy 𝐸 = 𝑁𝑘B𝑇 . The change of chemical-potential density within the box
is given by 𝜇 = 𝑘B𝑇

(
3
2 − 2Λ3/4𝑘B𝑇𝑅𝑔𝑟

2
)
. If we introduce 𝑓 (r) = ln 𝜌(r), the present equation can

be transformed to Lane–Emden equation in the form [17, 38–40]: Δ 𝑓 (r) + 𝑅𝑔 exp 𝑓 (r) = 0 which has
an exact solution for particle density only in the one-dimensional case: 𝜌(r) = 1/cosh2(r/𝑅𝑔). This
solution has a simple form, but unfortunately it is not in a good agreement with the results of molecular
dynamic simulations [42] and with general behavior of spatial inhomogeneous distribution of particles
in self-gravitating systems. More details of such peculiarites were presented in the articles [17, 18, 21].

Using the definition of the density of particles, one can obtain the local thermodynamic potential in
the form:

𝑆 =

∫ {
−𝜌(r) ln

[
Λ3(r)𝜌(r)

]
− 𝜌(r)

}
dr, (4.28)

from which the local equation of state can be obtained:

𝑃(r)𝛽(r) = − 1
𝛽

𝛿𝑆

𝛿𝑉
= 𝜌(r)

{
1 − ln[Λ3(r)𝜌(r)]

}
= 𝜌(r)

[
𝜇(r)𝛽(r) − 1

2

]
. (4.29)

From equation (4.29) we can easily get the chemical potential 𝜇(r)𝛽(r) = 3
2 − ln

[
Λ3(r)𝜌(r)

]
if the

thermodynamic relation for conservation energy 𝐸 is used. In the classical case Λ3(r)𝜌(r) ≪ 1 and
𝑃𝛽 ∼ 𝜌 but the expression has a multiplier which logarithmically depends on the density of the particles.
Only in the case where Λ3(r)𝜌(r) = 1, we obtain the equation of state for an ideal gas. We see a
sense to talk about pressure in classical case only. If the concentration is large, and the reverse relation
1 ≪ Λ3(r)𝜌(r) takes place, the determination of pressure is not correct. There is a natural limit of our
approach. We cannot describe the processes which can be realized within short distances, since in a
system with large concentration the quantum effects take place. In the case of an ideal gas, we obtain
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usual equation of state, because in this case 𝜑(r) = 0 and 𝑃𝛽 = 𝜌 as a result of the absence of the
interaction. In the case of ideal gas 𝜇(r)𝛽(r) = 3

2 , and the equation of state reproduces the equilibrium
relation for an ideal gas. In this case the energy of the system is 𝐸 = 3

2𝑁𝑘B𝑇 , which corresponds to the
previously obtained results [27, 28].

In figure 3 we show the dependence of 𝑃 on 𝜌 from equation (4.29).

a

b

c
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Figure 3. (Colour online) The dependence of 𝑃 on 𝜌 for protons (𝑚 = 1.6726 × 10−27 kg) for different
temperatures a) 𝑇 = 275 K, b) 𝑇 = 285 K, c) 𝑇 = 300 K.

Next, we consider the statistical induced dynamics of a self-gravitating system where the possible
spatial distribution of particles is taken into account. To this end, we must determine the dynamic equation
for the field variable or density of the particles. In this sense we can use the Ginsburg–Landau equation
for density:

𝜕𝜌(r, 𝑡)
𝜕𝑡

= −∇2𝛾
𝛿𝑆

𝛿𝜌(r) , (4.30)

where 𝛾 is the dynamic gravitational viscous coefficient [43]. In a self-gravitating system we do not have
any other viscous process without dynamic influence of gravitational action of all the system on the local
spatial point. This evolution equation is, in fact, applicable to a number of systems with non-conserved
order parameter. If we take into account the expression for the local thermodynamic potential in terms of
density, we can write the dynamic equation for density as follows:

𝜕𝜌(r, 𝑡)
𝜕𝑡

= −∇2𝛾 ln
[
Λ3(r)𝜌(r, 𝑡)

]
. (4.31)

The evolution of patterns in a nonequilibrium case is guided by the local thermodynamic potential
landscape and the morphological instabilities of the parameter. The dynamics of the system is dissipative.
It will result in a decrease of the local thermodynamic potential of the patterns with time. To describe this
behavior, we can use the simple gradient descent dynamics defined by the chemical potential. It can be
considered as generalization of Cahn equation for a non-uniform system with an arbitrary concentration
gradient which becomes Cahn nonlinear diffusion equation [34]:

𝜕𝜌(r, 𝑡)
𝜕𝑡

= ∇𝛾∇𝛽𝜇(r) = −∇2𝛾 ln[Λ3(r)𝜌(r, 𝑡)] . (4.32)

This equation (4.32) is fully equivalent to the previously obtained dynamic equation in Ginsburg–Landau
approach. If we take the solution of this dynamic equation in the form 𝜌(r, 𝑡) = exp(𝛾𝑟𝑚𝑡)𝜌(r), the
solution of the problem reduces to the solution of the previous equation Δ

[
lnΛ3𝜌(r)

]
+ 𝑅𝑔𝜌(r) = 0

which can be transformed to Δ [ln 𝜌(r)] +𝑅𝑔𝜌(r) = 0 for constant temperature. This means that the inho-
mogeneous spatial solution will exist for a permanently increasing density of particles. If we determine
the possible structure in distribution of density, these patterns will be conserved during all the time of a
decrease of density. In this approach, the probable behavior of a self-gravitating system can be predicted
for any external condition.
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5. Conclusions

Statistical description of a spatially inhomogeneous quasi-equilibrium system is proposed using the
ideas of the method of nonequilibrium statistical operator and the Hubbard–Stratonovich transformation.
It is important to note that the statistical mechanics of the systems in local equilibrium state is based on
the laws of conservation not of the average values of dynamic variables, but of dynamic variables. To
determine the thermodynamic function of quasi-equilibrium systems, one should use the representation
of the corresponding statistical ensembles that take into account the local equilibrium states of the
systems.The local equilibrium ensemble should be defined according to the distribution function or
statistical operator of the system. Using an approach based on the statistical operator, we can obtain
the necessary relations which are correct for both cases of homogeneous and inhomogeneous particle
distribution, which is also confirmed in figures 1, 2 and 3, respectively.

The saddle point method was used to find the asymptotic value of the statistical sum for an increasing
number of particles. The dominant contribution is given by the states that satisfy the extremum condition
for the functional. The saddle point equation represents a thermodynamic relation that can be written as
an equation for the field variables. The spatially inhomogeneous solution of these equations corresponds
to the distribution of interacting particles. It is very important to note that only in this approach one can
take into account the inhomogeneous temperature distribution and chemical potential, which may depend
on the spatial distribution of particles in the system.

The local equilibrium partition function with spatially inhomogeneous functions is introduced to
describe systems with both attractive and repulsive interaction.

The case is interesting where only the particle density depends on the coordinate, and the temperature
is fixed. We obtain an equation for the density, a local equation of state. We take into account the statistics
of the induced dynamics of the self-gravitating system, where the possible spatial distribution of particles
is taken into account. The dynamics of the system is dissipative. This will lead to a decrease in the local
thermodynamic potential of the structures with time. To describe this behavior, we use simple gradient
descent dynamics defined by the chemical potential. This can be considered as a generalization of the
Cahn equation for a heterogeneous system with an arbitrary concentration gradient, which becomes the
Cahn nonlinear diffusion equation. This means that the heterogeneous spatial solution will exist for a
constant increase in the particle density. If we define a possible structure in the density distribution,
these patterns will persist throughout the entire time of density decrease. In this approach, the probable
behavior of a self-gravitating system can be predicted under any external conditions.

Spatially inhomogeneous distribution is not equilibrium in the thermodynamic limit and thermody-
namic equilibrium is reached during the relaxation time. The Ginzburg-Landau equation describes the
relaxation of an arbitrary parameter to equilibrium using the minimum of the locally equilibrium distri-
bution. As for the Cahn equation, it takes into account the inhomogeneous distribution of the chemical
potential, which is the driving force of diffusion.

A. Appendix

For the system of particles with different character of interaction, the Hamiltonian is

𝐻 =
∑︁
𝑖

p2
𝑖

2𝑚
− 1

2

∑︁
𝑖, 𝑗

𝑊 (ri, rj) +
1
2

∑︁
𝑖, 𝑗

𝑈 (ri, rj).

Taking into account that 𝑛(r) = ∑
𝑖 𝛿(r− ri) and the fact that the masses of particles can differ from each

other, the energy density of the system can be written as follows:

𝐻 (r) =
∑︁
𝑖

p2
𝑖

2𝑚
𝛿(r − r𝑖) −

1
2

∫
𝑊 (r, r′)𝑛(r)𝑛(r′) dr′ + 1

2

∫
𝑈 (r, r′)𝑛(r)𝑛(r′) dr′.

For the system having a different character of interaction after simple mathematical manipulation using
Hubbard–Stratonovich transformation, we can write the statistical sum of the local equilibrium distribu-
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tion function in terms of the additional fields:

𝑄𝑙 =

∫
𝐷Γ

{
−
∫ [

𝛽(r)
∑︁
𝑖

p𝑖
2

2𝑚
𝛿(r − r𝑖) − 𝜂(r)𝑛(r)

]
dr

+ 1
2

∬
𝛽(r) [𝑊 (r, r′) −𝑈 (r, r′)] 𝑛(r)𝑛(r′) dr dr′

}
. (A.1)

The integration over the phase space gives 𝐷Γ =
[
1/(2πℏ)3] ∏

𝑖

dr𝑖 dp𝑖 . Since we consider the system

with nonequilibrium particle distribution, in our approximation this means, that every point of the space
has its own temperature and chemical potential. Namely, temperature and chemical potential depend on
the space point (coordinate). However, every volume𝑉 contains a sufficient number of particles [5]. That
permits to perform first integration over the momentum separately.

In order to perform a formal integration in the second part of our paper, additional field variables can
be introduced. We use here the theory of Gaussian integrals [15, 19]:

exp
[
− 𝜈2

2

∬
𝛽(r)𝜔(r, r′)𝑛(r)𝑛(r′) dr dr′

]
=

∫
𝐷𝜎 exp

[
− 𝜈2

2

∬
𝜔(r)−1𝜎(r)𝜎(r′) dr dr′ − 𝜈

∫ √︁
𝛽(r)𝜎(r)𝑛(r) dr

]
, (A.2)

where 𝐷𝜎 =
∏
𝑠

d𝜎𝑠/
√︁

det 2π𝛽𝜔(r, r′) and𝜔−1(r, r′) is the inverse operator which satisfies the condition∫
𝑟 ′
𝜔−1(r, r′)𝜔(r′, r′′) = 𝛿(r − r′′). This means that the interaction energy is presented by the Green

function. For this operator, the value 𝜈2 = ±1 depends on the sign of the interaction or the potential energy.
After such manipulation the field variable 𝜎(r) contains the same information as original distribution
function, i.e., all information about possible spatial states of the systems.

Now the statistical sum of the local equilibrium distribution function can be rewritten as follows:

𝑄𝑙 =

∫
𝐷Γ

∫
𝐷𝜑

∫
𝐷𝜓 exp

{
−
∫

𝛽(r)
∑︁
𝑖

p𝑖
2

2𝑚
𝛿(r − r𝑖) dr +

∫ [
𝜂(r) +

√︁
𝛽(r)𝜓(r)

+ i
√︁
𝛽(r)𝜑(r)

]
𝑛(r) dr

}
𝑄int, (A.3)

where the expression for 𝑄int, which corresponds to the interaction, is

𝑄int = exp
[
1
2

∬
𝑊 (r, r′)−1𝜓(r)𝜓(r′) dr dr′ − 1

2

∬
𝑈 (r, r′)−1𝜑(r)𝜑(r′) dr dr′

]
. (A.4)

In this general functional, integration can be performed on the phase space. Using the definition of
density, we can rewrite the statistical sum of the local equilibrium distribution function as follows:

𝑄𝑙 =

∫
𝐷𝜑

∫
𝐷𝜓

∫
1

(2πℏ)3 𝑁!

∏
𝑖

d𝑟𝑖 d𝑝𝑖 𝜉 (ri)

× exp
{
−
[
𝛽(ri)

p2
𝑖

2𝑚
−
√︁
𝛽(ri)𝜓(ri) − i

√︁
𝛽(ri)𝜑(ri)

]}
𝑄int, (A.5)

where the new variable 𝜉 (r) ≡ exp 𝜂(r) is introduced which can be interpreted as chemical activity. Now,
we can perform integration over the momentum. The real part of the statistical sum has the form:

𝑄𝑙 =

∫
𝐷𝜑

∫
𝐷𝜓𝑄int

1
𝑁!

×
∏
𝑖

∫
d𝑟𝑖 𝜉 (ri)

[
2π𝑚

ℏ3𝛽(ri)

] 3
2

exp
[√︁

𝛽(ri)𝜓(ri)
]

cos
[√︁

𝛽(ri)𝜑(ri)
]
, (A.6)
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then,

𝑄𝑙 =

∫
𝐷𝜑

∫
𝐷𝜓𝑄int

∑︁
𝑁

1
𝑁!

×
{∫

dr 𝜉 (r)
[

2π𝑚
ℏ3𝛽(r)

] 3
2

exp
[√︁

𝛽(r)𝜓(r)
]

cos
[√︁

𝛽(r)𝜑(r)
]}𝑁

. (A.7)

After that, the statistical sum of the local equilibrium distribution function takes a simple form:

𝑄𝑙 =

∫
𝐷𝜑

∫
𝐷𝜓𝑄int

× exp
{ ∫ [

𝜉 (r)
(

2π𝑚
ℏ3𝛽(r)

) 3
2

exp
(√︁

𝛽(r)𝜓(r)
)

cos
(√︁

𝛽(r)𝜑(r)
) ]

dr
}
. (A.8)
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Термодинамiчне спiввiдношення для систем з
неоднорiдним розподiлом частинок

А. П. Ребеш, Б. I. Лев, А. Г. Загороднiй
Iнститут теоретичної фiзики iм. М.М. Боголюбова Нацiональної академiї наук України,
вул. Метрологiчна 14б, 03143 Київ, Україна

Для системи з неоднорiдним розподiлом частинок ми отримали термодинамiчне спiввiдношення, яке
залежить вiд координати. У нашому пiдходi для отримання такого спiввiдношення ми використовуємо
локально рiвноважну функцiю розподiлу. Перш за все, ми визначили термодинамiчне спiввiдношення
для системи з однорiдним розподiлом частинок. Передбачено можливi особливостi поведiнки систем з
рiзним характером взаємодiї в нерiвноважному випадку. За допомогою методу сiдлової точки ми зна-
йшли домiнуючi внески в статистичну суму та отримали всi термодинамiчнi параметри систем з рiзним
характером взаємодiї. Поява сiдлового стану в усiх системах взаємодiючих частинок при рiзних темпера-
турах i розподiлах частинок мають однакову фiзичну природу, тому їх можна описати однаковим чином.
Ми розглядаємо системи з притяганням та вiдштовхуванням, а також самогравiтуючi системи.

Ключовi слова: локально рiвноважна функцiя розподiлу, рiвняння стану, самогравiтуюча система,
далекосяжна взаємодiя
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