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We investigate the effect of the excluded volume of surfactant ligands on the shape of incipient quantum dots
(QDs) to which they are attached.We consider amodel in which ligands are represented by hard-sphere particles
that are bound to the surface of a nanoparticle (NC) that is cast in the shape of a prism. It is found inMonte Carlo
simulations that the ensemble of relevant NC conformations consists of a small number of specific states that
take on the form of nanoplates and nanorods. The shape of these states can be well described by the derived
theoretical models. At increasing ligand density, the free energy of different states is seen to be approximately
the same, suggesting that excluded volume interactions among ligands acts to narrow down the conformational
space accessible to an NC without creating a statistical preference for any particular configuration.
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1. Introduction

Quantum dots (QD) are colloidal particles of nanometer dimensions, which — due to the quantum
confinement effect-exhibit unique and size-dependent optical and electronic properties. Lead halide
perovskite (LHP) nanocrystals (NCs) is the latest addition to the family of QDs designed specifically
for optical applications such as light generation or detection. Aided by unique chemistry and facile
and inexpensive synthesis, these materials rely on perovskite structure to achieve superior narrowband
photoluminescence (PL) with near-unity quantum yield (QY) and wide spectral tunability (410–750 nm),
high absorption coefficients and high radiative rates and long excitonic coherence times [1].

Most commonly quantum dots are cubic [2], although a variety of alternative shapes have been
reported, including nanocubes [2], nanoplatelets [3], truncated octahedra [4], spherical colloids [4, 5]
and nanorods [6, 7]. Notably, different shapes produce different quantum confinements — 3D, 2D and so
on, thus directly affecting various optical properties including anisotropic and polarized emission [8, 9],
width of the emission lines [10], size of the absorption cross-section [11] and amplified spontaneous
emission thresholds [12, 13].

Nucleation and growth of QDs represent a unique example of the self-assembly process whose mech-
anistic details, including factors controlling geometry and relevant growth characteristics, are of primary
interest to fundamental research in physics and chemistry. Furthermore, a microscopic understanding of
how QDs are formed can open the door to a rational design of NCs with preset geometries, which can be
desirable under a variety of conditions. For instance, it is known that cubic NCs have a degenerate excited
state causing a splitting in the associated emission line due to the symmetry imposed by all three sides of
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Figure 1. Details of the model studied. (a) A number of 3D hard-sphere particles representing ligands are
distributed on the surface of a prism. Particles can move across all facets, thus exploring the depicted 2D
phase space. (b) Transitions between facets are governed by specific boundary conditions. A particle in
facet 1 has 5 different options for a translational move as explained in the text. The boundary conditions
are specific to each facet.

the nanoparticle having the same length. The splitting is detrimental because it reduces the purity of the
emission line. As a potential remedy, it is very tempting to suggest growing asymmetrical particles, for
instance nanorods, which have a reduced symmetry and thus may have an improved spectrum. Naturally,
one needs to know how to design non-cubic nanocrystals in order to test this assumption, which is a goal
that requires an in-depth understanding of the microscopic factors controlling the shape of the NCs.

Surfactant ligands are essential for the entire life cycle of LHP NCs, starting from nucleation/growth
phase and ending with the thermal stability [2]. They are also responsible, to a large degree, for defining
the shapes of QDs. Different ligands lead to different shapes suggesting that ligand-ligand interactions
play a critical role. Although ligands are formed in a variety of types depending on their chemistry and
length, there is one characteristic feature they have in common — a finite size. Thanks to the finite size
no two ligands can occupy the same volume in space, leading to the arisal of ligand-ligand repulsion.
Here, we focus on this so-called excluded volume effect — in its simplest representation — in the context
of a growing nanocrystal.

We consider a model in which ligands are treated as hard-sphere particles whose centers are bound to
the surface of a prism — a geometrical figure that has a square base and variable height. We note that this
description was chosen on the grounds of simplicity and disregards a whole variety of technical details,
such as non-spherical shape of the ligand, ligand-ligand interactions of finite range, the ability of the
ligands to detach from the surface, anisotropic binding affinities, or surface energy effects, which can be
included at a later time. The prism can capture both nanoplatelet and nanorod shapes of the quantum dots.
Configurations of spheres on prism facets are studied by Monte Carlo simulations. As the sphere density is
increased, various geometries of the prism begin to diverge in terms of their observation probabilities. The
free energy of these geometries is evaluated by performing a thermodynamic integration over pressure. At
a certain high density, the entire ensemble of NC configurations is partitioned into a series of allowed and
forbidden configurations, where the forbidden configurations correspond to free energy barriers while the
allowed ones — to free energy minima. The allowed configurations are partitioned into the nanoplatelet
and nanorod families. Interestingly, at the point where spontaneous transitions between allowed states
become forbidden, the ligand sub-system still remains in a fluid state at a low density, suggesting that no
phase transition or even kinetic slowdown takes place. We conclude based on these findings that ligands
can considerably influence the shape of a growing NC even at a low surface coverage purely through an
excluded volume effect. This circumstance needs to be taken into account when designing novel ligands
for the synthesis of NCs with specific properties.

2. Model and methods

We consider ligands to be hard-sphere particles of diameter 𝜎 lying on the surface of a prism. A prism
is a solid three-dimensional object with two identical bases, see figure 1(a) for illustration. Depending on
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the type of the polygon making up the base, the prisms can be classified as triangular, square, rectangular
and so on. We are concerned with the square prism, which can be either a rod or a platelet, depending on
the aspect ratio of its sides.

Each particle is a sphere of diameter 𝜎 characterized by two independent coordinates whose identity
depends on the facet. All facets are numbered as explained in figure 1(b). For facets 5 and 6, the
respective coordinates are 𝑥 and 𝑦. For facets 1 and 3 — 𝑦 and 𝑧, and for facets 2 and 4 — 𝑥 and 𝑧.
Although ligand particles are treated as 3D objects, the effective space in which they are allowed to move
is two-dimensional, as it is made by joining 6 separate facets together, see figure 1(a) for an explanation.

2.1. Fixed cell geometry

The coordinates are advanced on the 2D plane according to the rules specific to each facet. For
instance, in the case of facet 1, the relevant coordinates are 𝑦 and 𝑧 and trial coordinates in a Monte Carlo
(MC) move are generated as:

𝑥′ = 𝑥 = 𝐿𝑥 ,

𝑦′ = 𝑦 + (2𝜉 − 1)𝑑𝑥max,

𝑧′ = 𝑧 + (2𝜉 − 1)𝑑𝑥max,

(2.1)

where 𝑥, 𝑦, 𝑧 are the current coordinates, 𝜉 is a random number uniformly distributed between 0 and 1,
𝑑𝑥max is the maximum displacement and 𝐿𝑥 is the length of the facet in 𝑥 direction. Equivalent quantities
for 𝑦 and 𝑧 dimensions are 𝐿𝑦 and 𝐿𝑧 . The aspect ratio of the simulation cell is defined as 𝑅 = 𝐿𝑧/𝐿𝑥 .

Trial coordinates are accepted if they do not cause any steric clashes among particles and rejected
otherwise. If the trial coordinates fall outside the ranges set by the box geometry, 0 < 𝑥′ < 𝐿𝑥 , 0 < 𝑦′ < 𝐿𝑦

and 0 < 𝑧′ < 𝐿𝑧 , transitions between facets are arranged. For facet number 1 for instance, particles can
exit through the border with facet number 2, in which case the identity of the particle coordinates changes.
To reflect this change, the coordinates are reassigned according to geometrical considerations explained
in figure 1(b). Namely, 𝑧′ coordinate remains unchanged while 𝑥′ is assigned a new value 𝐿𝑥 − (𝑦′ − 𝐿𝑦)
and 𝑦′ is assigned a new value 𝐿𝑦, in that particular order. As a result of this transformation, the particle
in question jumps from facet 1 to facet 2 and then continues moving on the new facet. For transitions into
other facets — 5 , 4 and 6, similar formulas are employed as explained in figure 1(b). Similar formulas
are derived for facets 2–6, leading to a complete set of rules shown in table 1. By design, the rules ensure
that the hard-sphere particles perform a random and unbiased walk on the surface of a prism. For a single
particle, the probability of being observed on a particular facet is then proportional to the area of its
surface. This law was tested and verified in explicit simulations. Moves in which particles exit a facet
through the corner were disregarded because they can be represented by a sequence of 2 moves in which
particles exit through the side. Similarly, moves in which particles jump the length of an entire facet were
also avoided (by adjustment of parameter 𝑑𝑥max).

2.2. Volume moves

Density of ligands on the surface of a nanocrystal, or the surface coverage, can be varied by tuning
the conditions of the experiment. In the studied model we consider pressure as an external parameter
that controls the ligand density. Increasing pressure leads to a higher density while an opposite effect
is seen for a decreasing pressure. A constant-pressure constant-temperature (CPT) algorithm relying on
the scaling of the size of the simulation box [14] is used to maintain steady pressure in our simulations.
At the heart of the algorithm are volume moves designed to steer the system into a state consistent with
the applied pressure 𝑃. This is achieved by introducing a set of scaled coordinates that relate actual
coordinates with the volume of the relevant phase space. In the case of 2D system, volume is replaced
by the surface area. If (𝕩𝑖 ,𝕪𝑖), 𝑖 = 1, 𝑁 , are coordinates of some 𝑁-particle system that occupies surface
area 𝑆, the scaled coordinates are introduced as:

𝕩𝑖 =
√
𝑆𝕩𝑆

𝑖

𝕪𝑖 =
√
𝑆𝕪𝑆

𝑖 .
(2.2)
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Table 1. Explanation of the rules used to generate trial positions in Monte Carlo moves. As the first step,
random displacements are applied to the two coordinates that are considered variable, according to the
facet. If the generated displacement is seen to take the particle outside of its current facet, appropriate
boundary conditions are applied, enabling facet-to-facet transitions. The corresponding transformations
of the coordinates are listed separately for each facet. 𝜉 is a random variable between 0 and 1. 𝑑𝑥max is
an adjustable parameter. Other notations are as in the main text.

1→2 1→4
Facet 1 𝑥′ = 𝐿𝑥 − (𝑦′ − 𝐿𝑦) 𝑥′ = 𝐿𝑥 + 𝑦′

𝑥′ = 𝐿𝑥 𝑦′ = 𝐿𝑦 𝑦′ = 0
𝑦′ = 𝑦 + (2𝜉 − 1)𝑑𝑥max 1→5 1→6
𝑧′ = 𝑧 + (2𝜉 − 1)𝑑𝑥max 𝑥′ = 𝐿𝑥 − (𝑧′ − 𝐿𝑧) 𝑥′ = 𝐿𝑧 + 𝑧′

𝑧′ = 𝐿𝑧 𝑧′ = 0
2→3 2→1

Facet 2 𝑦′ = 𝐿𝑦 + 𝑥 𝑦′ = 𝐿𝑦 − (𝑥′ − 𝐿𝑥)
𝑥′ = 𝑥 + (2𝜉 − 1)𝑑𝑥max 𝑥′ = 0 𝑥′ = 𝐿𝑥

𝑦′ = 𝑦 + 𝐿𝑦 2→5 2→6
𝑧′ = 𝑧 + (2𝜉 − 1)𝑑𝑥max 𝑦′ = 𝐿𝑦 − (𝑧′ − 𝐿𝑧) 𝑦′ = 𝐿𝑦 + 𝑧′

𝑧′ = 𝐿𝑧 𝑧′ = 0
3→4 3→2

Facet 3 𝑥′ = −𝑦 𝑥′ = 𝑦′ − 𝐿𝑦

𝑥′ = 0 𝑦′ = 0 𝑦′ = 𝐿𝑦

𝑦′ = 𝑦 + (2𝜉 − 1)𝑑𝑥max 3→5 3→6
𝑧′ = 𝑧 + (2𝜉 − 1)𝑑𝑥max 𝑥′ = 𝑧′ − 𝐿𝑧 𝑥′ = −𝑧′

𝑧′ = 𝐿𝑧 𝑧′ = 0
4→1 4→3

Facet 4 𝑦′ = 𝑥′ − 𝐿𝑥 𝑦′ = −𝑥′
𝑥′ = 𝑥 + (2𝜉 − 1)𝑑𝑥max 𝑥′ = 𝐿𝑥 𝑥′ = 0

𝑦′ = 0 4→5 4→6
𝑧′ = 𝑧 + (2𝜉 − 1)𝑑𝑥max 𝑦′ = 𝑧′ − 𝐿𝑧 𝑦′ = −𝑧′

𝑧′ = 𝐿𝑧 𝑧′ = 0
5→2 5→4

Facet 5 𝑧′ = 𝐿𝑧 − (𝑦′ − 𝐿𝑦) 𝑧′ = 𝐿𝑧 + 𝑦′

𝑥′ = 𝑥 + (2𝜉 − 1)𝑑𝑥max 𝑦′ = 𝐿𝑦 𝑦′ = 0
𝑦′ = 𝑦 + (2𝜉 − 1)𝑑𝑥max 5→5 5→1

𝑧′ = 𝐿𝑧 𝑧′ = 𝐿𝑧 + 𝑥 𝑧′ = 𝐿𝑧 − (𝑥′ − 𝐿𝑧)
𝑥′ = 0 𝑥′ = 𝐿𝑥

5→2 5→4
Facet 6 𝑧′ = 𝑦′ − 𝐿 − 𝑦 𝑧′ = −𝑦′

𝑥′ = 𝑥 + (2𝜉 − 1)𝑑𝑥max 𝑦′ = 𝐿𝑦 𝑦′ = 0
𝑦′ = 𝑦 + (2𝜉 − 1)𝑑𝑥max 5→5 5→1

𝑧′ = 0 𝑧′ = −𝑥′ 𝑧′ = 𝑥′ − 𝐿𝑥

𝑥′ = 0 𝑥′ = 𝐿𝑥

Thermodynamic expectation of some configurational variable 𝐴(𝕩1,𝕪1 . . . 𝕩𝑁 ,𝕪𝑁 ) at pressure 𝑃

can then be written as:

⟨𝐴⟩𝐶𝑃𝑇 =

∫
d𝑆e−𝛽𝑃𝑆

∫
e−𝛽𝑈𝐴d𝕩1d𝕪1 . . . d𝕩𝑁d𝕪𝑁∫

d𝑆e−𝛽𝑃𝑆
∫

e−𝛽𝑈d𝕩1d𝕪1 . . . d𝕩𝑁d𝕪𝑁

=

∫
d𝑆e−𝛽𝑃𝑆

∫
e−𝛽𝑈𝐴𝑆𝑁d𝕩𝑆

1 d𝕪𝑆
1 . . . d𝕩𝑆

𝑁
d𝕪𝑆

𝑁∫
d𝑆e−𝛽𝑃𝑆

∫
e−𝛽𝑈𝑆𝑁d𝕩𝑆

1 d𝕪𝑆
1 . . . d𝕩𝑆

𝑁
d𝕪𝑆

𝑁

, (2.3)

where 𝑈 is potential energy and we transitioned to the set of scaled variables on the right-hand side.
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It can be seen that the average ⟨𝐴⟩𝐶𝑃𝑇 can be obtained by sampling in the combined set of vari-
ables (𝑆,𝕩𝑆

1𝕪
𝑆
1 . . . 𝕩𝑆

𝑁
𝕪𝑆
𝑁
) performed with limiting distribution function e−𝛽 (𝑃𝑆+𝑈−𝑘𝑇𝑁 log(𝑆) ) ,where

𝛽 = 1/𝑘𝑇 and 𝑘 is the Boltzmann’s constant and 𝑇 is the temperature. In practical terms, a volume
move entails an attempt to change the current surface area 𝑆 to a trial value 𝑆′. If the importance
sampling algorithm is used, the probability of making such a transition is governed by the function
e𝑤 = e−𝛽 (𝑃Δ𝑆+Δ𝑈−𝑘𝑇𝑁 log( 𝑆′

𝑆
) ) , where Δ𝑆 = 𝑆′ − 𝑆 and Δ𝑈 = 𝑈 (

√
𝑆′𝕩𝑆

𝑖
,
√
𝑆′𝕪𝑆

𝑖
) −𝑈 (

√
𝑆𝕩𝑆

𝑖
,
√
𝑆𝕪𝑆

𝑖
) = 0

for hard-sphere system provided that new volume is allowed by steric constraints. Taking into account
relations (2.2) it is easy to see that

√︃
𝑆′
𝑆
=

𝕩′
𝑖

𝕩𝑖
=

𝕪′
𝑖

𝕪𝑖
= 𝜂, where 𝕩′

𝑖
, 𝕪′

𝑖
are trial coordinates resulting from

a volume move and 𝜂 is the scaling factor by which the coordinates are multiplied. With these notations,
the move-acceptance function can be re-written as 𝑤 = −𝛽𝑃Δ𝑆 + 𝑁 𝑓 log(𝜂), where 𝑁 𝑓 = 2𝑁 is the
number of degrees of freedom that get scaled during a move.

As a practical implementation of this algorithm, we generate trial coordinates by scaling the current
coordinates by a random scaling factor 𝜂 close to unity:

𝑥′
𝑖
= 𝜂𝑥𝑖 , 𝐿′

𝑥 = 𝜂𝐿𝑥 ,

𝑦′
𝑖
= 𝜂𝑦𝑖 , 𝑖 = 1, 𝑁, 𝐿′

𝑦 = 𝜂𝐿𝑦,

𝑧′
𝑖
= 𝜂𝑧𝑖 , 𝐿′

𝑧 = 𝜂𝐿𝑧 .

(2.4)

The surface area 𝑆 = 2𝐿2
𝑥 +4𝐿𝑥𝐿𝑧 then changes to 𝑆′ = 𝜂2(2𝐿2

𝑥 +4𝐿𝑥𝐿𝑧) so that Δ𝑆 = (𝜂2−1)𝑆 or, if
we invert that relation, 𝜂 =

√︃
1 + Δ𝑆

𝑆
. In order to evaluate integral (2.3) by stochastic MC method, surface

area 𝑆 should be treated as a uniformly distributed random variable, implying that Δ𝑆 is a variable of
the same kind. Hence, the rule for generating new dimensions of the cell becomes

𝐿′
𝑗
= 𝜂𝐿 𝑗 , 𝑗 = 𝑥, 𝑦, 𝑧, 𝜂 =

√︃
1 + (2𝜉−1)Δ𝑆max

𝑆
. (2.5)

Where 𝜉, as before, is a random number uniformly distributed between 0 and 1, and Δ𝑆max is an
adjustable parameter. Trial coordinates are generated from 𝜂 by equation (2.4) while the trial change of
surface area is computed as Δ𝑆 = (𝜂2 − 1)𝑆. The test function

𝑤 = −𝛽𝑃Δ𝑆 + 𝑁 𝑓 log(𝜂) (2.6)

is evaluated to determine whether to accept — e𝑤 ⩾ 𝜉 — or reject — e𝑤 ⩽ 𝜉 — the trial move, where 𝜉

is a random number between 0 and 1.
It follows from (2.4) that the aspect ratio of the cell 𝑅′ =

𝐿′
𝑧

𝐿′
𝑥
=

𝐿𝑧

𝐿𝑥
= 𝑅 is preserved under the

volume-change moves. This feature may or may not be desirable depending on the purposes. If the goal
is to evaluate relative free energy of cells with different 𝑅’s, then the derived algorithm is appropriate.
However, if the goal is to locate most likely geometries under a given pressure, then the volume-move
algorithm must allow 𝑅 to vary. There are multiple ways of achieving this, the simplest being described
below. Focusing on the expression for the surface area 𝑆 = 2𝐿2

𝑥 + 4𝐿𝑥𝐿𝑧 it is easy to see that 𝑆 can be
also changed by scaling 𝑧-coordinates while keeping the dimensions in 𝑥 and 𝑦 directions unchanged.
Repeating the steps taken above for the other volume-change move, this will lead to the following
algorithm

𝑥′
𝑖
= 𝑥𝑖 , 𝐿′

𝑥 = 𝐿𝑥 ,

𝑦′
𝑖
= 𝑦𝑖 , 𝑖 = 1, 𝑁, 𝐿′

𝑦 = 𝐿𝑦,

𝑧′
𝑖
= 𝜂𝑧𝑖 , 𝐿′

𝑧 = 𝜂𝐿𝑧 .

(2.7)

The corresponding surface area change Δ𝑆 = 𝑆′ − 𝑆 = 2𝐿2
𝑥 + 𝜂4𝐿𝑥𝐿𝑧 − 2𝐿2

𝑥 − 4𝐿𝑥𝐿𝑧 = (𝜂 − 1)4𝐿𝑥𝐿𝑧

leads to the expression of the scaling coefficient 𝜂 = 1 + Δ𝑆
4𝐿𝑥𝐿𝑧

. The trial geometry is then generated as

𝐿′
𝑧 = 𝜂𝐿𝑧 , 𝐿′

𝑥 = 𝐿𝑥 , 𝐿′
𝑦 = 𝐿𝑦, 𝜂 = 1 + (2𝜉 − 1)Δ𝑆𝑧max

4𝐿𝑥𝐿𝑧

, (2.8)

where 𝜉 is the random variable introduced earlier and Δ𝑆𝑧max is an adjustable parameter (not to be
confused with Δ𝑆max). The moves are accepted or rejected by evaluating the test function 𝑤 and following
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the rules outlined in formula (2.6). Compared to the previous algorithm, however, there is now an
important difference in how 𝑁 𝑓 is evaluated. While previously the scaling applied to both coordinates
of all particles, at present it applies only to 𝑧-dimension, thus affecting only the particles located on the
facets 1 through 4, see figure 1(b). Accordingly, the number of involved degrees of freedom is 𝑁 𝑓 = 𝑁side,
where 𝑁side is the number of particles on the side facets. This number needs to be evaluated before each
𝑧-volume change step. In other respects, the two volume-change algorithms are identical.

We performed two types of constant-pressure simulations as part of this project. First, these were
simulations following the algorithm (2.4)–(2.5) and preserving the aspect ratio of the cell. Second, these
were simulations combining algorithms (2.4)–(2.5) with those of (2.7)–(2.8) in equal proportion. The
latter allowed the simulation cell to relax, thus permitting observation of the most likely geometry.
Parameters Δ𝑆𝑧max and Δ𝑆max were adjusted to achieve > 50% success rate of the volume moves. Volume
moves were attempted every 10th particle move, on average. The maximum displacement for transitional
moves 𝑑𝑥max was adjusted to achieve the move acceptance rates better than 50%.

2.3. Free energy calculation

To calculate the Gibbs free energy for a system with fixed aspect ratio 𝑅, simulations are performed
using algorithm (2.4)–(2.5) at a sequence of pressures ranging from 𝑃0 to 𝑃, where 𝑃 is the target
pressure. Pressures are reported in dimensionless units 𝑃∗ = 𝛽𝑃𝜎2 while the particle density — in terms
of packing fraction 𝜌∗ = 𝜂𝑝 = π𝜎2

4
𝑁
𝑆

. The lower limit 𝑃0 was selected on the condition that there should
be no variation with 𝑅 in the average surface area observed at that pressure — a consequence of the
system at extremely low dilution having no preference for a particular geometry. By systematic analysis
we found that 𝑃∗

0 = 0.12 meets this criterion. A number of points with increasing pressure 𝑃 > 𝑃0 were
then considered, starting with 𝑃0 and ending at 1.44 with the increment of 0.12, to yield 𝑆(𝑃, 𝑅) — the
dependence of surface area on pressure. We observed a strong variation with 𝑃 in this initial segment of
𝑆(𝑃, 𝑅). It was followed by a second segment, stretching from 𝑃∗ = 1.44 and ending at 𝑃∗ = 5.29, in
which the decline was much more leveled and which was evaluated with a larger increment of 0.48. The
combined curve was then integrated numerically to yield the dependence of Gibbs free energy on 𝑅:

𝐺 (𝑃, 𝑅) =
𝑃∫

𝑃0

𝑆(𝑃, 𝑅)d𝑃. (2.9)

Since 𝑆(𝑃0, 𝑅) = 𝑆(𝑃0), the integration produces a function that reports relative free energy for
different values of 𝑅, i.e., for different cell geometries. Simpson rule [15] was used to carry out the
integration. By performing a comparative analytical integration on a function very closely resembling
the function obtained in simulation, we estimate that the numerical integration error in the latter did not
exceed 5 percentage points, which we consider to be a satisfactory accuracy.

3. Results

3.1. Suppressed elongation at low pressure

We computed free energy profiles 𝐺 (𝑅), as a function of the aspect ratio using the constant-pressure
algorithm (2.4)–(2.5) as described in the “Methods” section. The number of particles in the performed
simulations varied from 𝑁 = 14 to 𝑁 = 82 so as to probe the influence of the size of the system. The
results are shown in figure 2(a) for a sequence of pressures ranging from 𝑃∗ = 0.24 to 𝑃∗ = 5.29 with
an increment of 0.24. It is seen that at low pressures 𝑃∗ < 𝑃∗

𝑐 ≈ 1, the profile is nearly flat, indicating
that all cell geometries have the same statistical weight, which is expected in the low density / pressure
limit. A comparison between the results obtained for 𝑁 = 24 and 𝑁 = 46 demonstrates that this behavior
is consistent across multiple system sizes.

As the pressure rises, two trends become apparent. First, the free energy at 𝑅 > 1 corresponding
to nanorod geometries begins to shift upwards. Again, this happens for all system sizes. Second, at
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𝑃∗ = 1.44, a maximum emerges in the profile. The position of the maximum shifts toward larger aspect
ratios as the size of the system increases. For 𝑁 = 24, it is seen at 𝑅 = 4.3 and for 𝑁 = 46 — at 𝑅 = 9.9.
It is interesting to explore the microscopic origins of the large-𝑅 rise in 𝐺 (𝑅).

It is clear from (2.9) that the free energy at a given pressure 𝑃𝑡 depends on all preceding pressures
𝑃 < 𝑃𝑡 . It is also clear that a larger surface area at the given 𝑃𝑡 will contribute toward larger 𝐺 (𝑅) since
at 𝑃 = 𝑃0, the surface area is the same for all 𝑅. It is possible, therefore, that 𝐺 (𝑅) could be correlated
with 𝑆(𝑅) within some range of pressures, in which case the latter can be used as an easier to analyze
substitute for the former. Figure 2(b) plots free energy vs. average surface area (shown in dimensionless
units 𝑆∗ = 𝑆/𝜎2) observed in simulations of 𝑁 = 28 particle system with fixed cell geometry. Each
point in the graph corresponds to a distinct 𝑅. Broken lines represent the best linear approximation of the
simulation data. A very strong correlation between 𝑆(𝑅) and 𝐺 (𝑅) is observed for pressures 𝑃∗ = 0.72
and lower, where the data correspond to a straight line. Starting with 𝑃∗ = 0.96, some deviations from the
line begin to emerge, especially in the limit of large 𝐺 (𝑅). We conclude from this analysis that average
surface area can be used to explain the behavior of free energy in the limit of low pressures with the
cut-off point of 𝑃∗ = 0.72. This is the range of pressures that is of prime interest to us — the one where
a rise in 𝐺 (𝑅) is already present but there is still no maximum, see figure 2(a).

Figure 2. Various properties computed in this work for a system of 𝑁 hard spheres confined to the surface
of a prism. (a) Gibbs free energy in dimensionless units as a function of aspect ratio 𝑅 computed in
systems with 𝑁 = 24 and 𝑁 = 46. Broken lines mark the positions of the minima. Different curves
correspond to different pressures 𝑃∗ = 𝛽𝑃𝜎2 and average ligand densities 𝜌∗ = 𝜂𝑝 = π𝜎2

4
𝑁
𝑆

, as labeled.
Black circle corresponds to the pressure 𝑃∗ = 1.44 at which the first maximum appears. (b) Free energy
vs. average surface area computed for varying 𝑅 in the system with 𝑁 = 28 particles and four different
pressures, as labeled. Good correlation between the two properties is seen at 𝑃∗ = 0.72 (c) Details of
the model we use to explain why rods with large 𝑅 have a lower probability than other shapes of the
nanoparticle. Good agreement is seen for the average surface area as a function of 𝑅 between the model
and simulation at low pressures.

How can one explain the variation of the surface area with 𝑅? To answer this question let us consider
a system of 2D disks on a plane, which is the large-size limit of the system studied. Let us focus on a
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certain tagged particle that is surrounded by other particles, see figure 1(c), particle marked with dark
color. In the infinite system, the other particles exert pressure on the tagged one on all sides. When the
tagged particle is placed near the border in a finite-size prism, the pressure on one side vanishes, causing
the tagged particle to move closer to the border. This movement occurs on all borders of the prism,
causing its surface area to increase. For instance, if a certain square cluster of particles carved out of
the 2D plane of disks at a certain pressure 𝑃 occupies the surface area 𝑆𝑖 , its size increases to 𝑆𝑖 + Δ𝑆

when placed on the facets of a prism at the same pressure, where Δ𝑆 is a positive quantity. Therefore, the
surface area of finite system 𝑆(𝑅) will always be greater that the corresponding surface area of infinite
system 𝑆𝑖 for all geometries of the cell. A simple heuristic model can be used to precisely estimate the
expansion of the cell. Assume that the dimensions of the cell are 𝐿𝑥 and 𝐿𝑧 so that 𝑆𝑖 = 2𝐿2

𝑥 + 4𝐿𝑥𝐿𝑧 .
Assume further that the expansion occurs uniformly on all sides by the same amount 𝑑. The surface area
increase Δ𝑆 = 4𝑑 (2𝐿𝑥 + 2𝐿𝑧) + 2 × 4𝑑𝐿𝑥 = 8𝑑𝐿𝑥 (2 + 𝑅) can then be expressed in terms of initial size
𝐿𝑥 and aspect ratio 𝑅 = 𝐿𝑧/𝐿𝑥 . Now, the initial size can be eliminated with the help of the initial surface
area, 𝐿𝑥 =

√︃
𝑆𝑖

2(1+2𝑅) , resulting in the following expression for the surface area of finite system:

𝑆(𝑅) =
√︁
𝑆𝑖

(√︁
𝑆𝑖 + 8𝑑

√︄
(2 + 𝑅)2

2 + (1 + 2𝑅)

)
. (3.1)

We treated 𝑆𝑖 and 𝑑 as fitting parameters to see how well the predicted ansatz works compared to
simulation. The results are shown in figure 2(c). It is seen that equation (3.1) agrees quite well with
the simulation at low pressures, where it correctly reproduces essential functional features, including a
minimum at 𝑅 = 1. Deviations begin at 𝑃∗ = 0.96, where, as we mentioned earlier, the average surface
area is no longer a good descriptive parameter for the free energy. Our conclusion based on this analysis
is that higher free energy of nanoparticles with elongated shapes at low pressures can be explained by
the general effect associated with their finite size. All finite-size systems expand in size but those with
elongated shapes do so to a greater extent than others due to the specific features of their geometry. As
a consequence, nanorods will appear as a slightly less prominent form of nanopartciles at a low ligand
coverage.

3.2. Geometries allowed by excluded volume interactions

As pressure rises, two changes that take place in the free energy profiles are observed. First, minima
begin do develop at specific aspect ratios 𝑅 separated by maxima. According to figure 2(a) this happens at
𝑃∗ ≈ 2 for both small system with 𝑁 = 24 and large system with 𝑁 = 46. At 𝑃∗ ≈ 5, the minima are fully
developed while the maxima have height greater than 5𝑘𝑇 , which makes them essentially insurmountable
for a spontaneous process driven by temperature. At this point, all conformations of the nanoparticle
can be categorized as those belonging to two zones: a) the allowed zone — corresponding to 𝑅’s near
the minima, and the forbidden zone — comprising conformations centered around maxima. The “zone”
structure of the conformational ensemble is universal and applies to all system sizes. Figure 3(a) shows
our results for 𝑃∗ ≈ 5.29 and 𝑁 varying from 22 to 76: in all depicted curves a series of allowed and
forbidden 𝑅’s are clearly visible. As the size of the system increases, more and more of the allowed
conformations are observed in both elongated — 𝑅 > 1 and compressed — 𝑅 < 1 shapes. With the
number of permitted conformations growing with 𝑁 , one is faced with the problem of how to predict
their structure. After examining numerous structures generated for numerous system sizes we came to
the conclusion that their structure can be derived from the structure of the 2D disk system in the high
density limit — the triangular lattice [16], at least at the qualitative level. The derivation is carried out
separately for nanoplatelets and nanorods.

Nanorods are assembled by stacking several columns of particles together along the long axis of the
prism. If one column contains 𝑛 particles, then a column next to it will have 𝑛−1 particles, see figure 3(b)
for an illustration. The columns are aligned so as to make a triangular lattice. If 𝑚 + 1 is the number of
columns on each side facet, the total number of particles enclosed on all side facets is 𝑁side = (4𝑛− 2)𝑚.
Index 𝑚 can be used to uniquely identify the type of the resulting structure. The rods with 𝑚 = 1 consist
only of two columns. Consequently, the corresponding structure, R1, has the largest possible aspect ratio.
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Structures with 𝑚 = 2, 3 . . . have three columns and so on, giving rise to a decreasing series of aspect
ratios, R2, R3 and so on. Particles on the top and bottom facets cannot make a triangular lattice due
to geometrical considerations. We estimate their number using free volume as the guiding parameter.
Specifically, it follows from figure 3(b) that there can be no top particles in R1 structures, only one particle
in R2 structures and two particles in R3 structures. If we assume that the number of particles thus defined
is a linear function of 𝑚 (a reasonable approximation for small 𝑚), we find that it must be 𝑁top = 𝑚 − 1
in order to reproduce the estimates for 𝑚 = 0, 1 and 2. Thus, the total number of particles confined to the
surface of a prism with structure R𝑚 is 𝑁 = 𝑁side + 2𝑁top = 4𝑛𝑚 − 2, leading to an expression for the
number of particles in one column 𝑛 = 𝑁+2

4𝑚 . This number can be invoked in the expression of the aspect
ratio 𝐿𝑧/𝐿𝑥 = 2√

3
𝑁+2−4𝑚

4𝑚2 , obtained after making substitutions 𝐿𝑥 =
√

3
2 𝜎𝑚 and 𝐿𝑧 = 𝜎(𝑛 − 1), leading

to the final formula 𝑅𝑅
𝑚 = 2√

3
𝑁+2−4𝑚

4𝑚2 , which describes how the aspect ratio of structure R𝑚 depends on
the total number of particles in the system 𝑁 . Figure 3(b) demonstrates how well this dependence works
for R1, R2 and R3 by comparing theoretical predictions with simulation data. Overall there is a very good
agreement between the two sets with average deviation not exceeding 3% for R1 and R2 and 5% for R3,
suggesting that the assumptions made in the derivation of the theoretical model are justified.

Nanoparticles with platelet geometry are discussed in figure 3(c). Notations P𝑚 are used to distinguish
these structures from nanorods. The platelet structure with the lowest 𝑅 is P1, a direct analog of R1. It
consists of two planes covered with hard-sphere particles in a triangular lattice conformation superim-
posed on top of each other. To compute the aspect ratio of this structure, we first estimated the number of
particles that fit within a square with the side comprising exactly 𝑛 particles, see figure 3(c) for a graphical
explanation. It turns out that this number depends on the scale of the square and for 2 ⩽ 𝑛 ⩽ 7 is well
approximated by an expression 𝑁top = 𝑛(𝑛 − 1

2 ), which is suitable for system sizes up to 98 particles.

The total number of particles in P1 is 𝑁 = 2𝑁top = 𝑛(2𝑛 − 1), leading to 𝑛 = 1
4 + 1

2

√︃
1
4 + 2𝑁 . From the

dimensions of the cell 𝐿𝑧 =
√

3
2 𝜎 and 𝐿𝑥 = 𝜎(𝑛 − 1) one then finds the aspect ratio 𝑅𝑃

1 =
√

3√
2𝑁+0.25−1.5

.
Figure 3(c) demonstrates how well this formula works for the studied systems. The deviation between
the theoretical prediction and simulation is less than 8% on average, which is small by all measures.

Platelets with 𝑚 ⩾ 2 are built similarly to rods except that now the columns are not aligned along
the vertical axis but along the horizontal axis. Structures that have complete 𝑚 + 1 rows with either 𝑛
or 𝑛 − 1 particles in each of them, see figure 3(c), form closed-off shells which can accept only new
particles on the top or the bottom facets. Until these facets are full, the geometry of the cell does not
change. Consequently, the aspect ratio of P𝑚 structures is predicted to vary in a step-wise manner as
a function of the number of particles 𝑁 . The exact values at which 𝑅 experiences a change can be
estimated analytically. It is seen from figure 3(c) that a closed-off shell characterized by numbers 𝑛 and
𝑚 consists of 𝑚 + 1 non-identical layers, each of which contains 2𝑛 + 2(𝑛 − 2) = 4(𝑛 − 1) particles. The
total number of particles is 𝑁 = (𝑚 + 1) × 4 × (𝑛 − 1). For fixed 𝑚, this expression produces a series
𝑁𝑚
𝑖

= 4(𝑚 + 1), 8(𝑚 + 1), . . . , 4𝑖(𝑚 + 1) at which 𝑅(𝑁) experiences a jump while remaining constant at
intermediate points. The interval to which a given 𝑁 belongs can be identified by taking the integer part
of the 𝑁

4(𝑚+1) ratio, i.e., computing 𝑖 = Int
(

𝑁
4(𝑚+1)

)
. Using this formula, the aspect ratio of platelets can

be obtained from the cell geometry 𝐿𝑧 +
√

3
2 𝜎𝑚 and 𝐿𝑥 = 𝜎𝑖 as 𝑅𝑃

𝑚 =
√

3
2

𝑚
𝑖
=

√
3

2
𝑚

Int
(

𝑁
4(𝑚+1)

) , where 𝑁 is

any number. How well this formula works for P2 and P3 is shown in figure 3(c) plotting the theoretical
and simulation results. The step-wise character is clearly visible in the simulation data, in good qualitative
agreement with theoretical predictions. From the quantitative perspective, theoretical results are about
13% accurate for P2 structures and 21% accurate for P3 structures, on average. The agreement is worse
than for the nanorods but still acceptable.

3.3. Population of the allowed states

Formulas obtained for 𝑅𝑃
𝑚 and 𝑅𝑅

𝑚 provide a means to determine the conformations that are permitted
in a nanoparticle with 𝑁 ligands, both in the platelet and rod geometries. As a next step, we investigated
the free energy of these conformations as a function of pressure. Our results are summarized in figure 4,
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Figure 3. Various characteristics of the conformational ensemble observed for the nanoparticles at high
pressure. (a) Free energy as a function of 𝑅 for varying 𝑁 , as labeled. The position of the minima is
marked by a vertical broken line. Conformations are classified as either rod or platelet. (b) Theoretical
model for the structure of nanorods. Various details are as labeled and explained in the text. Comparison
of the theoretical and simulation results for the aspect ratio 𝑅(𝑁) in three conformations R1, R2 and
R3. (c) Same information as in (b) but for platelets. Simulation results are compared with theoretical
predictions for 𝑅 for three platelet conformations P1 , P2 and P3 . Good agreement between theory and
simulation is seen for all geometries.

Figure 4. Relative free energy of different conformations as labeled with respect to P1. Data are shown
for different pressures as labeled. The number of particles is varied between 14 and 82.

where free energy is shown relative to P1 structure. The disparity between platelets and rods is clearly
apparent. The rods are strongly destabilized as the number of particles increases. This trend is observed
for R2, R3 and R1, for which it is most prominent. As the pressure increases, the relative free energy
Δ𝛽𝐺 = 𝛽𝐺 (𝑅𝑖) − 𝛽𝐺 (𝑃1), 𝑖 = 1, 2, 3 also increases. At 𝑃∗ = 1.44 for instance, Δ𝛽𝐺 = 12 for R1 but
then it grows to Δ𝛽𝐺 = 15 for 𝑃∗ = 2.59. Interestingly, the free energy difference begins to decline if the
pressure increases beyond this point. At 𝑃∗ = 5.29 it becomes Δ𝛽𝐺 = 8. This trend is observed for all
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rod structures but the magnitude of the free energy difference observed for R2 and R3 is much smaller
than that of R1. At 𝑃∗ = 5.29, all rod structures have a free energy difference lower than Δ𝛽𝐺 = 5.

The free energy difference of platelets is always less than Δ𝛽𝐺 = 5, regardless of pressure or the
number of particles used. Thus, it follows from our simulations that all identified conformations have
approximately the same free energy. Elongated rod shapes with low ligand density on the surface are the
exception to this rule.

4. Discussion

In systems interacting via hard-body potentials, the relevant thermodynamic function is entropy.
Conformations observed experimentally or in simulations are those that exhibit the highest entropy
among all alternative states. For instance, in the system of 2D disks on infinite plane — the limiting
model of the system considered here when 𝑁 → ∞— such conformations are the triangular lattice which
emerges at considerably large densities, specifically at 𝜌∗ > 0.7 [16]. It is a common knowledge that
particles maximize the total volume in which they are allowed to move individually by participating in
periodic collective movements of the lattice known as phonons. The large length scale needed to support
phonons thus emerges as the key prerequisite for lattice conformations to be more stable than alternative
amorphous-like states. The considered system is of finite size and, as such, by definition cannot support
periodic phonons. Yet, we see that triangular lattice conformations fully determine the geometry of the
nanoparticle at high densities. Our simulations show that particles placed in a specific structural motif
— equilateral triangle — are capable of accessing a maximum conceivable volume, just as it happens
in the case of the long wavelength phonons. Local structure thus emerges as an important factor, along
with the long-range order characteristic for lattices, contributing to the stability of the observed structure.
This conclusion broadly agrees with the observation of the hexatic phase in 2D disks, which precedes the
formation of the fully-ordered lattice conformations upon increasing density but possesses only a local
structure, while making the studied system an excellent test-bed model for a general discussion over the
role of short vs. long order in phase transitions.

Figure 5. A representative conformation of the system with 24 particles at 𝜌∗ ≈ 0.4

As far as designing nanoparticles of particular shape is concerned, it is important to understand when
specific shapes become predominant in the ensemble of all possible configurations. Of particular interest
is to determine when the inter-conversion between different configurations becomes hampered, in other
words at which point they become permanently locked. Our simulations show that for the system with
𝑁 = 46 particles, the free energy barriers between various conformations become greater than 5𝑘𝑇 at
𝜌∗ ≈ 0.4, see figure 2(a) for evidence. This number varies a little with the size of the system. Thus,
the configuration of the nanoparticle becomes determined much prior to the density at which structural
transition into the solid state in the hard-sphere sub-system takes place, 𝜌∗ ≈ 0.7. It is evident, therefore,
that the hard-sphere sub-system defines the accessible nanoparticle configurations while remaining in the
fluid state at a considerable degree of dilution. In support of this assertion, figure 5 depicts a representative
conformation at 𝜌∗ ≈ 0.4 in the system with 𝑁 = 24 particles. Furthermore, our simulations show that the
particles experience no kinetic trapping at this density and can freely travel both within single facets as
well as among different facets of the prism. Despite this, the hard-sphere fluid appears to populate certain
specific shapes more frequently than others, which is quite surprising, given the common expectation
that all shapes should be equally accessible to a system in a fluid state. It is not clear at the moment what

23801-11



A. Baumketner, D. Anokhin, Ya. Patsahan

mechanism underlies this phenomenon. What is clear is that ligands will exert a considerable influence
over the shape of the emerging nanoparticle — through excluded volume interactions — even at a low
surface coverage. Notably, ligands do not have to be arranged into any particular configurations in order
to create strong structural preference. This effect should be taken into account when considering different
choices of ligands that may vary in their size or shape.
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Excluded volume effect of surfactant ligands on the shape of nascent nanocrystal

Вплив виключеного об’єму лiгандiв на форму нанокристалу

A. Баумкетнер1, Д. Анохiн2, Я. Пацаган3
1 Iнститут фiзики конденсованих систем Нацiональної академiї наук України, вул. Свєнцiцького, 1,
79011 Львiв, Україна

2 Хiмiчний факультет, Харкiвський нацiональний унiверситет iменi В.Н. Каразiна, майдан Свободи 4,
61022 Харкiв, Україна

3 Фiзичний факультет, Львiвський нацiональний унiверситет iм. Iвана Франка, вулиця Кирила i Мефодiя,
8, 79005 Львiв, Україна

Нами було дослiджено вплив виключеного об’єму поверхнево-активних лiгандiв на форму квантових то-
чок (КТ), до яких вони приєднанi. Було розглянуто модель, в якiй лiганди представленi твердими сферами,
що зв’язанi з поверхнею наночастинки (НК), що має форму призми. У моделюваннi методомМонте-Карло
виявлено, що ансамбль вiдповiдних конформацiй НК складається з невеликої кiлькостi специфiчних ста-
нiв, якi набувають форми нанопластин та наностержнiв. Форму цих станiв добре описують отриманi тео-
ретичнi моделi. При збiльшеннi щiльностi лiгандiв вiльна енергiя рiзних станiв приблизно однакова, що
свiдчить про те, що взаємодiї виключеного об’єму мiж лiгандами звужують конформацiйний простiр, до-
ступний для НК, не створюючи статистичної переваги для будь-якої конкретної конфiгурацiї.

Ключовi слова: нанокристали, твердi кульки, комп’ютернi симуляцiї
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