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We progress finite-size scaling in systems with free boundary conditions above their upper critical dimension,
where in the thermodynamic limit critical scaling is described by mean-field theory. Recent works show that
the correlation length is not bound by the system’s physical size, a belief that long held sway. Instead, two scal-
ing regimes can be observed — at the critical and pseudo-critical temperatures. We demonstrate that both are
manifest for free boundaries. We use numerical simulations of the 𝑑 = 5 Ising model to analyse the magnetiza-
tion, susceptibility, magnetization Fourier modes and the partition function zeros. While some of the response
functions hide the dual finite-size scaling, the precision enabled by the analysis of Lee–Yang zeros allows this be
brought to the fore. In particular, finite-size scaling of leading zeros at the pseudo-critical point confirms recent
predictions coming from correlations exceeding the system size. This paper is dedicated to Jaroslav Ilnytskyi on
the occasion of his 60th birthday.
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Over ten years ago our team published a paper on finite-size scaling (FSS) in systems in high
dimensions which triggered a considerable reaction in the community [1]. FSS in its standard form was
for fifty years expected to fail in high dimensions and our paper introduced a new form that claimed
to rescue it. However, subtleties exist — one has to carefully differentiate between boundary conditions
and precisely where criticality is measured. A core tenet of our arguments was that universality, and
hence the correct form of FSS resided at pseudo-criticality and not at criticality. At the time, FSS for free
boundary conditions (FBCs) at the critical point was most challenging. At that point, and in the absence
of a more complete theory, results were unconvincing for they appeared neither to fit with standard
FSS nor with the new regime. One paper inspired by our work was that of Lundow and Markström,
whom we refer to as L&M [2]. The paper focuses entirely on FBCs at the critical (not pseudo-critical)
point and uses impressive numerical power to argue that standard FSS holds there. In the meantime,
significant theoretical developments have occurred in the form of references [3–7] and we refer the reader
to reference [8] for a new theory as well as an extended and detailed review. The new developments come
under the broad name of Q theory, or simply Q, with the new finite-size scaling prescription called QFSS.

Here we revisit FSS for FBCs at both the critical and pseudo-critical points. We argue that what
appeared in L&M as “standard” FSS is in fact a form of QFSS that falls within Q theory — it is
FSS applied to the Gaussian model instead of to Landau mean-field theory. To differentiate between
standard FSS applied to Landau theory and Q theory applied to the Gaussian fixed point, we revisit the
magnetization (which L&M also looked at) as well as Fourier modes. We also examine Lee–Yang zeros
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at the pseudo-critical and critical temperatures. In terms of the observables used in the study of phase
transitions and critical phenomena, zeros are unique in that they are not moments of the free energy.
Together, these provide evidence that validates Q theory for FBCs in both regimes.

The structure of the paper is as follows. In the first section we look at the background of our research,
and discuss previous results on the topic; in section 2 we present the results of our numerical simulations
and the finite-size scaling of the various observables; section 3 documents the search and then the
scaling of the partition function zeros; results and conclusions are laid out in the last section. It is our
special pleasure to dedicate this paper to Jaroslav Ilnytskyi, a colleague and a good friend of ours, whose
impressive work on numerical simulations in condensed matter physics, and in particular on universality
at critical points [9–11] has inspired us for many years and continues to do so today.

1. Introduction

The subject of phase transitions and critical phenomena is key to unraveling how matter undergoes
transformations [12]. A first approximation of this is mean-field theory, a subject that is now over 100
years old [13]. Once a certain space dimension — called the upper critical 𝑑c — is surpassed, the number
of interactions is so large that the system’s behavior is effectively averaged, and mean-field theory holds
sway. While valid for infinite systems, this is often also considered to be the case (with suitable adaption)
for finite systems too. However, it was recently exposed that this is not always the case and one has to
take into account the crucial role played by correlation length. Until recently this was widely believed
to scale no faster than physical size if the system is finite in extent. This is now known not to be true
and correlations can exceed the system size. While significant theoretical progress has been made in
verifying this picture for systems with periodic boundary conditions (PBCs), free boundary conditions
(FBCs) have proved more difficult. In this paper, we explore what happens in this lesser-known territory
using computer simulations. We consider the Ising model, which has an upper critical dimension 𝑑c = 4,
on a five-dimensional hypercubic lattice.

First, we set the notation. For second-order phase transitions in ferromagnetic systems, the specific
heat, magnetization, susceptibility, and correlation length near the transition temperature 𝑇𝑐, scale as
𝑐∞(𝑡) ∼ |𝑡 |−𝛼, 𝑚∞(𝑡) ∼ (−𝑡)𝛽 , 𝑚∞(ℎ) ∼ |ℎ |1/𝛿 , 𝜒∞(𝑡) ∼ |𝑡 |−𝛾 , 𝜉∞(𝑡) ∼ |𝑡 |−𝜈 , where 𝑡 is a reduced
temperature, ℎ is a reduced magnetic field (each is omitted from functional arguments when it vanishes),
and the formula for𝑚∞(𝑡) holds only in the broken-symmetry phase where 𝑡 < 0, and the subscript denotes
the (infinite) size of the system. The critical diverging singularities are replaced by finite peaks when
the linear extent, 𝐿, of the system is finite. These finite peaks are centered around the so-called pseudo-
critical points 𝑇𝐿 . The rounding of the susceptibility peak can be measured by its width at half-height,
for example, and is governed by an exponent 𝜌: Δ𝑇rounding ∼ 𝐿−𝜌. The distance of the pseudo-critical
temperature 𝑇𝐿 from the critical one 𝑇𝑐 is described by the shift exponent 𝜆: 𝑇𝐿 −𝑇𝑐 ∼ 𝐿−𝜆. Usually (but
not always) [14], the rounding and shifting exponents coincide and are given by

𝜌 = 𝜆 =
1
𝜈
. (1)

Below the critical dimension 𝑑𝑐 and near the critical point, the infinite-volume correlation length 𝜉∞ can
be replaced by the system size 𝐿 when the latter is finite. This is sufficient to deliver appropriate FSS
there. Because for specific heat it leads to 𝑐 ∼ |𝑡 |−𝛼 = 𝜉𝛼/𝜈 being replaced by 𝐿𝛼/𝜈 . A similar applies
to other observables so that

𝑐𝐿 ∼ 𝐿
𝛼
𝜈 , 𝑚𝐿 ∼ 𝐿− 𝛽

𝜈 , 𝜒𝐿 ∼ 𝐿
𝛾

𝜈 . (2)

Equations (1) and (2) well describe FSS below the upper critical dimension. When the dimensionality
𝑑 exceeds upper criticality 𝑑𝑐, our current picture is as follows [8]. The self-interacting term, which is
responsible for the existence of the phase transition by spontaneous symmetry breaking (e.g., the 𝜙4 term
in the field-theoretic equivalent to the Ising-model Hamiltonian), modifies thermodynamic functions
above the critical dimension in such a way that the above FSS formulae no longer apply. The usual
expression for the hyperscaling relation, 𝜈𝑑 = 2 − 𝛼, also fails. These circumstances can be traced back
to the fact that the quartic term is coupled to a dangerous irrelevant variable [15].

13603-2



Finite-size scaling in free boundary conditions above the upper critical dimension

Following “surprising” analytical [16] and numerical [17] observations of a superlinear (wrt 𝐿)
correlation length, it was shown in references [3, 4, 18, 19] that, contrary to earlier expectations, these
features of the model are also affected by such dangerous irrelevant variables, just like the properties
related to free energy [20]. This leads to the introduction of a pseudo-critical exponent ϙ = max(1, 𝑑/𝑑𝑐)
for the FSS of the correlation length, which takes the value 𝑑/𝑑𝑐 when 𝑑 > 𝑑𝑐 [1, 4, 19]. At first sight,
the exponent ϙ has a similar status to 𝜆 and 𝜌, above, in that it most directly refers to finite-size systems
as opposed to the infinite-volume ones which are directly described by 𝛼, 𝛽, 𝛾, 𝛿, and 𝜈. Thus, ϙ may be
considered a pseudo-critical exponent. The superlinear behavior of the finite-size correlation length has
been verified by Monte Carlo simulations in references [1, 3, 4, 18, 19, 21] and its existence modifies the
finite-size scaling relations because instead of replacing 𝜉∞ by 𝐿, one replaces it by

𝜉𝐿 ∼ 𝐿ϙ, (3)

so that
𝑐𝐿 ∼ 𝐿

ϙ𝛼
𝜈 , 𝑚𝐿 ∼ 𝐿− ϙ𝛽

𝜈 , 𝜒𝐿 ∼ 𝐿
ϙ𝛾

𝜈 . (4)

To distinguish equation (2) from equation (4), we referred to the latter as QFSS [1] (the “Q” here and
throughout referring to ϙ, a notation suggested by Fisher in reference [19]).

The form 𝜉 ∼ 𝐿𝑑/4 for the correlation length of the short-range Ising-model (for which 𝑑𝑐 = 4) in the
analytical study of reference [16] and verified numerically in reference [17] was for periodic boundary
conditions (PBCs). That it also applies to free boundary conditions (FBCs) was suggested in reference [1]
and verified in references [3, 4, 18, 19, 21]. The existence of ϙ as a new, universal pseudo-critical exponent
allows one to extend the hyperscaling relation to beyond the upper critical dimension. This general form
(valid in all dimensions) is

𝜈𝑑

ϙ
= 2 − 𝛼. (5)

In contrast to what was suggested above where ϙ appeared to be a pseudo-critical exponent, this formula
links ϙ to critical exponents. This promotes the new exponent to the level of critical (as opposed to
pseudo-critical) exponent. Whether one considers ϙ to be a critical or pseudo-critical exponent is perhaps
a personal preference.

To understand the origins of the exponent ϙ, the Fourier modes associated with high-dimensional
systems may be partitioned into two types [3]. Although both are governed by the Gaussian fixed point,
so-called Q-modes are susceptible to dangerous irrelevant variables while so-called G-modes are not.
Here and throughout, following the terminology used in reference [3], “G” refers to the “pure” Gaussian
sector (unmodified by dangerous irrelevant variables) to distinguish it from the Q-sector [3]. For systems
with PBCs, only the zero mode is of the Q-type; all other modes are Gaussian. There, as is common
below 𝑑𝑐, the rounding exponent 𝜌 has the same magnitude as the shifting exponent 𝜆, 𝜌 = 𝜆 = ϙ/𝜈,
ensuring that the Q-scaling window, which is centred on the pseudo-critical point, extends as far as the
critical one. In other words, QFSS applies at 𝑇𝐿 and 𝑇𝑐 in the PBC case.

For systems with free boundaries, the partitioning is somewhat more subtle. The dominance of Q-
modes at the pseudo-critical point ensures that QFSS governs finite-size effects there. This is where
universality resides above the upper critical dimension [i.e., the QFSS formulae (4) hold both for PBCs
and FBCs there]. The rounding and shifting exponents are

𝜌 =
ϙ

𝜈
, 𝜆 =

1
𝜈
, (6)

and, since 𝜌 > 𝜆, the shifting is bigger than the rounding so that the QFSS window, centered as it is
around the pseudo-critical point, does not extend to the critical point. FSS there is governed by G-type
behavior [3].

In this paper, we perform numerical simulations to test the above picture for FBCs. Again, we expect
(as L&M have actually found) that G-scaling for FSS results at the critical point and Q-scaling at the
pseudo-critical one. L&M, however, did not look at the pseudo-critical points, so we calibrate our efforts
against theirs at the critical one only. The best we can do is 𝐿 = 50 which compares with the impressive
𝐿 = 160 of L&M. We also follow L&M when we look at FSS of the standard observables, namely
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Table 1. FSS (Landau and G columns) and QFSS (last column) for the variables measured in this paper
(𝑑 = 5). We expect (and find) QFSS at the pesudocritical point, standard FSS applied to Gaussian modes
at the critical point, and standard FSS which is of relevance for Landau values not to feature at all.

Quantity Landau G Q

𝑚 𝐿−𝛽/𝜈 = 𝐿−1 𝐿−𝛽𝐺/𝜈 = 𝐿−3/2 𝐿−𝛽𝑄/𝜈 = 𝐿−ϙ𝛽/𝜈 = 𝐿−5/4

𝜒 𝐿𝛾/𝜈 = 𝐿2 𝐿𝛾𝐺/𝜈 = 𝐿2 𝐿𝛾𝑄/𝜈 = 𝐿ϙ𝛾/𝜈 = 𝐿5/2

𝑐 𝐿𝛼/𝜈 = 𝐿0 𝐿𝛼𝐺/𝜈 = 𝐿0 𝐿𝛼𝑄/𝜈 = 𝐿ϙ𝛼/𝜈 = 𝐿0

ℎ1 𝐿−Δ/𝜈 = 𝐿−3/2 𝐿−Δ𝐺/𝜈 = 𝐿−3/2 𝐿−Δ𝑄/𝜈 = 𝐿−ϙΔ/𝜈 = 𝐿−15/8

magnetization and isothermal susceptibility. Then, we go a step further by looking at Fourier modes and
partition function zeros (which L&M did not look at). These lie in the complex plane of parameters
entering the partition function (i.e., external field or temperature). The notion was developed by Lee and
Yang [22, 23], who studied the partition function as a polynomial in a parameter related to the external
magnetic field. Following a similar idea, Fisher suggested the study of the zeros for the temperature
complex plane [24]. These ideas have been termed a “fundamental theory of phase transitions” [25]. We
discuss these developments in more detail in section 3, below.

The partition function on a finite lattice is given by

𝑍𝐿 =
∑︁
𝐸,𝑀

𝑝(𝐸, 𝑀)e−𝛽𝐸+ℎ𝑀 , (7)

where the configurational energy 𝐸 is conjugate to 𝛽 = 1/𝑘𝑇 (𝑘 is the Boltzmann factor), the configura-
tional magnetization 𝑀 is conjugate to the reduced external field ℎ = 𝛽𝐻 and 𝑝(𝐸, 𝑀) is the density of
states. From the fundamental theorem of algebra, this can be expressed in terms of the set of Lee–Yang
zeros {𝑧 𝑗 } as

𝑍𝐿 (ℎ) = 𝐴(𝑧)
∏
𝑗

[𝑧 − 𝑧 𝑗 (𝐿)], (8)

where 𝑧 is a suitable function of ℎ (e.g., 𝑧 = exp ℎ) and where 𝐴 denotes a non-vanishing smooth function
of its arguments.

Well-established standard FSS, applicable below the upper critical dimension, gives for the Lee–Yang
zeros

ℎ 𝑗 (𝐿) ∼ 𝐿− Δ
𝜈 , (9)

in which
Δ = 𝛽𝛿 = 𝛽 + 𝛾 (10)

is the gap exponent. These equations are the counterparts of equation (2) for the foundations of the
partition function zeros. A crucial element of Q theory as developed in reference [1] is the prediction
that, for 𝑑 > 𝑑𝑐, Lee–Yang zeros scale in the Q-regime (i.e., at pseudo-criticality universally and at
criticality in the PBC case) as

ℎ 𝑗 (𝐿) ∼ 𝐿− ϙΔ
𝜈 . (11)

The aim of this paper is to provide a numerical check of these scaling formulae. For convenience, we list in
table 1 various FSS predictions for various theoretical possibilities — standard FSS from Landau theory,
Gaussian theory, and QFSS. The first Lee–Yang zeros allow us to access the G-sector [equation (9)]
through FBCs at criticality and the Q-sector [equation (11)] through the pseudo-critical points.

We will see that, as emphasized in reference [3] for the magnetization, despite mean-field exponents
being accurate in infinite volume, the extension of Landau theory to finite systems does not manifest
physically through standard FSS. Instead, FSS is either of the G- or Q-types consistent with the theory
developed in references [1, 3, 4, 18, 19, 21].
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A significance of this is that pure G-scaling was hitherto considered as merely a “stepping stone” to
matching the finite size with the Landau mean-field exponents. Here, we see that the G-sector has direct
physical manifestation in finite volume. Moreover, while FSS and hyperscaling were widely considered
inapplicable above the upper critical dimension, here we again demonstrate that they hold in Q-modified
form. Thus, the main message of the paper is that universality holds in high dimensions, but at pseudo-
criticality rather than at criticality; this also provides a fundamental insight into how criticality at infinite
volume should be approached from finite size.

2. Numerical simulations

Lundow and Markström conducted large-scale simulations of the 𝑑 = 5 Ising model with FBCs [2,
26, 27]. The magnetization at 𝑇𝑐, computed using space averaging over all sites, was clearly supportive
of 𝑚𝐿 (𝑇𝑐) ∼ 𝐿−1.5. (We note that this result was not determined through a free FSS fit to 𝛽/𝜈 and instead
expected values were imposed.) Table 1 suggests this is indicative of Gaussian (rather than Landau) FSS:
𝐿−𝛽/𝜈 = 𝐿−3/2.

Simulations from reference [1], conducted by some of the current authors, had previously yielded
different results for the same quantity:𝑚𝐿 (𝑇𝑐) ∼ 𝐿−1.7. This result does not support any of the theoretical
suggestions of table 1. Reference [1] also looked at the pseudo-critical point and found𝑚𝐿 (𝑇𝐿) ∼ 𝐿−1.49.
Contrary to theory, this aligns with G-scaling. At the time we suspected that these results — not supportive
of any theory — were a product of the lattices used being not genuinely representative of five dimensions.
In particular, sites at the lattice boundaries do not have the same number of neighbours as sites in
the interior of the lattice. So, in reference [1], the authors took a step to minimize the role of lower-
dimensional sub-manifolds in FBC systems. They computed the “core" magnetization, averaging only
over the central (𝐿/2)𝑑 sites. For the critical point, this yielded results of 𝑚core

𝐿
(𝑇𝑐) ∼ 𝐿−1.57, possibly in

line with G-scaling at 𝑑 = 5. For the pseudo-critical point, the result was 𝑚 core
𝐿

(𝑇𝐿) ∼ 𝐿−1.27, potentially
aligned with Q-scaling.

There is a clear discrepancy between L&M results in references [2, 26] at 𝑇𝑐 and those of our team [1]
when all sites are used to perform the space average. The agreement is much better when only core sites
are taken into account in the space average. This suggests that the previous results of reference [1] are
strongly affected by crossovers due to the boundary effects, while numerics in references [2, 26] are more
reliable because of the huge sizes reached.

Here, we provide numerical simulations of the five-dimensional Ising model with free boundary
conditions. We analyze the scaling of magnetization, isothermal susceptibility, and magnetization Fourier
modes, as well as use the analysis of the partition function zeros.

In order to investigate the critical behavior of the finite size 𝑑 = 5 Ising model, we performed Monte
Carlo simulations using the Wolff algorithm [28]. This is a cluster algorithm that updates the lattice by
picking a random node and adding its neighbors to the cluster if they are of the same spin sign with
probability 𝑝 = 1−e−𝛽Δ𝐸 , where Δ𝐸 is a change of internal system energy if one spin is flipped [29–32].
In this way at least one node is flipped in every simulation step, and at zero temperature the whole lattice
is added to the cluster.

We found that starting from an ordered state of the lattice (where all spins are pointing in the same
direction) we complete the thermalization process much faster than when starting with the disordered
state of the lattice (where all spins are oriented randomly). This effect is more stark for larger lattice
sizes. The reason for this is clear — for cluster algorithms, we need more adjacent spins of the same sign
for the system to change quickly, and the disordered state does not have enough clusters to flip rapidly.
Therefore, we start from ordered states throughout our simulations. For each temperature we performed
2 × 106 iterations, discarding the first 10% of those as thermalization.

We set boundary conditions to be free, meaning that the nodes on the edges of the lattice do not have
a neighbor in one of the 𝑑 directions. Instead, they form a (𝑑 − 1)-dimensional manifold.

2.1. Determining pseudo-criticality and its finite-size scaling

Besides at the critical temperature itself, we are interested in FSS at the pseudo-critical temperature.
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This is shifted away from the actual critical point of the infinite system and the smaller the system
size the more pronounced this effect is. Actually, for small lattices the system at the critical temperature
is effectively disordered.

Our favored determinant of the pseudo-critical point is susceptibility. The algorithm to locate the
pseudo-critical temperature 𝑇𝐿 is illustrated in figure 1. The top part of the figure illustrates the rough
values of the susceptibility for a wide range of temperature values. A peak is clearly visible and our task
is to identify its location 𝑇𝐿 with some precision. To identify this pseudo-critical peak, then, we first
scan a broad range of temperatures with low-precision simulations to find an approximate region that
contains it for each lattice size. After that, one runs a set of high-precision simulations narrowed around
this temperature. The outcome is illustrated in the lower figure. Because of the fluctuations, the peak is
difficult to identify manually. Thus, we use a quadratic fit in an attempt to smoothen the curve so that
a local maximum can be more readily identified. At this point, which we identify as 𝑇𝐿 , we perform
another high-precision simulation and use the data from it for further analysis.
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Figure 1. (Colour online) The process of estimating the pseudo-critical temperature from the susceptibility
for the 𝑑 = 5 Ising model on a lattice of size 𝐿 = 12. First (a) we scan greater intervals of temperatures
with relatively low precision. Then, we perform this same procedure in more detail for an interval where
the susceptibility is visibly higher. Finally (b) we simulate an interval of temperatures, where it seems
that the peak should be located, with higher precision. We fit a polynomial through the highest points.
This allows us to select an estimate for the pseudo-critical point 𝑇𝐿 (dashed vertical line). We perform
final simulations at the resulting peak.

To investigate FSS of the pseudo-critical point, we first require an estimate of the critical point itself.
We use that (𝑇𝑐 = 8.7784752) coming from L&M (2014) [2]. This is the estimate of the critical point that
we use throughout the paper as we also track the behavior of various observables at the infinite system
critical point 𝑇𝑐.

In figure 2 we present the FSS of the pseudo-critical temperatures 𝑡𝐿 = 𝑇𝑐 − 𝑇𝐿 . Since this and all
other numerical results of this paper are obtained for 𝑑 = 5, we do not mention this fact explicitly in the
forthcoming figure and table captions. Mean-field or Gaussian FSS would predict 𝑡𝐿 ∼ 𝐿−1/𝜈 = 𝐿−2,
where 𝜈 is the correlation-lenght critical exponent. By contrast, Q-scaling predicts 𝑡𝐿 ∼ 𝐿−ϙ/𝜈 = 𝐿−2ϙ =
𝐿−5/2. The latter was proven for the PBC case, while the former was shown for FBCs in [33]. We observe
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Figure 2. (Colour online) FSS data of the pseudo-critical temperature (blue line). For the G-scaling
predicted by theory for FBCs, 𝑡𝐿 scales as 𝐿−2 (orange dotted line). This is in marked contrast to 𝐿−2.5

which comes from Q-scaling (red dashed line) and is relevant for PBCs. Our fit gives 𝐿−1.90±0.03, which
is G-scaling within the error bars.

𝑡𝐿 ∼ 𝐿−1.90±0.03 when we fit over the full range of data from 𝐿 = 4 to 𝐿 = 50. This value is much
closer to the theoretically expected G-scaling, 𝑡𝐿 ∼ 𝐿−2, and further away from the Q-scaling prediction
𝑡𝐿 ∼ 𝐿−2.5. This is consistent with observations in the literature whereby shifting is bigger for FBCs than
it is for PBCs. This result is recorded in table 2 as are the FSS results for other quantities. As in the case
of pseudo-critical points, the table invites comparisons with available theoretical predictions.

2.2. Finite-size scaling of the mean magnetization 𝒎

Criticality: We next analyze the FSS of mean magnetization 𝑚. Very detailed estimates for the FSS
of the mean magnetization at 𝑇𝑐 were obtained by L&M in reference [2] with leading behaviors and
corrections to scaling given by:

𝑚𝐿 (𝑇𝑐) = 0.230𝐿−3/2 + 1.101𝐿−5/2 − 1.63𝐿−7/2. (12)

We performed a similar analysis to compare our numerics with those of L&M. Although extracted using
far smaller lattice sizes, our numerical results deliver similar outcomes:

𝑚𝐿 (𝑇𝑐) = 0.215𝐿−3/2 + 1.514𝐿−5/2 − 4.280𝐿−7/2. (13)

Table 2. FSS behavior for the pseudo-critical point, mean magnetization 𝑚, isothermal susceptibility
𝜒, magnetization Fourier modes 𝑚(𝑘), and the first Lee–Yang zero ℎ1. The first three rows record the
theoretical predictions for mean-field theory (MF), Gaussian theory (G) and QFSS (Q). In the next three
rows, 𝑇𝑐 and 𝑇𝐿 refer to the results of numerical simulations at corresponding temperatures. The last
lines record the results presented in this paper and exponents written in bold font are those for which
there is a reasonable agreement with the theoretical predictions.

𝑡𝐿 𝑚 𝜒 𝑚(𝑘) ℎ1

MF 𝐿−2 𝐿−1 𝐿2 𝐿−1 𝐿−3

G-scaling 𝐿−2 𝐿−1.5 𝐿2 𝐿−1.5 𝐿−3

Q-scaling 𝐿−2.5 𝐿−1.25 𝐿2.5 𝐿−1.25 𝐿−3.75

at 𝑇𝑐, [2] 𝐿−1.5 𝐿2

at 𝑇𝐿 , [1] 𝐿−1.39 𝐿2 𝐿−3.75

at 𝑇𝑐, [1] 𝐿−1.70 𝐿1.71

This paper 𝐿1.90±0.03

at 𝑇𝐿 , this paper 𝐿−1.25±0.09 𝐿1.95±0.02 𝐿−1.26±0.05 𝐿−3.81±0.08

at 𝑇𝑐, this paper 𝐿−1.5 𝐿2 𝐿−3.16±0.48
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Data	fit	(larger	sizes	only):	1.140	-	1.250	ln	L

Data	fit	(all	sizes):	2.035	-	1.455	ln	L
Q-scaling:			1.082	-	1.25	ln	L	

G-scaling:	2.473		-	1.5	ln	L

Figure 3. (Colour online) Leading behavior and first corrections to the FSS for the magnetization at the
critical temperature 𝑇𝑐 . We plot 𝑚 · 𝐿1.5 against 1/𝐿.
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Data	fit	(larger	sizes	only):	1.14	-	1.25	ln	L

Data	fit	(all	sizes):	2.03	-	1.45	ln	L
Q-scaling:			1.08	-	1.25	ln	L	

G-scaling:	2.47		-	1.5	ln	L

Figure 4. (Colour online) Scaling of magnetization at the pseudo-critical temperature 𝑇𝐿 . The theoretical
values are presented as orange dotted (G-scaling), and red dashed (Q-scaling) lines. We see that we can
discard a few smallest lattice sizes to reach the expected scaling behavior.

In figure 3 we plot corrections to scaling to illustrate the convincing nature of this fit. This suggests that
our results are similar to those of L&M and 𝑚 ∼ 𝐿−3/2 as the Gaussian theory predicts.

Pseudo-criticality: In figure 4 we show the results of the simulations for the mean magnetization
𝑚 at the pseudo-critical temperatures 𝑇𝐿 for different values of 𝐿 ranging from 𝐿 = 4 to 50. As was
previously suggested, we expect Q-scaling at 𝑇𝐿 . At 𝑇𝐿 , we obtained 𝑚 ∼ 𝐿−1.46±0.02 when the power
law fit is performed over all lattice sizes. This is much closer to L&M’s G-scaling 𝑚 ∼ 𝐿−1.5 than to
the theoretically expected Q-scaling 𝑚 ∼ 𝐿−1.25. As explained in reference [1], our contention is that
the boundary lattice sites in FBCs may be responsible for this discrepancy between the expectation and
observed FSS; because the surface effects are too strong to show a properly five-dimensional criticality.
To illustrate this we discard the lowest sizes (𝐿 = 4..12) from the fit, and indeed the FSS reaches the
scaling 𝑚 ∼ 𝐿−1.25±0.09 (green line in figure 6, top). This suggests that for large enough lattice sizes
(and discarding small lattices) the magnetization for FBCs at pseudo-criticality indeed falls within the
Q-scaling regime.

2.3. Finite-size scaling of isothermal susceptibility 𝝌

Criticality: Again, we first compare the results of our simulations at criticality with those coming
from L&M in reference [2]. They assume a quadratic dependency of susceptibility on 𝐿 and a fit delivers

𝜒𝐿 (𝑇𝑐) = 0.817𝐿2 + 0.083𝐿. (14)

Our equivalent (for far smaller lattices) is

𝜒𝐿 (𝑇𝑐) = 0.285𝐿2 + 0.030𝐿. (15)
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Figure 5. (Colour online) Leading behavior and first corrections to the FSS for the susceptibility at the
critical temperature 𝑇𝑐 . For the susceptibility we plot 𝜒 · 𝐿−2 against 1/𝐿.

The conclusion of reference [2] was in favor of standard FSS scaling for the isothermal susceptibility at
the critical temperature 𝜒𝐿 (𝑇𝑐) ∼ 𝐿2, and we can see that, at first sight, this would seem to be the case.

However, as table 2 illustrates, this could be standard MF scaling or G-scaling. Our contention is that
it is G and falls within the theory of Q.

Pseudo-criticality: Results for the FSS of isothermal susceptibility at the pseudo-critical point are
shown in figure 6. At 𝑇𝐿 we obtained 𝜒 ∼ 𝐿1.95±0.02 using all simulated lattices, in apparent agreement
with G-scaling (𝜒 ∼ 𝐿2 as opposed to 𝜒 ∼ 𝐿2.5 for Q-scaling). In our fit, data for 𝐿 = 4 weigh as much
as 𝐿 = 50, say. But clearly, 𝐿 = 4 is not genuinely representative of a five-dimensional system. The fact
that these data lie on such a line calls into suspicion 𝐿 = 50 data as well. Thus, we expect that the lattice
sizes that we reach in our simulations are possibly too small to converge to Q-scaling for susceptibility.
Removing a few smaller sizes does not do the trick as it did for the magnetization.

100

101

102

103

104

4 5 6 7 8 10 12 14 16 18 20 25 50

ln
	χ

ln	L

MC	results
Data	fit:	1.08	+	1.95	ln	L

Q-scaling:			0.13	+	2.5	ln	L	
G-scaling:	0.90	+	2	ln	L

Figure 6. (Colour online) Scaling of the isothermal susceptibility at the pseudo-critical temperature 𝑇𝐿 .
The theoretical values are presented as an orange dotted line (G-scaling), and a red dashed line (Q-
scaling). While for the magnetization we were able to discard a few smallest lattice sizes to reach the
expected scaling behavior, for susceptibility this is not the case and the lattice sizes are still too small to
show Q-scaling.

2.4. Scaling of the magnetization Fourier modes 𝒎(𝒌)

Since all observables are expected to be governed at 𝑇𝐿 by Q-scaling, not G-scaling, we try other
ways to detect FSS at the pseudo-critical point for FBCs. One way to disentangle the boundary conditions
is through the Fourier transformation of the magnetization.

As suggested by Flores-Sola et al. in reference [3] (2016), we can check the influence that the
boundary conditions have on the magnetization Fourier modes and their FSS, since only some modes
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actually contribute to scaling for FBCs. In a system with FBCs, the Fourier modes are sine waves:

𝜓k =
√︁

2/𝐿
𝑑∏

𝛼=1
sin 𝑘𝛼𝑥𝛼, (16)

with wave vectors 𝑘𝛼 = 𝑛𝛼π/(𝐿 + 1), 𝑛𝛼 = 1, 2, . . . , 𝐿. Local quantities, like Ising spin 𝑠x𝑖 , now read as

𝑠x𝑖 =
∑︁

k
𝑠k𝜓k. (17)

However, in order to break the symmetry of the Ising model, we should consider the profile 𝜇(x) of the
spin 𝑠x instead:

𝜇(x) =
��⟨𝑆(x)sign(𝑀)⟩𝑇

�� . (18)
Here, ⟨. . . ⟩𝑇 denotes temperature average. Now, Fourier transform and its inverse counterpart are:

𝜇(x) =
1

(𝐿 + 1)𝑑
∑︁
𝑘

𝜇(k)
𝑑∏

𝛼=1
sin(𝑘𝛼 · 𝑥𝛼), (19)

𝜇(k) =

𝑁∑︁
𝑥=1
𝜇(x)

𝑑∏
𝛼=1

sin(𝑘𝛼 · 𝑥𝛼), (20)

k = π/(𝐿 + 1)K𝐿 , where 𝑥𝛼 ∈ [1, 𝐿] represents the Cartesian coordinates of a node, K𝐿 consists of the
values in the range (0, .., 𝐿 − 1)𝑑 .
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4 5 6 7 8 10 12 14 16 20

ln
	m

ln	L

mk	,	k1=[1,1,1,1,1]
mk	,	k3=[3,1,1,1,1]

modd	,	sum	of	odd	modes	(m1		+	m3	)
m(x)		data	fit:	2.06	-	1.46	ln	L
m1		data	fit:	1.05	-	1.26	ln	L
m3		data	fit:	0.13	-	1.41	ln	L
modd		data	fit:	1.17	-	1.27	ln	L

Q-scaling:			1.11	-	1.25	ln	L	
G-scaling:	2.19	-	1.5	ln	L

Figure 7. (Colour online) Fourier modes of the magnetization FSS in the vicinity of pseudo-critical
point 𝑇𝐿 . As expected, even 𝑘 modes vanish, while odd modes provide accurate scaling.

The mean magnetization is

𝑚 =
1
𝐿𝑑

∑︁
𝑥

𝜇(x) = 1
𝐿𝑑

1
(𝐿 + 1)𝑑

∑︁
𝑥

∑︁
𝑘

𝜇(k)
𝑑∏
𝛼

sin(𝑘𝛼 · 𝑥𝛼)

=
1
𝐿𝑑

1
(𝐿 + 1)𝑑

∑︁
𝑘

[∑︁
𝑥

𝜇(x)
𝑑∏
𝛼

sin(𝑘𝛼 · 𝑥𝛼)
]
·𝑊k, (21)

where 𝑊k =
∑

x
∏𝑑

𝛼sin(𝑘𝛼 · 𝑥𝛼). For even modes k (i.e., modes for which at least one of the 𝐾𝐿’s is
even), the weights𝑊k are zero. These are called G-modes. Odd modes (i.e., modes for which all the 𝐾𝐿’s
are odd) are called Q-modes and should contribute to the scaling. The results provided in figure 7 and in
table 2 show that for our range of lattice sizes it is still not enough for all sites of the system to represent
a five-dimensional lattice. We get 𝑚(𝑘 = 1) ∼ 𝐿−1.26±0.05, which hints towards the Q-scaling, but for
smaller lattice sizes again we see strong surface effects that shift the scaling towards G-scaling. Without
a definite answer, we turn to another technique that is often used in the theory of criticality: partition
function zeros.
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3. Scaling of the partition function zeros

To summarise so far, although our results are consistent with those of L&M at 𝑇𝑐, we have had, at
best, mixed results at 𝑇𝐿 , which makes it hard to disambiguate between Q suggested by renormalization
group theory and the G-scaling preferred by numerics. Therefore, we seek another way to detect whether
we are in a regime with sufficiently high lattice sizes or not and we turn to partition function zeros. In
our experience, these deliver more reliable results than those coming from thermodynamic observables.
The latter are moments of the partition function or free energy. As such, they are sensitive to amplitudes
which themselves can be variable. For example, if the amplitude of correction terms for susceptibility is
sufficiently large at 𝑇𝐿 , the mentioned correction terms can dominate and mask the leading FSS behavior
coming from power laws. In such circumstances, it might take extraordinarily large lattices for leading
FSS behavior to take effect. If this happens for FBCs and not for PBCs, it would lead to the behavior we
observed. Partition function zeros, on the other hand, are not subject to such amplitudes.

For any finite system, the partition function can be written as a polynomial in terms of fugacities, and
the partition function zeros are thus zeros in the complex plane of the appropriate variables. To analyze
the phase transitions via the behavior of the zeros when approaching the critical point was first suggested
by Tsung-Dao Lee and Chen-Ning Yang for complex fields [22, 23] and later was generalized for complex
temperatures by Michael Fisher [24, 25]. In what follows below, we study the properties of the Lee–Yang
zeros. However, for most of the models, the zeros and their critical properties can be only estimated by an
extensive use of computer simulations [34]. Analytically, solving the partition function for zeros in the
complex plane is required. In particular, as the system size increases, Lee–Yang zeros exhibit a scaling
behavior, accumulating near critical points in the thermodynamic limit. This scaling pattern allows for
the extraction of critical exponents and the classification of phase transitions into universality classes.
Understanding the scaling properties of Lee–Yang zeros provides valuable insights into critical behavior
and phase transitions, enabling the characterization of macroscopic properties and underlying physical
phenomena.

Let us write down the definition of the partition function in the complex ℎ = ℎ𝑅 + iℎ𝐼 plane at 𝛽 = 𝛽𝑐
more in detail:

𝑍
(
𝛽𝑐, ℎ

𝑅 + iℎ𝐼
)
=
∑︁
{𝑠}

e−𝛽𝑐
∑

𝑖, 𝑗 𝑆𝑖𝑆 𝑗+𝛽𝑐ℎ𝑅
∑

𝑖 𝑆𝑖

[
cos

(
𝛽𝑐ℎ

𝐼
∑︁
𝑖

𝑆𝑖

)
+ i sin

(
𝛽𝑐ℎ

𝐼
∑︁
𝑖

𝑆𝑖

)]
, (22)

where the first sum spans all spin configurations and 𝑆𝑖 = ±1 are Ising spins. This can be conveniently
rewritten as:

𝑍
(
𝛽𝑐, ℎ

𝑅 + iℎ𝐼
)
= 𝑍

(
𝛽𝑐, ℎ

𝑅
) [〈

cos
(
𝛽𝑐ℎ

𝐼
∑︁
𝑖

𝑆𝑖

)〉
𝛽𝑐 ,ℎ

𝑅
+ i

〈
sin

(
𝛽𝑐ℎ

𝐼
∑︁
𝑖

𝑆𝑖

)〉
𝛽𝑐 ,ℎ

𝑅

]
. (23)

Here, the averaging ⟨. . . ⟩𝛽𝑐 ,ℎ𝑅 is performed at the fixed values of temperature 𝛽𝑐 and magnetic field ℎ𝑅.
With the data of numerical simulations at hand, to determine the points where the partition function

becomes zero, it is necessary for both the real and imaginary parts of the partition function to be zero. So we
look at the values of trigonometric functions averages ⟨cos(𝛽𝑐ℎ𝐼

∑
𝑖 𝑆𝑖)⟩𝛽𝑐 ,ℎ𝑅 and ⟨sin(𝛽𝑐ℎ𝐼

∑
𝑖 𝑆𝑖)⟩𝛽𝑐 ,ℎ𝑅

by plotting the contours in the complex magnetic field plane along which these functions separately
vanish [35, 36], and then, more precise methods are implemented around the intersection of the mentioned
contours [37]. The simulations at the complex ℎ values are not needed as we use the histogram reweighting
technique around the real simulations at ℎ = 0. Since the probability of states “up” and “down” are the
same for the Ising model, we artificially improve our statistics by not only using the simulation data but
also applying random signs to the magnetization of each state with the probability 50%. This way our
statistics include more possible states and improve drastically.

Results presented in figure 8 at 𝑇𝐿 show the position of several first Lee–Yang zeros for different
lattice sizes. The zeros follow a unit circle theorem, which in our coordinates means that all zeros should
lie on the imaginary axis. This is what we observe for a few first zeros, though it is obscured later by the
extrapolation from the simulation point.

Nonetheless, we can be sure that our analysis of the first zeros is valid. To further show this, we
present a FSS of the first Lee–Yang zero in figures 9, 10. The FSS of first Lee–Yang zero is governed
by [38]:
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Figure 8. (Colour online) Lines of zeros Im𝑍 (ℎ𝑅 , ℎ𝐼 ) = 0 (black curves) and Re𝑍 (ℎ𝑅 , ℎ𝐼 ) = 0 (yellow
curves) at the pseudo-critical temperature 𝑇𝐿 for lattice sizes 𝐿 = 12, 14, 16, 18 (a, b, c, d, respectively).
Crossings of different color lines give the position of Lee–Yang zeros. All zeros are located on the
imaginary axis, in agreement with the unit circle theorem.

ℎ1 ∼ 𝐿− Δ
𝜈 = 𝐿− 𝛽+𝛾

𝜈 . (24)

Q and G-scaling predict ℎ1 ∼ 𝐿3.75 and 𝐿3, respectively.

Criticality: Figure 9 shows the FSS of the first Lee–Yang zero at 𝑇𝑐, where we get ℎ1 ∼ 𝐿−3.16±0.48,
which might hint at G-scaling according to our other exponents at 𝑇𝑐.

Pseudo-criticality: For the first zero ℎ1 we see that for 𝑇𝐿 our fit when we discard the smallest lattice
sizes, ℎ1 ∼ 𝐿−3.81±0.08 , is well compared to Q-scaling and far from G-scaling: ℎ (𝑄)

1 ∼ 𝐿−3.75 versus
ℎ
(𝐺)
1 ∼ 𝐿−3, cf. equation (24).
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Figure 9. (Colour online) FSS of the first Lee–Yang zero for sizes 𝐿 = 10, ..., 25 at 𝑇𝑐 . Expected outcome:
G-scaling.
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Figure 10. (Colour online) FSS of the first Lee–Yang zero ℎ1 at 𝑇𝐿 . The expected outcome: Q-scaling.
We observe that for smaller sizes the results have corrections while for larger lattice sizes, the scaling
comes in line with Q-scaling.

Furthermore, from equation (8), we may write the susceptibility as

𝜒 ∝ 1
𝐿𝑑

∑︁
𝑗

1
[𝑧 − 𝑧 𝑗 (𝐿)]2 , (25)

where 𝑧 𝑗 (𝐿) is the 𝑗-th zero for a system of size 𝐿. Assuming that the first zeros dominate, this gives

𝜒 ∼ 𝐿−𝑑ℎ−2
1 ∼ 𝐿−𝑑+2Δ/𝜈 . (26)

Thus, we can provide an estimate for the susceptibility in this way. We find the contribution of the first
zero to the susceptibility, 𝐿−𝑑ℎ−2

1 ∼ 𝐿2.62±0.10 which is far closer to Q (𝜒𝐿 ∼ 𝐿5/2) than to G (𝜒𝐿 ∼ 𝐿2).
This means that, at least from the Lee–Yang-zeros analysis, even the susceptibility is supportive of Q for
pseudo-criticality and free boundaries.

4. Conclusions

Mean-field theory holds away for infinite volume systems above the upper critical dimension. Standard
FSS and standard hyperscaling both fail there. Instead, Q theory governs finite-size systems in high
dimensions. This accounts for different types of boundary conditions and whether or not one sits at the
critical or pseudo-critical point. Universality resides at the pseudo-critical point where standard FSS is
replaced by QFSS. FSS at the critical point depends on boundaries. For periodic boundaries, QFSS again
applies. For free boundaries, standard FSS applied to Gaussian or G modes — not Landau MFT — holds
(although Landau MFT is supported by simulations in the case of percolation with FBC at the percolation
threshold [7]). Here, we have used Monte Carlo simulations of the 𝑑 = 5 Ising model to verify this picture
for free boundaries.

In this paper, we looked at the FSS of the coordinates of the pseudo-critical temperature 𝑇𝐿 , mean
magnetization 𝑚, isothermal susceptibility and other observables. For the scaling of the pseudo-critical
point, we obtained 𝑡𝐿 ∼ 𝐿−2, as predicted before Q theory in reference [33]. For mean magnetization
at the critical temperature 𝑇𝑐, we observe G-scaling, while at the pseudo-critical temperature 𝑇𝐿 , the
small lattice sizes distort the scaling picture, though discarding a few smallest lattice sizes gives us
Q-scaling. For the isothermal susceptibility, the lattice sizes in question are too small to present a proper
five-dimensional scaling, and the scaling is Gaussian at both 𝑇𝑐 and 𝑇𝐿 . Furthermore, the magnetization
Fourier modes were studied, since for FBCs only odd magnetization Fourier modes contribute to Q-
scaling. We observed that even for small lattice sizes odd modes manifest Q-scaling at the 𝑇𝐿 .

Finally, we observed that expressing susceptibility in terms of Lee–Yang zeros delivers a very strong
signal of Q rather than G (or standard Landau) scaling. To conclude, then, all of the observables measured
are supportive of the Q picture and, although small lattices cast dubious results, twelve years after our
original paper [1], the overall holistic picture is supportive of Q.
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Коли кореляцiї перевищують розмiр системи:
скiнченновимiрний скейлiнґ за вiльних граничних умов над
верхньою критичною вимiрнiстю

Ю. Гончар1,2,4, Б. Берш3,4, Ю. Головач1,2,4,5, Р. Кенна 2,4

1 Iнститут фiзики конденсованих систем НАН України, 79011 Львiв, Україна
2 Центр плинних i складних систем, Унiверситет Ковентрi, Ковентрi, CV1 5FB, Велика Британiя
3 Лабораторiя теоретичної фiзики та хiмiї, Унiверситет Лотарингiї, CNRS, Нансi, Францiя
4 Спiвпраця L4 i Коледж докторантiв “Статистична фiзика складних систем”,
Ляйпцiґ-Лотарингiя-Львiв-Ковентрi, Європа

5 Центр науки про складнiсть, Вiдень, 1080, Австрiя

Ми дослiджуємо скiнченновимiрний скейлiнґ в системах з вiльними граничними умовами над їх верх-
ньою критичною вимiрнiстю, де в термодинамiчнiй границi критичний скейлiнґ описується середньопо-
льовою теорiєю. Нещодавнi роботи показують, що кореляцiйна довжина не обмежується фiзичним роз-
мiром системи, як довгий час вважалося ранiше. Замiсть цього спостерiгаються два режими скейлiнґу —
при критичних та псевдокритичних температурах. Ми демонструємо, що обидва режими проявляються
для вiльних границь. Ми використовуємо числовi симуляцiї моделi Iзiнга при 𝑑 = 5, щоб проаналiзувати
намагнiченiсть, сприйнятливiсть, магнiтнi модиФур’є-перетворень намагнiченостi та нулi статистичної су-
ми. Хоча деякi з функцiй вiдгуку приховують подвiйний скiнченовимiрний скейлiнґ, точнiсть, забезпечена
аналiзом нулiв Лi-Янга, дозволяє вивести це питання на переднiй план. Зокрема, скiнченновимiрний скей-
лiнґ перших нулiв у псевдокритичнiй точцi пiдтверджує нещодавнi прогнози, що виникають з кореляцiй,
якi перевищують розмiр системи. Ця стаття присвячена Ярославу Iльницькому з нагоди його 60-рiччя.

Ключовi слова: унiверсальнiсть, скiнченновимiрний скейлiнґ, верхня критична вимiрнiсть

13603-15

https://doi.org/10.1016/0031-8914(72)90045-6
https://doi.org/10.1103/PhysRevLett.61.2635
https://doi.org/10.1103/PhysRevLett.63.1195
https://doi.org/10.1103/PhysRevB.32.7594
https://doi.org/10.1142/S0217979205032759
https://doi.org/10.1088/1751-8113/49/13/135001
https://doi.org/10.1209/0295-5075/111/60009
https://doi.org/10.1209/0295-5075/111/60009
https://doi.org/10.1016/0550-3213(83)90499-6



	Introduction
	Numerical simulations
	Determining pseudo-criticality and its finite-size scaling
	FSS of the mean magnetisation
	FSS of isothermal susceptibility
	Scaling of the magetization Fourier modes

	Scaling of the partition function zeros
	Conclusions

