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We proposed a new extended version of Enskog theory for the description of the self-diffusion coefficient of a
colloidal hard-sphere fluid adsorbed in a matrix of disordered hard-sphere obstacles. In a considered approach
instead of contact values of the fluid-fluid and fluid-matrix pair distribution functions, we introduced by input
the new functions that include the dependence on the fraction of the volume free frommatrix particles and from
fluid particles trapped by matrix particles. It is shown that the introduction of this free volume fraction by the
Fermi-like distribution leads to the best agreement between theoretical predictions and computer simulation
results [Chang R., Jagannathan K., Yethiraj A., Phys. Rev. E, 2004, 69, 051101].
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1. Introduction

This paper is devoted to the 100th anniversary of the birth of the well-known Ukrainian scientist
Igor Yukhnovskii, who was our teacher and founder of the Institute for Condensed Matter Physics of the
National Academy of Sciences of Ukraine. One of us (Myroslav Holovko) had the great pleasure and
benefit of working with him for nearly 60 years, starting from 1965.

For the last time, starting from the pioneering paper of Madden and Glandt [1], much theoretical
effort has been devoted to the study of fluid adsorption in disordered porous media. According to
the model of Madden and Glandt, a disordered porous medium is presented as a matrix of quenched
configurations of randomly distributed obstacles. The specificity of such an approach is connected with
the double quenched-annealed averages: the annealed average is taken over all fluid configurations with
fixed coordinates of matrix obstacles, and after that, an additional quenched average should be taken for
the free energy of the fluid at fixed coordinates of matrix particles over all realizations of the matrix.

One of the simplest models for the fluid in porous media is a hard sphere fluid in a hard sphere matrix.
For the analytical description of thermodynamical properties of such a model, Holovko and Dong [2] have
proposed to extend the classical scaled particle theory (SPT) [3] to hard-sphere fluid in porous media.
After that the SPT approach for hard sphere fluids in disordered porous media was essentially improved
and developed [4–8]. The approach proposed in [2], named SPT1, contains a subtle inconsistency that was
eliminated in the approach named SPT2 [5]. As a result, the first rather accurate analytical expressions
were obtained for the chemical potential and pressure of a hard sphere fluid confined in a hard sphere
matrix. The obtained expressions include three parameters defining the porosity of the matrix. The first
one is the coefficient of geometric porosity

𝜙0 = 1 − 𝜂0 (1.1)

This work is licensed under a Creative Commons Attribution 4.0 International License. Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

23605-1

https://doi.org/10.5488/CMP.28.23605
http://www.icmp.lviv.ua/journal
https://orcid.org/0000-0001-8114-5356
https://orcid.org/0000-0003-3455-0468
https://creativecommons.org/licenses/by/4.0/


M. F. Holovko, M. Ya. Korvatska

characterizing the free volume, which is not occupied by the matrix obstacles, 𝜂0 = 1
6 π𝜌0𝜎

3
0 is the part

of the volume occupied by the matrix obstacles with the size 𝜎0 and the density 𝜌0 = 𝑁0/𝑉 . The second
parameter

𝜙 = 𝜙0 exp

{
− 𝜂0𝜏

1 − 𝜂0

[
3(1 + 𝜏) + 9

2
𝜂0

1 − 𝜂0
𝜏 +

1 + 𝜂0 + 𝜂2
0

(1 − 𝜂0)2 𝜏2

]}
(1.2)

is the coefficient of probe particle porosity defined by the excess chemical potential of a fluid in the limit
of infinite dilution. It characterizes the adsorption of a fluid in an empty matrix. 𝜏 = 𝜎1/𝜎0, where 𝜎1 is
the size of a fluid hard sphere. The third parameter 𝜙∗ is defined by the maximum value of the packing
fraction of hard sphere fluid in a porous media. The general expression for 𝜙∗ was proposed in [7, 8]

𝜙∗ =
𝜙0𝜙

𝜙0 − 𝜙
ln

𝜙0
𝜙
, (1.3)

which is exact for the one-dimensional case and can be considered as an appropriate approximation for
higher dimensions.

We note that in the case of simple fluids, the sizes of fluid particles are considerably lower than the
sizes of matrix particles, and we can put 𝜏 = 0. In such a situation 𝜙 = 𝜙∗ = 𝜙0, and the influence of
porous media is connected only with the excluded volume of matrix particles described by 𝜙0. However,
in the case of colloidal fluid, the sizes of colloidal and matrix particles can be comparable, and in such a
situation, we can put 𝜏 = 1 and 𝜙 < 𝜙∗ < 𝜙0. Under such conditions, the effects described by all porosity
coefficients are important. In particular, in addition to the effects of excluded volume by matrix particles
described by coefficient 𝜙0, the coefficient 𝜙 also includes the effects from fluid particles adsorbed by
matrix particles. We would like to emphasize that even in the case of point matrix particles at 𝜎0 = 0,
𝜙0 = 1 and 𝜙 = exp(−𝜂0𝜏

3) ≠ 1, where 𝜂0𝜏
3 = 1

6 π𝜌0𝜎
3
1 . Such a situation corresponds to the porous

media created by frozen point defects.
The SPT2 is also useful for the description of the static structure of hard sphere fluids in disordered

porous media. Especially in [9] and [10], simple and rather accurate expressions were obtained for the
contact values of the fluid-fluid and fluid-matrix pair distribution functions, correspondingly.

𝑔11(𝜎11) =
1

𝜙0 − 𝜂1
+ 3

2
𝜂1 + 𝜂0𝜏

(𝜙0 − 𝜂1)2 + 1
2
(𝜂1 + 𝜏𝜂0)2

(𝜙0 − 𝜂1)3 , (1.4)

𝑔10(𝜎10) =
1

𝜙0 − 𝜂1
+ 3

1 + 𝜏

𝜂1 + 𝜂0𝜏

(𝜙0 − 𝜂1)2 + 2
(1 + 𝜏)2

(𝜂1 + 𝜏𝜂0)2

(𝜙0 − 𝜂1)3 , (1.5)

where 𝜂1 = 1
6 π𝜌1𝜎

3
1 is the packing fraction of fluid hard spheres with the size 𝜎1 and the density

𝜌1 = 𝑁1/𝑉 , 𝜎10 = 1
2 (𝜎0 + 𝜎1). We note that we use the conventional notation [4–10]: the index “1”

denotes the fluid component and the index “0” denotes the matrix particles.
The obtained expressions (1.4)–(1.5) for the contact values were used by us in [10], similar to the

bulk case [11], as a source of input information in the Enskog theory for the description of transport
properties of hard sphere fluids in porous media. For this purpose in [10], the hard sphere fluid confined
in disordered porous media was considered as a two-component mixture, one of which is quenched and
is treated as hard-sphere particles with infinite mass. However, the comparison between the self-diffusion
coefficient of hard-sphere fluid in a porous hard-sphere matrix calculated from Enskog theory modified
in such a way and computer simulation data obtained in the Yethiraj group [12] shows a systematic
overestimation of theoretical prediction, which increases with the increasing fraction of matrix particles.

It means that the treatment of quenched matrix particles as the particles with infinite mass is not
sufficient for modeling the fluid in porous media. It is very important in the formation of the input
information for the extended Enskog theory for the transport properties of fluid in porous media to take
into account that matrix particles are immobile and fluid particles are mobile. As a result, the fluid
particles can be either hindered in their motion by cages formed by other mobile fluid particles or trapped
by the immobile matrix particles. Each of these processes and their interplay are responsible for slowing
down the dynamics of the fluid and leading to a complex dynamic behavior of fluid in random porous
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media [13]. In this paper, we show that such complex dynamics of fluid strongly correlates with the ratio
𝜙

𝜙0
, which characterizes the fraction of the volume free from matrix particles and also free from fluid

particles trapped by matrix particles. In our previous paper [10], we note that such improvement of the
description of transport properties of fluid in porous media strongly correlates with the description of
thermodynamic properties of hard sphere fluids in random porous media, where the dependence on 𝜙0
and 𝜙 is also very important.

The paper is organized as follows. In section 2 we briefly summarize our previous results [10] for
the diffusion of the hard-sphere fluid in random porous media with a corresponding generalization and
improvement. In section 3, numerical results are presented together with the comparison with computer
simulation data. Finally, we draw conclusions in the last section.

2. Extended Enskog theory for hard sphere fluids in disordered porous
media

The original Enskog equation for hard sphere fluids was formulated over a hundred years ago [14] as
the generalization of the Boltzmann kinetic equation to high densities of hard sphere fluids by including
the pressure non-ideal term as a multiplier. Due to the virial theorem [15], this multiplier can be presented
in the form

𝑃1
𝜌1𝑘𝑇

− 1 = 4𝜂1𝑔11(𝜎1), (2.1)

where 𝑃1 is the pressure of hard sphere fluid, 𝑘 is the Boltzmann constant, and 𝑇 is the absolute
temperature. 𝑔11(𝜎1) is the contact value of the pair distribution function, which is introduced in Enskog
theory in a semi-empirical way as an input parameter.

In the Enskog theory, only binary collisions between hard spheres are taken into account, and the
collision is considered completely independent and instantaneous [11]. Since each collision process in
hard sphere fluid is instantaneous, the self-diffusion coefficient 𝐷1 is related to the corresponding friction
coefficient 𝜉1 via the Einstein relation as

𝐷1 = 𝑘𝑇/𝜉1, (2.2)

where 𝜉1 is the friction coefficient in the stationary limit.
The presented results can be easily generalized to the hard-sphere mixtures, and after that, we can

follow [10, 12] and mimic a hard sphere fluid in a hard sphere matrix by a binary mixture where one
component is infinitely massive. As a result, we will have

𝜉1 = 32

(
𝑘𝑇𝑚1

2π𝜎2
11

)1/2 [
1
√

2
𝜂1𝑔11(𝜎11) +

1
4
𝜏(𝜏 + 1)2𝜂0𝑔10(𝜎10)

]
, (2.3)

where the expressions for the contact values 𝑔11(𝜎11) and 𝑔10(𝜎10) are given by the expressions (1.4)
and (1.5).

In accordance with (2.2), we have the following expression for the self-diffusion coefficient of a hard
sphere fluid in a disordered porous medium.

𝐷1/𝐷0
1 =

√
2π

32

[
1
√

2
𝜂1𝑔11(𝜎11) +

1
4
𝜏(𝜏 + 1)2𝜂0𝑔10(𝜎10)

]−1
, (2.4)

where 𝐷0
1 =

(
𝑘𝑇𝜎2

11/𝑚1
)1/2, 𝑚1 is the mass of the fluid particle. For pure hard-sphere fluid 𝜂0 = 0,

and (2.4) reduces for well-known results for pure hard-sphere fluid [11]

𝐷1 =
1
16

(
𝑘𝑇𝜎2

11/𝑚1
)1/2

𝜂1𝑔11(𝜎11)
. (2.5)

However, in the presence of porous media, there is no simple expression like (2.1) for the pressure and
in expression (2.4) for the self-diffusion coefficient, the contact value 𝑔11(𝜎11) and 𝑔10(𝜎10) should be
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changed into a new property 𝐺11(𝜎11) and 𝐺10(𝜎10), which should include the dependence on the probe
particle porosity 𝜙 and the effect of trapping of mobile fluid particles by immobile matrix particles. In our
previous paper [10], we discussed such a modification only for 𝑔10(𝜎10). In this paper we also propose
such a modification for 𝑔11(𝜎11). First of all, new functions 𝐺10(𝜎10) and 𝐺11(𝜎11) should include the
following ratio as the multiplier

𝜙0
𝜙

= exp

[
3𝜏(1 + 𝜏)𝜂0

1 − 𝜂0
+ 9

2
𝜂2

0
(1 − 𝜂0)2 𝜏

2 +
1 + 𝜂0 + 𝜂2

0
(1 − 𝜂0)3 𝜂0𝜏

3

]
. (2.6)

The inverse value of this ratio 𝜙

𝜙0
characterizes the fraction of volume free from matrix particles and

free from fluid particles trapped by matrix particles. Similar to the description of thermodynamic prop-
erties [6–8], we can put

𝐺10(𝜎10) =
𝜙0
𝜙

[
1

1 − 𝜂1/𝜙
+ 3

1 + 𝜏

𝜂1/𝜙0

(1 − 𝜂1/𝜙0)2 + 2
(1 + 𝜏)2

(𝜂1/𝜙0)2

(1 − 𝜂1/𝜙0)3

]
. (2.7)

The first term in (2.7) has a divergence at 𝜂1 = 𝜙, and similar to the thermodynamic consideration in [10],
we change 1/(1 − 𝜂1/𝜙) to

1
1 − 𝜂1/𝜙

=
1

1 − 𝜂1/𝜙0
+ 𝜂1(𝜙0 − 𝜙)
𝜙0𝜙(1 − 𝜂1/𝜙0)2 + · · · (2.8)

and 𝑔10(𝜎10) we change into

𝐺10(𝜎10) =
𝜙0
𝜙

[
1

1 − 𝜂1/𝜙0
+ 𝜂1(𝜙0 − 𝜙)
𝜙0𝜙(1 − 𝜂1/𝜙0)2 + 3

1 + 𝜏

𝜂1/𝜙0

(1 − 𝜂1/𝜙0)2

+ 2
(1 + 𝜏)2

(𝜂1/𝜙0)2

(1 − 𝜂1/𝜙0)3

]
. (2.9)

Similar manipulation leads to the change 𝑔11(𝜎11) into

𝐺11(𝜎11) =
𝜙0
𝜙

[
1

1 − 𝜂1/𝜙0
+ 𝜂1(𝜙0 − 𝜙)
𝜙0𝜙(1 − 𝜂1/𝜙0)2 + 3

2
𝜂1/𝜙0

(1 − 𝜂1/𝜙0)2 + 1
2

(𝜂1/𝜙0)2

(1 − 𝜂1/𝜙0)3

]
. (2.10)

As a result, for the self-diffusion coefficient of a hard-sphere fluid in a hard-sphere matrix, we have a new
expression

𝐷1/𝐷0
1 =

√
2π

32

[
1
√

2
𝜂1𝐺11(𝜎11) +

1
4
𝜏(𝜏 + 1)2𝜂0𝐺10(𝜎10)

]−1
, (2.11)

which differs from (2.4) only by changes 𝑔11(𝜎11) and 𝑔10(𝜎10) into 𝐺11(𝜎11) and 𝐺10(𝜎10) given by
the expressions (2.10) and (2.9), correspondingly.

We should note that the new functions 𝐺11(𝜎11) and 𝐺10(𝜎10) are not contact values of pair distri-
bution functions in contrast to 𝑔11(𝜎11) and 𝑔10(𝜎10).

3. Results and discussions

In this section we discuss the effect of the packing fraction of hard sphere fluid 𝜂1 and the packing
fraction of hard-sphere porous media 𝜂0 on the self-diffusion coefficient 𝐷1. To this end, we use the ex-
pression (2.11) obtained in the previous section in the framework of the extended Enskog theory (EET).
The generalized functions 𝐺10(𝜎10) and 𝐺11(𝜎11) are given by the expressions (2.9) and (2.10), corre-
spondingly. Figure 1a depicts the self-diffusion coefficient 𝐷1 as a function of 𝜂1 at a fixed value of 𝜂0
predicted from generalized Enskog theory for the case 𝜏 = 1 at different values of 𝜂0. The results of
computer simulations obtained in the Yethiraj group [12] are also presented for comparison. As we can
see, with an increase of 𝜂1 or 𝜂0, the self-diffusion coefficient 𝐷1 decreases monotonously. We have a
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Figure 1. (Colour online) Comparison of the EET prediction equation (2.4) and computer simulation
results [12] for the diffusion coefficient 𝐷1 for hard sphere fluid in hard sphere matrix as a function
of fluid packing fraction 𝜂1 for different matrix packing fractions 𝜂0 and for 𝜏 = 1. The solid line
corresponds to the theoretical prediction EET. Panel a: Functions 𝐺10 (𝜎10) and 𝐺11 (𝜎11) are given by
the expressions (2.9) and (2.10), correspondingly. Panel b: Functions 𝐺11 (𝜎11) = 𝑔11 (𝜎11) and is given
by the expressions (1.4). 𝐺10 (𝜎10) is given by the expressions (2.9).

more or less correct agreement between theoretical prediction and computer simulation data only for the
bulk case (𝜂0 = 0) and for a sufficiently dense matrix packing fraction 𝜂0 = 0.2. However, for intermediate
values 𝜂0 = 0.05, 0.1, and 0.15, the EET at all 𝜂1 slightly reestimates the value of 𝐷1. For 𝜂0 = 0, the
result is not strange because for the bulk case (𝜂0 = 0) the EET reduces to a standard Enskog theory,
which is correct for the bulk case [11]. The correct agreement between the theoretical result and computer
simulation data for the dense matrix at 𝜂0 = 0.2 suggests a possible way for improvement of the EET
for intermediate values of 𝜂0, which will be considered later. For comparison, in figure 1b we repeat the
result from our previous paper [10], in which 𝐺11(𝜎11) = 𝑔11(𝜎11) is defined by the expression (1.4) and
𝐺10(𝜎10) is taken in the form (2.9). We note that in this paper, in contrast to our previous paper [10], we
continue the calculated curves to lower values of 𝜂1 up to 𝜂1 = 0.01. As we can see at small 𝜂1, the results
in both figures 1a and 1b coincide more or less, and theory overestimates the values of 𝐷1 at small 𝜂1.
It means that at small fluid parameter 𝜂1, the function 𝐺10(𝜎10) dominates and slightly underestimates
the values of the diffusion coefficient. For higher density of fluid, the function 𝐺11(𝜎11) underestimates
the values of the diffusion coefficient as well, and the calculated values of the diffusion coefficient 𝐷1
are underestimated at all values 𝜂1. However, the change from 𝐺11(𝜎11) to 𝑔11(𝜎11) underestimates the
role of fluid-fluid correlation for the diffusion coefficient. As a result, due to compensation inaccuracy
of matrix-fluid and fluid-fluid correlation in terms of 𝐺10(𝜎10) and 𝑔10(𝜎10), the change of 𝐺11(𝜎11)
to 𝑔11(𝜎11) with an increase of the fluid density parameter 𝜂1 as we can see from figure 1b leads to an
improvement of the theoretical description of diffusion coefficient 𝐷1.

Now, we return to the discussion of the problem of the EET for the intermediate values of 𝜂0, which
appears from the consideration of figure 1a. From the analyses of figure 1a, we see that some kind of
restriction should be taken into account for the parameter 𝜙

𝜙0
, which was introduced by us for the function

𝐺10(𝜎10) and 𝐺11(𝜎11) defined by the expressions (2.9) and (2.10). In the present paper, this multiplier
is modified by the function of 𝜂0 and 𝜙

𝜙0
, which change from 1 near the bulk case (at small 𝜂0) to 𝜙

𝜙0
near the saturated value 𝜂∗0, which is defined by the porous material and specific fluid. For the considered
case, as we can see from figure 1a, to reach an agreement with computer simulation data, it is possible
to fix 𝜂∗0 = 0.4. In this paper we suggest taking the discussed multiplier in the Fermi-like form. It means
that, according to this correction, the inverse value of the volume free from the matrix particles and from
fluid particles trapped by the matrix particles will have Fermi-like for dependence on 𝜂0 instead of 𝜙0

𝜙
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considered in the previous section

𝜙0
𝜙

→ 1
1 +

( 𝜙

𝜙0
− 1

)
exp [𝛼(𝜂0 − 𝜂∗0)]

, (3.1)

where we have introduced the parameter 𝛼. We consider this parameter as the fitting parameter. It makes
it possible to control the role of the packing fraction of matrix particles 𝜂0 in order to improve the
agreement between theoretical description and computer simulation data. We note that a similar problem
also appears in the theory of the electrical double layer, where, due to saturation of the adsorption ions
on the charged surface, there arises a problem of changing the Poisson–Boltzmann distribution into the
Poisson–Fermi distribution [16]. We note that near the bulk case, the packing fraction of porous material
𝜂0 is small and the multiplier parameter (3.1) is equal to

1
1 +

( 𝜙

𝜙0
− 1

)
exp (−𝛼𝜂∗0)

≈ 1, (3.2)

and we return to the expression (2.4) for the EET for hard spheres in porous media. In the opposite case
when parameter 𝜂0 = 𝜂∗0, the multiplier parameter (3.1) is equal to

1
1 +

( 𝜙

𝜙0
− 1

) =
𝜙0
𝜙
, (3.3)

and we return to the case of EET considered in the previous section. Having changed the ratio 𝜙0
𝜙

to (3.1),
the functions𝐺11(𝜎11) and𝐺10(𝜎10) introduced by us in the EET approach in the form of (2.9) and (2.10)
will be given by the expressions:

𝐺10(𝜎10) =
1

1 +
( 𝜙

𝜙0
− 1

)
exp [𝛼(𝜂0 − 𝜂∗0)]

[
1

1 − 𝜂1/𝜙0

+ 𝜂1(𝜙0 − 𝜙)
𝜙0𝜙(1 − 𝜂1/𝜙0)2 + 3

1 + 𝜏

𝜂1/𝜙0

(1 − 𝜂1/𝜙0)2 + 2
(1 + 𝜏)2

(𝜂1/𝜙0)2

(1 − 𝜂1/𝜙0)3

]
. (3.4)

Similar manipulation leads to the change 𝑔11(𝜎11) into:

𝐺11(𝜎11) =
1

1 +
( 𝜙

𝜙0
− 1

)
exp [𝛼(𝜂0 − 𝜂∗0)]

[
1

1 − 𝜂1/𝜙0

+ 𝜂1(𝜙0 − 𝜙)
𝜙0𝜙(1 − 𝜂1/𝜙0)2 + 3

2
𝜂1/𝜙0

(1 − 𝜂1/𝜙0)2 + 1
2

(𝜂1/𝜙0)2

(1 − 𝜂1/𝜙0)3

]
. (3.5)

This version of the extension of Enskog theory for hard-sphere fluid in porous media we consider as a new
extended Enskog theory (NEET). For the usual Fermi-like distribution, we put 𝛼 = 1. The comparison
of the NEET prediction and computer simulation results [12] for the self-diffusion coefficient 𝐷1 for the
hard-sphere fluid in the hard-sphere matrix as a function of fluid packing fraction 𝜂1 for the different
matrix fractions 𝜂0 and for 𝜏 = 1 is presented in figure 2a. As we can see, the agreement between
theoretical and simulation results is improved in the framework of NEET. We have a good agreement
between theoretical and computer simulation results for 𝜂0 = 0 and 𝜂0 = 0.2. However, for other values
of 𝜂0, the theory slightly underestimates the computer simulation data. In order to improve a theoretical
description, we can use parameter 𝛼. The corresponding results for 𝛼 = 3 are presented in figure 2b.
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Figure 2. (Colour online) Comparison of the NEET prediction equation (2.4) and computer simulation
results [12] for the diffusion coefficient 𝐷1 for hard sphere fluid in hard sphere matrix as a function of
fluid packing fraction 𝜂1 for different matrix packing fractions 𝜂0 and for 𝜏 = 1. Functions 𝐺10 (𝜎10)
and 𝐺11 (𝜎11) are given by the expressions (3.2) and (3.3), correspondingly. The solid line corresponds
to the theoretical prediction NEET. Panel a: 𝛼 = 1. Panel b: 𝛼 = 3.

4. Conclusions

In this paper we propose a new extended version of the Enskog theory for hard sphere fluids in
disordered porous media. In the developed approach, we introduce the new functions 𝐺10(𝜎10) and
𝐺11(𝜎11) as generalizations of fluid-matrix and fluid-fluid contact values, which are used as an input
information in the EET. The functions 𝐺10(𝜎10) and 𝐺11(𝜎11) include the dependence on the fraction of
the volume free from matrix particles and fluid particles trapped by matrix particles and are defined by
the ratio of geometrical porosity 𝜙0 to thermodynamical porosity 𝜙. The proposed extended version of
Enskog theory is used for the description of the self-diffusion coefficient of hard-sphere fluid in disordered
porous media. It is shown that the introduction of the dependence of the multiplier on the ratio 𝜙0

𝜙
in

Fermi-like form (3.1) into the dependence of the function 𝐺10(𝜎10) and 𝐺11(𝜎11) on the matrix packing
fraction 𝜂0 leads to the best agreement between theoretical prediction results and computer simulation
data obtained in group Yethiraj [12] for all considered values of fluid particle and matrix particle packing
fractions 𝜂1 and 𝜂0, correspondingly. The Fermi-like form (3.1) has two additional parameters, 𝛼 and
𝜂∗0, which can be considered as adjustables. The parameter 𝛼 regulates the influence of the packing
fraction of matrix particles 𝜂0 on the transport properties of hard-sphere fluid in porous media. The
second parameter, 𝜂∗0, corresponds to the saturated value of the packing fraction 𝜂0 of porous media near
which due to the percolation process of the fluid in porous media, the transport properties sharply change
[17]. The formed fluid clusters are fractal, the diffusion will be anomalous, and the description should be
modified.

In this paper we focus on the description of the self-diffusion coefficient of hard-sphere fluid in porous
media. For the description of more real systems, an additional interaction should be taken into account.
To this end, we plan to improve the theoretical treatment in order to combine the Langevin equation with
the application of the Mori projector operator method [18] and mode-coupling theory approach [19].

We also intend to generalize the results obtained in this paper to patchy colloids in disordered porous
media. The previous results in approximations considered in [10] were already presented in [20].
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Про дифузiю твердокулькового плину в невпорядкованих
пористих середовищах: нова розширена теорiя Енскога

М. Головко, М. Корвацька
Iнститут фiзики конденсованих систем Нацiональної академiї наук України, вул. Свєнцiцького, 1, 79011
Львiв, Україна

Ми запропонували нову розширену версiю теорiї Енскога для опису коефiцiєнта самодифузiї плину твер-
дих сфер в невпорядкованих пористих середовищах. У розглянутому пiдходi замiсть контактних значень
парних функцiй розподiлу “плин-плин” та “плин-матриця” ми ввели новi функцiї, якi включають зале-
жнiсть вiд частки об’єму, вiльного вiд частинок матрицi та вiд частинок плину, захоплених частинками
матрицi. Показано, що введення цiєї вiльної об’ємної частки за допомогою Фермi-подiбного розподiлу
призводить до найкращої узгодженостi мiж теоретичними прогнозами та результатами комп’ютерного
моделювання [Chang R., Jagannathan K., Yethiraj A., Phys. Rev. E, 2004, 69, 051101].

Ключовi слова: твердокульковий флюїд, невпорядкованi пористi середовища, теорiя масштабної
частинки, розширена теорiя Енскога, коефiцiєнт самодифузiї
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