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We analyze the universal conformational properties of complex copolymer macromolecules, based on two
topologies: the rosette structure containing f. linear branches and f;- closed loops grafted to the central core,
and the symmetric pom-pom structure, consisting of a backbone linear chain terminated by two branching
points with functionalities f. We assume that the constituent strands (branches) of these structures can be of
two different chemical species a and b. Depending on the solvent conditions, the inter- or intrachain interac-
tions of some links may vanish, which corresponds to ®-state of the corresponding polymer species. Applying
both the analytical approach within the frames of direct polymer renormalization and numerical simulations
based on the lattice model of polymer, we evaluated the set of parameters characterizing the size properties
of constituent parts of two complex topologies and estimated quantitatively the impact of interactions between
constituent parts on these size characteristics.
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1. Introduction

Polymers with complex branching structure characterized by multiple main chain branching attract
a lot of attention in diverse bioapplications [1H5]. In particular, the complex topology of polymer
macromolecules influences the solution viscosity at a given concentration compared to a linear polymer
of comparable molecular weight [6H9]]. The simplest representative of the class of branched polymers is
the so-called star polymer with the single branching point having f linear chains (branches) radiating
from it [10]], still attracting considerable attention of researchers [11-H13]. A generalization of the star
polymer, the so-called hybrid rosette structure is obtained when f,- linear branches form closed loops,
whereas f, branches remain linear [14-16]] (see figure [T] left-hand). The polymer macromolecule with
two branching points of functionalities f; anf f>, which can be considered as two-star polymers with
one common branch (the backbone) is known as pom-pom polymer [17-21] (see figure [T] right-hand).
As more advanced polymer structures containing multiple banching points, we should also mention the
dendritic macromolecules resembling the structure of a tree with multiple repeating units, which have a
wide range of potential applications [[12} 22, 23]].

Copolymers are complex molecules formed by linking the polymer chains of two different species.
The synthesis of macromolecules with high molecular weight enables the formation of new functional
biomaterials with the potential for application in regenerative medicine, immunoengineering, imaging,
and controlled drug delivery [24H29]. Block copolymers are a specific class of polymer macromolecules
containing subsequent blocks of two chemically distinct monomers a and b [30]. An essential feature of
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Figure 1. (Colour online) Schematic representation of rosette (left hand side) and symmetric pom-pom
with fi = f> = f (right hand side) copolymers.

block-copolymer melts is their self-assembling into lamellae and micelles and into more complex struc-
tures [31,132]], which provides potential applications in the fields such as producing dense and nanoporous
membranes for gas separation and ultrafiltration [33]], development of novel plastic materials [34] etc.
We concentrate on the conformational properties of complex polymer macromolecules in the regime
of a weak solution. In particular, we consider a set of universal characteristics of size and shape, which do
not depend on the details of the chemical structures of a macromolecule. The most prominent example
of such an observable is the size measure of the polymer macromolecule, the experimentally measurable
gyration radius R, [33], which scales with a molecular weight (number of monomers N) according
to [36, 137]]:
(R}y = AN?", (1.1)

where v is a scaling exponent that depends only on the space dimension and on the type of solvent in
which the molecule is dissolved, and A is the amplitude that also contains the data about the topology
(type of the branching) [10]. Here and below, (...) denotes averaging over an ensemble of all possible
polymer conformations. For a chain in the regime of good solvent, where the repulsive excluded volume
interactions between monomers play the main role, the scaling properties of linear polymer chain are
perfectly captured by a model of self-avoiding random walk (SAW). In particular, in d = 3, one has
vsaw = 0.58759700(40) [38]]. The model of random walk (RW) is exploited to describe the behaviour of
apolymer chain in the regime of ®-solvent, when the excluded volume interactions between monomers can
be neglected (Gaussian polymers). In this regime, one has vrw = 1/2 except lagarithmic corrections [39].

In ab diblock copolymers, depending on the solvent and temperature regime, the polymer structure of
some block (say a) can be in © state and may be effectively described as RWs (Gaussian chains), whereas
the structure of b type remains in good solvent regime modelled by SAW. Thus, the gyration radii of
blocks a and b scale according to (I.I)) with exponents vsaw and vrw, correspondingly [40l 41]), and
there are three characteristic length scales in this case, governed by two types of inter-chain interactions
a and b and intra-chain interaction ab.

A number of studies were dedicated to the analysis of the universal conformation properties of
diblock polymers [42H46]]; the values of scaling exponents have been obtained both analytically [42),47]
and numerically [42} 43]. In particular, it was observed that the radii of gyration of each of the blocks
are governed by the critical exponents that are defined by the type of their interaction with the solvent
and are not dependent on the interaction with the other segments. The studies of star-copolymers [48},149]]
reveal the dependence of effective scaling exponents on the number and type of branches. Thus, they are
no longer topology independent.

In the present study, we aim at analyzing the peculiarities of scaling behaviour of two examples of
complex branched copolymer structures, based on rosette and pom-pom topologies (see figure [T). We
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consider the constituent strands (branches) of these structures to be of two various species a and b, so that
one of the species can be in © state under a particular solvent and temperature condition, whereas the other
one is in a good solvent regime. The layout of the rest of the paper is as follows. We start with an analytical
approach within the frames of continuous chain model and use a direct renormalization approach in
section[2] The description of numerical algorithm along with general discussions of quantitative results
obtained are given in section [3] We end up by giving conclusions and outlook in section [

2. Theoretical approach

2.1. Continuous chain model

Within the frames of continuous chain model approach, every arm of a branched polymer is presented
as a continious trajectory of length L parameterized by radius vector 7;(s), where s changes from 0
to L [50]. In the present paper we consider pom-pom and rosette structures (see figure[I)). The Hamiltonian
model can be presented as:

P& a7 (s) 1

ri(s

"o Zjds[ i
0

1=

ds” 6(ri(s") = ri(s"))

O%h

v 5[
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w Fb Fa L L
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Here, F is a total number of constituent chains and F,, F}, are the number of chains in subgroups a and b.
uq and up, are the coupling constants for the excluded volume interaction between the points on the same
chain of ether type a or b, w, and w;, are the coupling constants for the excluded volume interaction
between the points on different trajectories of the same type (either a type with a type or b type with
b type) and wgy, is a coupling constant for the excluded volume interaction between chains of different
types. With u, = up = wg = wp = wyp We restore a case of homopolymer.

The topologies of the macromolecules are accounted for in the definition of partition functions. For
pom-pom polymer with F = f] + f> + 1 it reads:

fii f
Zsgh = nglﬁ [ pr) [ ][] 660 - o0 s -y @2

i=1 j=I

Here, the backbone chain is considered as Oth [parametrized by ro(L)], the set of §-functions describes
the fact that fi + 1 trajectories start at one end point of the backbone and f; trajectories start at its other
end point 7((L). We consider the case when f; = f, = f, all arms are of the same type a (F, = 2f) and
the backbone is of type b (Fp, = 1).

For the case of rosette polymer, the partition function reads:

fc+fr
Zuosoe = = Jm 6(rl(0>>1_[6<rj<L>—r,<0>>e-”° 23)

Here, f. and f, being the number of open and closed trajectories, correspondingly, with chains being of
type a and rings of type b.
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2.2. Direct renormalization method

To describe the universal properties of a continuous chain model one needs to perform renormali-
zation. In this work we use a direct renormalization scheme developed by des Cloiseaux [37]].

The aim of this method is to eliminate the divergences that appear in the limit of infinitely long
trajectories by introducing a set of renormalization factors. All of the universal parameters are finite at
the so-called fixed points (FP). The FPs of the renormalization are defined as common zeros for the
B-functions:

Bur = €uir—S8uip=0, (2.4)
(Li+Lj)? ,
Bwijr = €WijR— —LiLj W; iR
— Zwi’j,R(ui,R + uj’R) =0. 2.5

Here, u; g is renormalized excluded volume interaction constant of the i-th chain and w; ; g is a constant
between chains i and j [S1]].

Fixed points of the model for a case of all L; = L are:

u;ir =0, uir= %’ (2.6)
and for w; ; gr:

Gir =0, Vi, i, @.7)
— €
Wi,j,R = Z, Up=uj= O, (28)
— e _
Wi j R = 16 up +uj, (2.9)
— € ~ ~ €
Wi j R = g, up=uj= g (210)

2.3. Results

Partition function of the pom-pom structure. We start our calculations from considering the partition
function of copolymer pom-pom structure. These calculations are made within the perturbation theory
framework using diagramatic technique [37] to calculate different contributions into the partition function.
The corresponding diagrams are presented in figure 2] We consider only linear terms of the expansion in

Figure 2. (Colour online) Diagrammatic representations of contributions into the partition function of
the pom-pom structure up to the first order of perturbation theory expansion in coupling constants. The
solid lines are schematic presentations of polymer strands, and the dash line represents a two monomer
excluded volume interaction.
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the coupling constants u;, w;. The contributions from the diagrams can be presented as:

ua(ZJt)_d/sz_(d/z)

1-00-9)

w. (2m)~4/212-(d/2) [92-(d/2) _»
Z, = a2 [ ], (2.12)

i-96-9

w. (2)~412[2=(d/2) [32-(d/2) _ 9 (2)2-(d/2) 4 |
Z, = a(2m) [ (2) ]’ 2.13)

969

2 —d/2L2—(d/2)
7, = 127 (2.14)

-90-9)

wor (2)-d/2[2-(d]2) [22-(d/2) _»
Zs = ab (27) [ ]. (2.15)

-96-9

Each of the diagrams should be accounted for with a corresponding pre-factor, which equals 2f for
diagram Z;, f(f — 1) for Z; so that contributions from both side-stars are included. Diagram Z3 has a
pre-factor f2. The diagrams Z4 and Zs that account for the contributions from the interactions related to
the backbone have pre-factors 1 and 2 f, correspondingly.

Analytical expressions corresponding to the diagrams are presented as functions of space dimension d,
chain length L and coupling constants. The results of expansion over the deviation from the upper critical
dimension € = 4 — d read:

7 = @2.11)

Z) =iy (_% - 1), (2.16)
€
_ (2
Zz—wu(—+1—ln2), 2.17)
€
Z3y =i, (2In2 —1n3), 2.18)
(2
Z) = b(———l), (2.19)
€
_ (2
Zzzwab(—+1—ln2). (2.20)
€

Here, i, = ua(2n) 4212~ 4/2) &, = w(2m)~4/2L2~(4/2) are dimensionless coupling constants. The

final expression for the partition function in one-loop approximation reads:

Zrg = 1—(2fﬁa+ﬁb)(—§—1)—[f(f—1)wa+2fwah](§+1—1n2)
+ f*0,(2In2-1n3). (2.21)

Even so, we are not interested in the scaling properties of partition function, although it still plays an
important role in calculating other observables since their averaging in general is defined as:

fof
()= % [111 j DF(5)8(7;(0) = p(0)3(75(0) = Fp(L)) e (... (222)
=1 j=1

Partition function of the rosette structure. Similarly, we conduct the calculations for the rosette poly-
mers (see the diagrammatic presentation of figure [3). The analytical expressions corresponding to the
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Figure 3. Diagrammatic representations of contributions into the partition function of rosette polymer
structure up to the first order of perturbation theory in the coupling constants. The solid lines are
schematic presentations of polymer strands, and the dash line represents a two monomer excluded
volume interaction.

diagrams read:

R iy 1“(2_%)2

Zv = =2 (QnL) T e
_ —~ —%fr;
Z, = u,(2nL) @4-d)(2-4d)’
o 45, 4@ -2)
Zy = wy(2nL) 4-d)2-d)’

Zi = p(2nL) %) -3

R

3-d
()
Each of these diagrams is taken with an additional pre-factor: for the diagrams Z; and Z; it is
correspondingly the number of rings f,. and the number of chains f,; diagrams Z3 and Zs should be
accounted for each pair of chains [ f. (f. — 1)/2] or rings [ f-(f — 1)/2] and the diagram Z, for each pair

of one chain and one ring f. f;-. Performing the expansion of corresponding expressions in € = 4 — d, we
obtain:

Zs = i (2nL)" %S (2.23)

ch,fr _ (ZEL)_gf’{l _ fgwa +4fcfrwah + 2fr2wb - zefcﬁa - fcwa +4frﬁb - 2frwb
v ot + 260+ I 02— i 4 g - 1)
1
In(2 -1) 2 —
x \/EJ dtm+l + = fefribap [\/§1n (\/§+3) —\/§1n2—5] }.(2.24)

This expression is used in calculations of averaging of the observables considered below, with the
averaging defined as:

((..) = % j DF(s)F[s]e H(..)). (2.25)

Here, F[§] is a set of d-functions defining the topology.
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Figure 4. (Colour online) Diagrammatic representation of contributions into & (75) in Gaussian approx-
imation. The solid lines are schematic presentations of polymer strands, each of length L, and arrows
represent the so-called restriction points s; and s;.

Size characteristics. Within the continuous chain model, the gyration radius is defined as:

F L L
(R = 5 ( D) [ [ asrasatriton) = 7650 (2.26)
00

i,j=0

In the case of copolymer structure, containing constituent strands of different chemical nature, the
gyration radius (2.26) does not have an analytically defined scaling. Instead, each strand has its own
scaling behaviour as well as the contributions from correlations between chains lead to its own scaling
behaviour [43 51]]. We have:

(R3) = (rg.a) + (o) +(ra ap)s 2.27)

where the definition of components may depend on the topology of polymer structure. In the case of
rosette polymers, diagrams with restriction points on the linear branches give contribution into (rg’a);

the one with both restriction points on the closed branches (loops) give a contribution into (r2 b) and the
rest — into <r b) Similar is the situation in the case of pom-pom structure with the exception of the

diagrams w1th restrlctlon points on different poms, which give the contribution into (rg - A full list of
diagrams separated into the proper groups is provided in the Appendix.
To calculate the corresponding analytical expression, an identity is used

((Fi(s2) = Fi(s1))*) = -

£(R) = (exp{ =ik (7i(s2) = 75 (s1))})- (2.28)
The final expression for gyration radius of backbone of a pom-pom structure reads:

g, 13~
-2 22
2 12" (2.29)

dL 2u; 35
2 b
<rg,b>pP=F[1 +(Z—121n2)fwab+

gyration radius of each “pom” is given by:

2 _ M(H% L (@[14410202f - 3)

a/pp 3 T uGr-2)
3(52f - 87) |+, [12In2(3 3 =T8 f2+119f +40)-363+864 In3 £ (f - 2)

318 — 2322 +837f] — 2u,(42f - 29)} ) (2.30)
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and the remaining “mixed” part of the gyration radius will read:

ia+ﬁb+ 1
72(f + 1

<r§,ab>pp = dL2f2(f+1)(1+ ) {20,[121n2(3f - 28 - 6)
+91n3 f(8f +25) +3f> —=79f% =201 +39] — Wap[14f> + 76 f +21

—72In3 f(f - 1) +24In2 (3f> - 15f — 4)] — 42u,(f + 1) —6i7b(6f+7)}). (2.31)

Similarly, we derive the expressions for the case of rosette polymer structure:

2
(rg,a)r

2
<}"g’ b>r

2
<rg, ab>r

+

fr(3fc_2)dL 1 2ﬁa (fc_])[]61n2(3fc_5)_26fc+53]wa
6 T T 4371-2)
i;a(42fc - 29) + fri[ab
123/ -2)  25(3fc-2)

[«/Earctan (57%) (60fcz +132f. — 199)

10V51n2(3f2 = 3f. + 1) = 110f. + 150 — 10V5In(V5 +3) (312 - 3f. + 1)] } (2.32)

fr(zfr - l)dL 2’va wb(fr - 1) _%
T(l T + m{\@arctan (2 )(34fr - 59)

Jl 16V21In(2 = 1) (> = 3t + 1) f 768t 2arctan [ (412 — 41 — 1) 2] (1 = 1)2(f; - 2)
dr - dr

(VD) (t = 2)Va=21) (42 — 41— 1)3

1 1
J 64(t — 1)arctan[(—4t2 + 4t + 1)‘5]
0

(=42 + 4t +1)3

(30£ — 6363 + 1972 + 141 + 2)dt}

wabfc
84002/, — 1)

3360V5In(V5 +3) £ (2f, - 1)

{2\/5 arctan(573) (67202 + 76763 f, — 77435)

155567 + 701n 2[48(2f2 — 1)V5 = 197(f, - )] - 157247f,} ) (2.33)

—  Wp
12 ——ub+?(fc—l)(24ln2—l3)

frfedL 1+ up+3u, 7
2e 8

Dab,
100
40V51n(2) f. fr — 10 — 110, +40]

[V5arctan (577) (80 f; + 32/ + 192, +7) — 40V5 In(V5 +3) . f;

V2
(fr — Dwg 192J arctan (s7') (s — 1)?(s + l)zds
32 V2 = 244

29V2 arctan (27%) — 841n2 + 8] } (2.34)

Scaling exponents

Size characteristics exponents. As it was mentioned above, in the case of copolymer structure, we have
three characteristic length scales, governed by two types of inter-chain interactions a and b and intra-chain
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interaction ab, so that the segments of different species as well as correlations between segments are
governed by different scaling exponents. Within the continuous chain model, the size exponents may be
calculated using the expression [37]:

e(_ din¢ry ) _ din(r5,) _ din(r )
2ve —1 = 3 Uy

dinm, = PTdma, T dina,
_din¢rZ,)  _ dn(,)
P, P dnm,,

(2.35)

The estimates for the critical exponents governing correspondingly each of the three terms in ([2.27) for
the case of pom-pom structure read:

vl’;” = % (1+up), (2.36)

A % (1+1ig), (2.37)

yp— % (1 @) (2.38)
whereas for the case of rosette polymer we get:

vy = % (1+up), (2.39)

v = % (1 +ug), (2.40)

Vi = % (1 + @) . (2.41)

Similarly, like it was observed in the case of block copolymers in [43| 51 52], scaling exponents v and
v, remain unchanged by the presence of the second species in the polymer structure and do not depend
on the interaction between different species w,. With i, = u,, one recovers the homopolymer behaviour.

Though the universal exponent of a total gyration radius of the whole copolymer structure cannot
be defined, we can derive an expression for the gyration radius (R_g) by simply adding all the diagrams

together. In general, it will read:
(Ry) = (R L1+ (.. )], (2.42)

with (Rg) , being the Gaussian approximation and [1 + (. . .)] a swelling factor in one loop approximation
in the coupling constants. According to the definition (2.35) we may evaluate an effective critical exponent
for the cases of pom-pom and rosette structures, correspondingly:

v L 1+12f2ﬁa+6fzﬁb+2fﬁa+6fﬁh+ﬁb ’ (2.43)
eff 2 18f2+8f +1
roo_ L feBfe3fr =i

IS T 2T G R fufy + 2~ 4fe Iy
+ 2fr (2fc +2f ;_l)ub — (2.44)
2672+ 8l + 207~ 4 — 1)

Again, for u, = up, we recover an expression for an exponent of a homopolymer. These exponents are
not properly defined. They may have a more practical application, since they can be related to the one
observed in the experiment. Such calculations were previously performed in simulations in reference [48]]
for star copolymers for which the topology dependent effective exponents were obtained.
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Figure 5. (Colour online) On the left: Size ratio pg P as a function of the branching parameter f for a RW
backbone and ether RW or SAW poms. On the right: Size ratio pZ for an linear RW arm in rosette as a
function of f. = f, = f and rings being either RW or SAW.

2.4. Size characteristics

Though the interactions between different strands do not influence the scaling exponents, they do
have an impact on the size characteristics which can be shown through consideration of the size ratios.
In the present work we consider size ratios pé’ P Py defined as

2
p <rg,b>l’l’

g’ ==, (2.45)
g, chain>
(rg am)
py = 2 (2.46)
Rg, chain>
where (r; ) pp and (r; arm)r are correspondingly radii of gyration of the backbone of pom-pom polymer
2

and a linear branch in rosette polymer, and (R
of the same molecular mass.

Substituting expression into the numerator of and the same expression with f = 0
into the denominator and performing a series expansion of the denominator in respect to the coupling
constants, we get the expression:

p chain) 18 the radius of gyration of individual linear chain

35 _ 2w,
PP =1+ (T - 121n2) fWab + S Wa. (2.47)

12

Let us consider the case, when the backbone of pom-pom polymer is of a RW type (u#p = 0), and the size
ratio with, correspondingly, the RW linear chain is considered. The results of evaluation of the size ratio
at different possible interactions within the side poms and between side poms and backbone are
presented in figure [5] (left-hand) as functions of the branching parameter f. The case when side poms
are also RWs and there is not mutual interaction between backbone and side poms (wqp = w, = 0) is
trivial and gives pf]” P = 1. The size ratio increases with f when the excluded volume interactions between
backbone and side poms are present. The maximum impact on the size is observed in the case of SAW
side poms, interacting with RW backbone (w,p, = 3€¢/16, w, = €/8).
An expression for gyration radius of a single arm of rosette polymer structure reads:
2 dL { 1+ 2u, 13

(rg, am)r = 3 —_— - E~“ + é\/gfcfrﬁab [an —In (\/§+ 3) + 2 arctan (1/\/5)]

—%f@ab [27 arctan (1/\/5)\/5 - 40] “[(f. = 1)/8](481n2 — 35)@,} . (2.48)
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Table 1. Scaling exponents for pom-pom polymers.

fl Verr Veff Vab Vab
Wap #0 Wap =0 Wap 70 | Wep =0
0.556(2) | 0.560(3) | 0.554(2) | 0.559(3)
0.563(2) | 0.566(4) | 0.557(3) | 0.561(4)
0.559(2) | 0.572(2) | 0.550(4) | 0.566(3)
0.571(5) | 0.572(6) | 0.565(6) | 0.563(7)
0.563(3) | 0.565(3) | 0.556(4) | 0.556(4)

N K| W =

Again, substituting it into (2.46) leads to the following expression for the size ratio:

p=1+ %\@fcfrﬁab [mz —In (V5 +3) +2arctan (1/«/5)]
—%f,wab [27 arctan (1/\/3)] V5 =40 = [(f. — 1)/8] (48102 — 35) . (2.49)

Again, let us consider the case when the linear branches of rosette polymer are of a RW type (up = 0).
The results of evaluation of the size ratio (2.49) at different possible interactions within the remaining
loop branches and between linear and loop branches are presented in figure 5| (right-hand) as functions of
the branching parameter f. The maximum impact on the size ratio is observed in the case of SAW loop
branches, interacting with RW linear branches.

3. Numerical calculations

We started with a lattice model of self-avoiding walks (SAW) and random walks (RW) on simple
cubic lattice. To simulate a set of conformations we use a pivot algorithm [53} 54]. Choosing a random
knot on one of the trajectories we perform one of the symmetry operations to the part of the structure:

* for a side arm of pom-pom and open trajectory in rosette, the operation is performed between the
pivot point and the free end of chosen arm;

« for the backbone of the pom-pom, the operation is performed between the pivot point and end
points of all the side arms of one of the poms effectively moving it as well;

* for the closed trajectory of the rosette, the operation is performed between the pivot point and a
point on the trajectory for which the chosen operation the trajectory remains closed.

First, 20N F operations are used to reach a starting conformation, then 10° operations are performed
for each trajectory length N to receive observables by averaging them over the ensemble of the obtained
conformations. We perform the calculations for the lengths up to N = 150 steps on each of the F
trajectories.

Scaling exponents are calculated by approximating the data with:

In((R%)) =2v,InN + A. (3.1

Results for this approximations are provided in tables[T|and[2] They are in good agreement with previous
results for diblock chain and ring copolymers [42 47] as well as miktoarm stars [49]] and show that
interactions between the trajectories do not influence the scaling exponents, although for a conclusive
statement additional sets of simulations and a second order analytical calculations are needed. However,
we can make a conclusion that even in the higher order calculations w,;, interactions do not play any
significant role, if any at all, in the scaling behaviour of copolymers.
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Table 2. Scaling exponents for rosette polymers.

fe | fr Veff Veff Yab Vab
Wap £ 0 Wap =0 Wap # 0 Wap =0
0.538(3) | 0.545(3) | 0.533(2) | 0.544(4)
0.518(7) | 0.528(6) | 0.528(3) | 0.537(6)
0.509(8) | 0.513(4) | 0.525(3) | 0.527(4)
0.505(9) | 0.504(3) | 0.533(4) | 0.526(4)
0.540(7) | 0.548(5) | 0.529(7) | 0.538(6)
0.535(8) | 0.541(4) | 0.531(3) | 0.543(4)
0.535(9) | 0.527(4) | 0.526(3) | 0.535(5)
0.518(7) | 0.517(7) | 0.533(4) | 0.527(8)

B0 | = ||| —
R D[ DO 1| = | = | | =

4. Conclusions

We analyzed conformational properties of two representatives of a class of complex branched macro-
molecules: the rosette structure containing f, linear branches and f; closed loops grafted to the central
core, and the symmetric pom-pom structure, consisting of a backbone linear chain terminated by two
branching points with functionalities f. We consider the constituent strands (branches) of these structures
to be of two various species a and b, so that one of the species can be in ®@-state under a particular solvent
and temperature condition, whereas the other one is in a good solvent regime. For a chain with the
repulsive excluded volume interactions between monomers, the conformational properties are perfectly
captured by a model of self-avoiding random walk (SAW); whereas to analyze the behaviour of polymer
chain in the regime of ®-solvent (Gaussian polymers), the model of random walk (RW) is exploited.

Within the frames of analytical approach based on direct polymer renormalization scheme, we eva-
luated the set of parameters characterizing the size properties of constituent parts of complex topologies
considered [radii of gyration of backbone (2.29) and side poms (2.30) of pom-pom copolymers and
radius of gyration of individual linear branch of rosette copolymer (2.48)]. To quantitatively estimate
the impact of interactions between constituent parts of macromolecules on their size characteristics, we
introduced the size ratios and (2.49). Our results confirm the increase of size ratios in presence
of excluded volume as compared with ®-state. The values of effective critical exponents [equations [2.43)|
and (2.44)1, governing the effective linear size measure behaviour of pom-pom and rosette structures,
correspondingly, are evaluated as well, both analytically and numerically.

Appendix

Here, we give examples of diagrammatic calculations. We consider a simple case of two chains with
both restriction points on the same trajectory and the interaction points on different ones. There are three
possible diagrams and their sum reads:

L L s 52 5
stfdzjdszjdsl [sz—sl—w (s+2)"2
s+ 2z
0 0 0 0
L L L s )
+J dsjdz‘[dsz dsy [sz—sl—@ (s+z)_%
S+ 2z
0 0 s 0
L L L 5
+J ds J dz ‘[ ds; j dsy (s2 — s1) (s+z)_%. (A.1)
0 0 s Ky
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Figure A.1. (Colour online) Diagrammatic presentation of the contributions into the gyration radius in
one loop approximation.

. . . _d - .
Since all three integrals contain the same factor (s + z)~ 2 that does not depend on the restriction points,
the expression can be rewritten as:

L L K 52 5

stsz dszJ‘dsl (sz—s]—u)
s+z

0 0 0 0

L s ) L 52
+J dsy I ds, (sz—sl - (SS_TSI)) +I ds; J dsi (s2—s1)| (s +2)°%. (A2)
Z
0 s s

S

All the integrals inside [. . .] contain the same term under the integration, which allows to rewrite the

Figure A.2. (Colour online) Diagrammatic presentation of the contributions into the gyration radius in
one loop approximation.

13301-13



K. Haydukivska, V. Blavatska

expression as:

L L K 52 L s L K%
I ds I dz J ds, J dsy (s2 — 51) +j ds, J dsy (s2 — 51) +I dso J dsq (s2 — s1) (s+z)_%
0 0 0 0 s 0 K K
L L Ky 52 ) L s 2
+J ds J dz “ ds, J ds, (—M) +I dsy J ds, (—M) (s+2)°%. (A.3)
S+2z s+2z
0 0 0 0 s 0

The last two terms in the first line can be joined since the limits of the integration over s, are the same
and the integration over s; can be presented as one integral:

fdsfdz [J dszjdsl(sz—s1)+Jdszjdsl(sz—sl) (s+2)” b
0 0
jdsjdz stszs( (sz—sl)z) stzjdsl( (s— sl)) (s+2)” g. (A.4)

The similar arguments now may be presented for the case of integration over s,, so the final expression
reads:

L L

dstz(s+z) 2 f fdh (s2—s1)
L

0
L L K 5 K )
+J dsj dz I ds, J ds, ( (2= 51) )+J dsy f ds, (—(S_—S‘)) (s+2)7%. (A.5)
S+ 2z s+2Z
0 0 N 0

The first line here is a multiplication of the diagram &; and Z; from the pom-pom partition function. The
calculation of the gyration radius in one loop approximation in general may be presented as:

S f di
(Rf,) =z! ((R;)o — u(Sum of digrams)) = (R;)OZ_1 1- u( amo zlgrams)
<Rg>0
S f di S f di
_ <R;>0(1 +uz,) l—u( um of digrams) — (R |1-u (Sum of digrams) B (A6)
(R2)o (R2)o
(Sum of digrams) — Z (R )o
The expression in square brackets can be rewritten as —. Note that all the

(R3)o

diagrams can be divided into two groups: the reducible one presentedy in figures [A.T] and [A.2] with the
black lines [their contributions are always presented as the product of the diagrams contributions denoted
by & (shown in figure ) and denoted by Z (shown in figures [2] and [3)] and irreducible are presented
with the blue lines. The latter group can be divided into smaller groups for each of which the arguments
conducted above can be provided, thus allowing to separate the contributions of the type £,Z,, where
&y is a contribution into the gyration radius in Gaussian approximation and Z, on a much earlier stage.
These contributions are cancelled by Z, (R; Yo and thus we do not need to calculate them. We can limit
the calculations to considering the integrals that do not get cancelled, which considerably reduces the
calculations. Since the groups of diagrams that contain the interactions between different trajectories do
not contribute into the scaling exponents or, in other words, do not contain poles in the e-expansions,
and if necessary can be calculated at a fixed space dimension d = 3 when considering Douglas—Freed
approximation, only these terms will be important in one loop approximation.
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YHiBepcanbHi BNaCTUBOCTI rany>keHUx Kononimepis y cnabkux
po3umnHax

X. FaipykiBcbka , B. EnaBau,bKaﬂE]

L IHCTUTYT Qi3nKM KOHAEHCOBaHMX cucTeM HauioHanbHOI akagemii Hayk YkpaiHu, Byn. CBeHuiybkoro 1, 79011
JlbBiB, YkpaiHa

2 IHcTuTyT ®isukn, Cinesbknii yHiBepcuTeT, ByA. lMepLuoro nosky nixotu 75, 41-500 Xopxys, MonbLua

3 Jiockypi ueHTp ¢i3nkm i ximii 6bakTepiii, IHCTUTYT disnyHoI ximii, Monbcbka akagemia Hayk, 01-224 Bapluasa,
MonbLua

MpoaHani3oBaHoO yHiBepcanbHi KOHPOPMALiliHi BAACTUBOCTI CKNAZHWNX NONIMEPHUX MaKPOMOJEKYN Ha OCHOBI
JBOX TOMONOFilA: CTPYKTYpa pO3ETKY, L0 MICTUTb fe NIHIAHWX FNOK i f;- 3aMKHEHWX neTenb, NPUKPINAEHNX 40
LLeHTPa/IbHOro KOpY, i CTPYKTYpa CUMETPUYHOTO TOM-ITOM, LLIO CKNAAAETLCS i3 OCHOBHOTO NiHIHOIO NaHLOXKa
i3 4BOMa TOUKaMU ranyxeHHs GyHKUiOHaAbHOCTI f Ha 060X KiHLsX. BBaXAa€eTbCs, LLLO CKAAZO0BI NAHKMU (Ti/IKM) X
CTPYKTYP MOXYTb 6YTI ABOX Pi3HWX TUMIB XIMIYHOTO CKAAAY @ Ta b. 3a1eXHO Bij YMOB PO3UMHHUKA, B3aEMOAIT B
Mexax NIAaHLKOXKIB Ta MiX TaHLIOXKKaMU MOXYTb 3HUKATH, LLLO BignoBigae O-cTaHy BignoBigHOro TUMy nonime-
pa. 3acToCcoByOYYM K aHANITUUYHWIA NiAXid4 B paMKax NPSMOro noaiMepHoro nepeHopMyBaHHS, Tak i YncenbHi
cuMynsauii Ha oCHOBI rpaTkoBOi MoZeni noniMmepa, OTPMMaHo Habip NapameTpiB, L0 XapaKTepr3yTb PO3Mip-
Hi XapakKTepuUCTUKM CKNAaA0BUX YaCTUH 060X CKNAaAHMX TOMOAOTIiN, i KilbKiCHO OMMCaHO BB B3aEMOZAIN Mix
CKNAZOBMMM YaCTUHAMU Ha Lii XapaKTepuUCTUKK.

KntouoBi cnoBa: rosimepuy, ckeiniHr, yHiBepcaabHi BAaCTUBOCTI, PEHOPMani3ayiiHa rpyna, YnceabHi
cumynayii
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