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Active microrheology of fluids with orientational
order
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We study the dynamics of a driven spherical colloidal particle moving in a fluid with a broken rotational symme-
try. Using a nematic liquid crystal as amodel, we demonstrate that when the applied force is not aligned along or
perpendicular to the orientational order, the colloidal velocity does not align with the force, but forms an angle
with respect to the pulling direction. This leads to blue an anisotropic hydrodynamic drag tensor which depends
on the material parameters. In the case of nematic liquid crystal, we give an analytical expression and discuss
the resulting implications for active microrheology experiments on fluids with broken rotational symmetry.
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1. Introduction

Understanding the flow properties of complex fluids is a challenging goal. Various techniques have
been developed to probe the hydrodynamic response of the fluids to external stimuli. An example of this
is provided by shear rheology, which allows the measurement of the bulk viscosity 𝜂. Another modern
technique is called microrheology, which consists of measuring the hydrodynamic drag experienced by
a spherical colloidal particle moving in the fluid due to external [1] or thermal [2] forces. In the case of
an external force, the resulting force-velocity curves can be analyzed by using Stokes’ law [3]: a particle
of size 𝑅 moving at velocity 𝑣 in a fluid of viscosity 𝜂 experiences an hydrodynamic drag proportional to
these quantities, −𝜉𝑣 with 𝜉 = 6π𝜂𝑅, which balances the external force 𝐹.

The situation is markedly different when the host fluid has a broken rotational symmetry, such as the
orientational order observed in liquid crystals [4], sheared polymer solutions [5–7] and various biological
fluids [8–10]. Then, the viscous response is described by a fourth-order tensor 𝜂𝑖 𝑗𝑘𝑙 acting on the stress
components 𝜎𝑘𝑙 [4], and the resulting hydrodynamic drag force on a spherical bead does not necessarily
align with the velocity v of the particle [11]. In other words, the drag coefficient 𝜉𝑖 becomes a second-order
tensor.

A typical example of fluids with orientational order is provided by thermotropic liquid crystals in a
nematic state. Here, the molecules are, on average, aligned along a common direction, characterised by
a vector field n̂ with a head-to-tail symmetry. Recent experimental, theoretical and simulations studies
have quantified the drag coefficient 𝜉𝑖 = 6π𝜂𝑖𝑅 of a spherical colloid, parallel and perpendicular to n̂,
and observed 𝜉⊥

𝜉| |
=
𝜂⊥
𝜂| |

∼ 2 [11–17]; this relation also defines effective viscosities 𝜂⊥ and 𝜂∥ .
Here, we study a general case of a spherical particle (radius 𝑅) dragged through a nematic liquid

crystal (LC) with an angle 𝜃 between the pulling force F and the nematic director n̂. We show that
when the pulling direction is between the limiting case of parallel (𝜃 = 0◦) and perpendicular (𝜃 = 90◦)
to the nematic direction, the force and velocity do not align, but a sliding motion is observed. This is
characterised by an angle 𝛼 between the vectors F and v.

Interpreting this by using the general force-velocity relation via Stokes’ law leads to an effective drag
response (and thus viscosity) which depends both on the 𝜃 and the ratio of the drag coefficients parallel
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Figure 1. (Colour online) (a) Schematic of the system. (b) The observed steady state trajectories of the
particles in the 𝑥 − 𝑧 space (symbols) in the absence of surface anchoring (𝑊𝑅/𝐾 = 0). The solid lines
show the direction of the applied force. When 0◦ < 𝜃 < 90◦, the force and velocity are not aligned, but
the particles move on a straight trajectory with an angle 𝛼 with respect to the applied force.

and perpendicular to the nematic director. We give analytical expressions for both the generalized drag
coefficient 𝜉eff = −𝐹/𝑣 and the sliding angle 𝛼, and validate them by lattice Boltzmann simulations.

2. Methods

The nematic order is described by a symmetric and traceless tensor order parameter Q, which time
evolution follows a hydrodynamic equation [18]

(𝜕𝑡 + 𝑢𝜈𝜕𝜈)𝑄𝛼𝛽 − 𝑆𝛼𝛽 = Γ𝐻𝛼𝛽 , (2.1)

where the first part describes the advection and 𝑆𝛼𝛽 describes the possible rotation/stretching of Q by
the flow [18]. Γ is the rotational diffusion constant. The molecular field is

𝐻𝛼𝛽 = −𝛿F/𝛿𝑄𝛼𝛽 + (𝛿𝛼𝛽/3)Tr(𝛿F/𝛿𝑄𝛼𝛽), (2.2)

where F is a Landau-de Gennes free-energy whose density can be expressed in terms of a symmetric
and traceless order parameter tensor Q as F = 𝐹 (𝑄𝛼𝛽) + 𝐾

2 (𝜕𝛽𝑄𝛼𝛽)
2, with

𝐹 (𝑄𝛼𝛽) = 𝐴0

(
1 − 𝛾

3

) 𝑄2
𝛼𝛽

2
− 𝛾

3
𝑄𝛼𝛽𝑄𝛽𝛾𝑄𝛾𝛼 + 𝛾

4
(𝑄2

𝛼𝛽)2, (2.3)

where Greek indices denote Cartesian coordinates and summation over repeated indices is implied. 𝐴0 is
a free energy scale, 𝛾 is a temperature-like control parameter giving a order/disorder transition at 𝛾 ∼ 2.7,
and 𝐾 is an elastic constant. The anchoring at the particle surface is modelled by 𝑓𝑠 = 𝑊 (𝑄𝛼𝛽 −𝑄0

𝛼𝛽
)2,

where 𝑊 is the anchoring strength and 𝑄0
𝛼𝛽

is the preferred alignment of the nematic director at the
particle surface.

The fluid velocity obeys the continuity 𝜕𝛼𝑢𝛼 = 0, and the Navier-Stokes equations. These are coupled
to the LC via a stress tensor. We employ a 3D lattice Boltzmann algorithm to solve the equations of
motion (for further details see e.g. [16, 19]).

The colloids are modelled as spherical particles, with a no-slip boundary condition. The no-slip
boundary condition at the fluid/solid interface is realized by a standard method of bounce-back on links
(BBL) [20, 21] and it can be modified to take into account the moving particle surface [22].

The dynamics of our system is governed by the Reynolds (Re) and Ericksen (Er) numbers, measuring
the ratios between inertial and viscous forces as well as viscous and elastic forces, respectively. Using
our simulation parameters 1, we get the upper limits of Re = 𝑣𝑅

𝜂
≈ 0.03 and Er = 𝛾1𝑣𝑅

𝐾
≈ 1.5, where 𝛾1

is the rotational viscosity of the nematic LC.

1Parameters were (in simulation units): 𝐴0 = 0.1, 𝐾 ≃ 0.01, 𝜉 = 0.7, 𝛾 = 3.0, 𝑞 = 1/2 , Γ = 0.3, 𝑊 = 0 or 0.01 and a
particle radius 𝑅 = 4.0. These give 𝜏 = 0, and 𝛾1 =

2𝑞2
Γ

= 5
3 . A cubic simulation box 16𝑅 × 16𝑅 × 16𝑅 with periodic boundary

conditions, was used.
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Figure 2. (Colour online) An example of the active microrheological measurement of particles with no
surface anchoring (𝑊𝑅/𝐾 = 0), corresponding to the sample in figure 1. The particles were pulled in the
nematic LC with a force 𝐹 at an angle 𝜃 with respect to the nematic director n̂, and the magnitude 𝑣 of
the velocity v was measured. The solid lines are linear fits 𝐹 = 𝜉𝑣.
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Figure 3. (Colour online) The difference between the sliding angle𝛼 and the pulling angle 𝜃 as a function of
𝜃. The symbols correspond to LB simulations and the solid lines are theoretical predictions (equation 3.3)
calculated using the ratio 𝜉⊥

𝜉| |
from figure 4.

3. Results

We study the hydrodynamic drag of a spherical particle pulled through a nematic liquid crystal with a
force F on an angle 𝜃 with respect to the nematic director n̂ (figure 1a). In addition to the situation where
particle surface does not influence the orientation of the nearby liquid crystal molecules (𝑊𝑅/𝐾 = 0),
we also consider a strong homeotropic or degenerate planar anchoring conditions (𝑊𝑅/𝐾 = 4), where
the director adopts either normal or planar orientation with respect to the particle surface, giving a rise
to Saturn ring or boojum defects, respectively.

When the force is aligned along (𝜃 = 0◦) or perpendicular (𝜃 = 90◦) to n̂, the particle moves along
the force with a speed 𝑣. This allows for a microrheological measurement of the drag coefficients along
and perpendicular to the nematic order, where 𝜉⊥

𝜉| |
=

𝜂⊥
𝜂| |

∼ 2 is observed (figure 2 and 4) in agreement
with the previous studies [12–17].

In the general case, when the external force makes an angle 𝜃 with the nematic director F · n̂ = 𝐹 cos 𝜃,
the velocity components parallel and perpendicular to the director satisfy the relations

𝜉 | |𝑣 | | = 𝐹 cos 𝜃, 𝜉⊥𝑣⊥ = 𝐹 sin 𝜃. (3.1)

Unless the drag coefficients are equal 𝜉 | | = 𝜉⊥, the velocity is not parallel to the force, but forms an angle
𝛼 with the pulling direction (figure 1b), leading to a sliding motion towards the lower viscosity direction
(𝑥-axis in our case).

The force-velocity relation is linear (figure 2), which is a minimum requirement for an active mi-
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Figure 4. (Colour online) The observed normalized effective viscosity 𝜂eff
𝜂| |

as a function of 𝜃 from the
simulations (symbols). The solid lines are the theoretical predictions (equation 3.4) in the text plotted
using 𝜉 | | and 𝜉⊥ from the LB simulations.

crorheological measurement. From a simple geometrical considerations, one finds

tan (𝜃 − 𝛼) = 𝑣⊥
𝑣 | |

=
𝜉 | |
𝜉⊥

tan 𝜃 (3.2)

or
𝛼 = 𝜃 − arctan

(
𝜉 | |
𝜉⊥

tan 𝜃
)
, (3.3)

which agree very well with the simulations (figure 3).
The linear velocity 𝑣 =

√︃
𝑣2
| | + 𝑣

2
⊥ defines the effective drag coefficient through

1
𝜉eff (𝜃)

=
𝑣

𝐹
=

√√
cos2 𝜃

𝜉2
⊥

+ sin2 𝜃

𝜉2
| |
, (3.4)

and thus, an angle dependent effective viscosity 𝜂eff = 𝜉eff/6π𝑅.

4. Conclusions

Using the lattice Boltzmann simulations, we carried out microrheological experiments of colloidal
particles in a nematic liquid crystal. Both the angle 𝜃 and the surface properties of the particles were
varied. In all the cases, we observed a linear relation between the magnitude 𝐹 of the imposed force
and the observed speed 𝑣. The drag coefficients are trivially available from linear fits 𝐹 = 𝜉𝑣 (see e.g.
figure 2). The simulations confirmed that the sliding motion towards the lower viscosity direction, leads
to a non-trivial flow response (figure 4). As can be expected from the sliding angle (figure 3), the effect is
most pronounced for colloids with a strong homeotropic anchoring at their surface followed by particles
with a planar surface anchoring. This can be understood in terms of the strength of coupling between the
particle surface and the local nematic order. The effective drag coefficients follow, to a very high degree,
the theoretical predictions of equation (3.4), for all the three surface anchorings considered (figure 4).
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Активна мiкрореологiя плинiв з орiєнтацiйним порядком

Й. С. Лiнтувуорi, А. Вюргер
Унiверситет Бордо, CNRS, UMR 5798, F-33400 Таленс, Францiя

Дослiджується динамiка керованої сферичної колоїдної частинки, що рухається в рiдинi з порушеною
обертальною симетрiєю. Використовуючи в якостi моделi нематичний рiдкий кристал, показано, що коли
прикладена сила не дiє вздовж або перпендикулярно орiєнтацiйному порядку,швидкiсть частинки не є ко-
лiнеарною з напрямком сили, а утворює кут вiдносно напрямку розтягування. Це призводить до “синього”
анiзотропного гiдродинамiчного тензора опору, який залежить вiд параметрiв матерiалу. У випадку не-
матичного рiдкого кристала ми наводимо його аналiтичний вираз i обговорюємо наслiдки для активних
мiкрореологiчних експериментiв на рiдинах iз порушеною обертальною симетрiєю.

Ключовi слова: рiдкi кристали, колоїди, мiкрореологiя, ґратковi методи Больцмана
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