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This research focuses on the unique phase behavior of non-spherical patchy colloids in porous environments.
Based on the theory of scaled particle (SPT), methods have been refined and applied to analyze the thermo-
dynamic properties of non-spherical patchy particles in a disordered porous medium. Utilizing the associative
theory of liquids in conjunction with SPT, we investigated the impact of associative interactions and connections
between the functional nodes of particles on the formation of the nematic phase. Calculations of orientational
and spatial distributions were conducted, which helped to understand the phase behavior of particles during
the transition from isotropic to nematic phase under the spatial constraints imposed by the disordered matrix
of the porous medium.
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1. Introduction

It is a big pleasure for us to dedicate this paper to our good friend and colleague Jaroslav Ilnytskyi
for his 60th birthday celebration. His work on computer simulations of liquid crystals and polymers is
very important in the physics of soft matter. Some of his studies, see, e.g., [1–4], are methodologically
related to the objectives of the present paper, specifically to computer simulations of isotropic-nematic
phase transition in different molecular models, in particular in the presence of porous media or colloidal
particles. M.H. is very happy that together with Jaroslav and other colleagues he was the coauthor of
a common paper [5] devoted to the development of the dissipative particle dynamics approach for the
study of morphological changes in block copolymer melts due to variation of intramolecular branching.

During the last decades, the study of complex colloidal particles with chemically or physically
patterned surfaces, commonly referred to as patchy colloids, has taken significant attention [6, 7].
Usually, such patchy colloids are modelled as hard spheres carrying a finite small number of attractive
sites arranged in precise geometries on the particle’s surface. The anisotropy and saturation of the
interaction between such particles lead to a wide range of physical phenomena. The patchy colloidal
system was considered to be confined in a random porous media. The influence of porous media on
the phase behaviour, percolation, and dynamical properties of confined patchy colloidal fluids were
considered [8, 9].

Recently, in the theory of patchy particles, along with the study of spherical colloids, the study of non-
spherical patchy colloids has also become of considerable interest. The non-spherical shape of colloidal
particles significantly enriches the properties of such colloidal systems. In particular, due to the non-
spherical shape of colloids, there may be an orientational ordering of colloids and various associated liquid
crystal phases, which can be significantly enhanced and modified by additional associative interactions due
to the patchiness of colloids. Examples of such anisotropic patchy colloids are self-associated structures
that occur in micellar systems [10], in fibril formations [11], in solutions of DNA molecules [12], and
in inorganic nanoparticles [13]. The formation of associated clusters in non-spherical patchy colloids is
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often considered as the major reason for much of the interesting behaviors and properties of liquid crystal
systems. For example, association in liquid crystals has been considered as a possible cause of reentrant
phenomena in which less ordered phases reappear with decreasing temperature [14].

There are two important features inherent to non-spherical patchy colloids. The first one is connected
with the rigid non-spherical core of colloidal particles, which leads to the formation of different orien-
tational ordered liquid crystal phases, the simplest of which is the transition between non-ordered and
orientationally ordered phases, known as the isotropic-nematic phase transition. The second feature is
connected with the decoration of colloidal particles by attractive sites, which leads to bonding between
colloidal particles. In this paper, we consider the simplest model of patchy colloids of non-spherical shape
as a system of spherocylinders with one sticky point at one end of the spherocylinder that simulates the
formation of chemical or hydrogen bonds between colloids. Due to this bond, the colloids can form dimers
of two antiparallel spherocylinders attached end-to-end. For the first time, such a simple patchy colloidal
model was introduced by Sear and Jackson [15]. In their consideration, they combined the Onsager
theory [16] in order to account for the effect of an anisotropic phase on the excluded volume interactions
between spherocylinders, and Wertheim’s multidensity formalism [17, 18] for the treatment of the effect
of dimerization of spherocylinders. If the bonding is strong enough, the hard spherocylinders will all
dimerize, and the phase behavior of dimerizing hard spherocylinders will be approximately the same as
for the hard spherocylinders of twice the length. As a result, it was shown [15] that the nematic phase is
stabilized by dimerization relative to the isotropic phase. However, it should be noted that the Onsager
theory is based on the low-density expansion of the free energy functional truncated at the second virial
coefficient level and is exact only for a very specific model of a hard spherocylinder fluid in which the
length of the spherocylinder 𝐿1 → ∞ and the diameter 𝐷1 → 0 in such a way that the non-dimensional
density of the fluid 𝑐1 = 1

4 π𝐿
2
1𝐷1 is fixed, where 𝜌1 = 𝑁1/𝑉 , 𝑁1 is the number of spherocylinders, and𝑉

is the volume of the system [19]. In order to incorporate the higher-order contributions neglected in the
Onsager theory, in the next study [20] the authors used the Parsons–Lee (PL) approach [21, 22], which is
based on the mapping of the properties of the hard spherocylinder fluid to those of the hard sphere fluid.
The accuracy of the developed theory was demonstrated by the comparison with original Monte-Carlo
simulation data for the same model.

In the present manuscript, we study the influence of random porous media on the properties of dimer-
izing hard spherocylinders. Random porous media are usually considered as quenched configurations of
randomly distributed obstacles [23]. Similar to the bulk case, the description of dimerizing hard sphe-
rocylinders in random porous media needs to combine the Onsager theory and Wertheim’s multidensity
approach and generalize them for the patchy colloidal system in a random porous media. However, in
contrast to the bulk case, the application of the Parsons–Lee formalism for the improvement of Onsager
theory in the presence of porous media seems to be quite problematic because the Parsons–Lee approach
significantly uses the virial equation of state for the hard sphere fluid, the generalization of which for
the presence of porous media is currently impossible in an analytical form. Instead of the Parsons–Lee
approach, in this paper, we use the scaled particle theory (SPT) previously developed for a hard-sphere
fluid [24] and during the last decade extended to generalize for the description of a hard sphere fluid
in disordered porous media [25–33]. The approach proposed in [25], referred to as SPT1, contains a
subtle inconsistency manifested when the size of matrix particles is considerably larger than the size
of fluid species. This inconsistency was eliminated in a new version labeled as SPT2 [28]. As a result,
the first rather accurate analytical expressions were obtained for the chemical potential and pressure of
a hard sphere fluid in a hard sphere matrix. These expressions include three parameters describing the
porosity of the matrix [29, 30, 32, 33]. The first one is related to the bare geometry of the matrix. It
is the so-called geometrical porosity, 𝜙0, that characterizes the free volume not occupied by the matrix
particles. The second parameter, 𝜙, is defined by the chemical potential of a fluid in the limit of infinite
dilution. It is the so-called probe particle porosity, which means the probability to find a fluid particle
in an empty matrix. The third parameter, 𝜙∗, is determined by the maximum value of the fluid packing
fraction of a hard sphere fluid in a porous medium. It characterizes the maximum adsorption capacity of
a matrix for a given type of fluid. We note that for thermodynamic properties of a hard sphere fluid, SPT
produces the same result as the Percus–Yevick theory [34, 35]. A basic defect of such a description is
known to appear at higher densities where the theory needs some improvement, such as a semi-empirical
Carnahan–Starling (CS) correction [36, 37].
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In the present manuscript, we study the influence of random porous media on the properties of
dimerizing hard spherocylinders. The scaled particle theory was generalized for the hard spherocylinder
fluid [38, 39] and for the mixture of hard spheres and hard spherocylinders [40, 41] for the bulk case,
in order to incorporate the higher-order contributions neglected in the Onsager theory. As a result, it
became possible to generalize the Onsager theory for the description of a more realistic model of the
hard spherocylinder fluid with a finite value of the spherocylinder length and a non-zero value of the
diameter. However, by comparison with corresponding computer simulation data [40, 41], it was shown
that the accuracy of the SPT description reduces with the decreasing length 𝐿1 of spherocylinders. This
reduced accuracy of the SPT description was improved by the CS correction within the framework of
the Parsons–Lee approach, which leads to a correct description of the isotropic-nematic transition in
the hard spherocylinder fluid, even at small lengths 𝐿1 of spherocylinders [22]. However, as we have
already noted, the generalization of the PL approach for the presence of porous media is problematic.
For the presence of disordered porous media, the SPT2 approach was generalized for the fluid of hard
convex body particles in disordered porous media [42] and was used for the study of the influence
of porous media on the isotropic-nematic transition in a hard spherocylinder fluid in disordered porous
media [43, 44] and in a hard spherocylinder-hard sphere mixture [45]. It was shown that a porous medium
shifts the isotropic-nematic phase transition to smaller fluid densities. However, similar to the bulk case,
the accuracy of the developed SPT description reduces with a decreasing spherocylinder length. To
address this, in [43, 44] two types of corrections were introduced to improve the SPT description of a
hard spherocylinder fluid in disordered porous media. The first one is the CS correction, which improves
the description at higher fluid densities. The second one corrects the description of the orientational
ordering in a hard spherocylinder fluid at higher densities. This correction was formulated by comparing
the constants in the integral equation for the singlet distribution function of hard spherocylinders in
the SPT approach and in the PL theory in the bulk case. The CS and PL corrections constitute the
improvement of the SPT description of a hard spherocylinder fluid in disordered porous media. It was
shown that both corrections provide a correct description of the isotropic-nematic phase transition in a
hard spherocylinder fluid in disordered porous media, including the hard spherocylinder fluids with small
lengths of spherocylinders. The obtained results for hard spherocylinders in random porous media were
used as the reference system for the generalization of the Van der Waals equation for anisotropic fluids
in random porous media [44, 46, 47], which was used for the description of the influence of the porous
media on the phase behavior of polypeptide solutions [48]. A model of hard spherocylinders-charged
hard spheres mixture in random porous media was used for the description of the phase behavior of
electrolyte solutions in anisotropic solvents [49, 50].

In the present paper, we use the obtained results for the hard spherocylinder fluid in random porous
media as the reference system for the study of the influence of porous media on the phase behavior of
dimerized hard spherocylinders. We show that due to association, the phase behavior of dimerizing hard
spherocylinders is strongly temperature-dependent, and a porous medium shifts the isotropic-nematic
transition to smaller fluid densities and lower temperatures. The paper is arranged as follows: In section 2,
we formulate the model of dimerizing hard spherocylinders in random porous media and present the
theory which combines the SPT approach for a hard spherocylinder fluid in disordered porous media
with the CS and PL corrections and the associative multidensity formalism for the description of the
dimerizing effects. The results and discussion are presented in section 3. We conclude in section 4.

2. Model and theory

In the present study, we examine the qualitative features of the phase behavior of dimerized hard
spherocylinder fluid in disordered porous media. To enable a comparison of our theoretical results with
the computer simulation data obtained in [20] for the bulk case, we consider here the dimerizing hard
spherocylinder model with the same parameters as in [20]. The schematic representation of the model
dimerizing hard spherocylinder is presented in figure 1. The model is a hard spherocylinder with a
cylindrical core of length 𝐿1, capped at each end by hemispheres with a diameter 𝐷1, and with a square-
well bonding site embedded in one of the hemispherical end caps at a distance 𝑟d = 0.25𝐷1 from the
center of the hemisphere to the surface along the molecular axis, as shown in figure 1. The bonding
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sites mediate the association of the dimerizing spherocylinders, described by the site-site square-well
potential.

𝜙attr (𝑟) =
{
−𝜖1, 𝑟 ⩽ 𝛿1,
0, 𝑟 ⩾ 𝛿1,

(2.1)

where 𝑟 is the site-site distance between the bonding sites of two spherocylinders. The parameter 𝜖1
represents the depth of the square-well and is used to define the dimensionless temperature 𝑇∗ = 𝑘𝑇/𝜖1,
where 𝑘 is the Boltzmann constant and 𝑇 is the temperature on the absolute Kelvin scale. The parameter
𝛿1 denotes the width of the square-well and satisfies the following inequality [8]: 𝛿1 ⩽ (1 −

√
3/2)𝐷1 =

0.134𝐷1, which ensures that only one attractive bond per site between spherocylinders can be formed.
In the study [20], the authors chose 𝛿1 = 0.5742𝐷1. In the present paper we use a similar value of the
potential parameter 𝛿1. That is why the bonding in the considered case was not saturable. However, it was
shown by computer simulations that in the considered case, for densities close to the isotropic-nematic
phase transition, the formation of trimers and larger aggregates is extremely rare. Therefore, in the present
theoretical study, we take into account only dimerizing clusters.

L1

D1

+D1

Figure 1. (Colour online) Schematic representation of the model dimerizing hard spherocylinder.

We also consider that the model at hand is confined in a porous medium represented by a matrix
of frozen hard spheres (HS), characterized by hard-sphere obstacles of diameter 𝐷0, and two types
of porosity, [28, 30] i.e., geometrical porosity 𝜙0 and probe particle porosity 𝜙. For the HS matrix,
𝜙0 = 1 − 𝜂0, where 𝜂0 = π𝜌0𝐷

3
0/6 and 𝜙 is defined by the excess value of the chemical potential 𝜇ex

1 of
the fluid particles in the limit of infinite dilution, i.e., 𝜙 = exp(−𝛽𝜇ex

1 ), where 𝛽 = 1/𝑘𝑇 .
As we already noted in the introductory part of the present manuscript, we combine the scaled particle

theory, generalized in [43, 44] for the case of hard spherocylinders in porous media, with the multidensity
formalism from the theory of associative fluids [15, 17, 18, 51–53], in order to describe the associative
interactions. According to the multidensity formalism, the singlet density distribution function 𝜌1(1) can
be presented as the sum:

𝜌1 (1) = 𝜌10 (1) + 𝜌11 (1) , (2.2)

where 𝜌10(1) and 𝜌11(1) represent the singlet density distribution functions of monomers (nonbonding
part) and dimers (bonding part), respectively. We note that we use the conventional notations in the
theory of fluids in porous media [28, 30, 44]: the index “1” is used to denote the fluid component and
the index “0” to denote the matrix particle. We also use the index “s” for the scaled particle and follow
the conventional notations in the theory of associative fluids [17, 18, 51–53]. In the case of two indexes,
the second index “0” corresponds to the nonbonded part and the second index “1” to the bonded part.
In (2.2), we also use conventional notations in fluid theory [37]. The notation (1) = (𝑟1,Ω1) denotes the
coordinates (the positions 𝑟1 and orientations Ω1) of a fixed spherocylinder. Here, Ω = (𝜃, 𝜑) represents
the orientation of a particle determined by the angles 𝜃 and 𝜑. For a homogeneous nematic phase, the
singlet distribution functions 𝜌1(1) and 𝜌10(1) are functions only of the angle between the molecular
axis and the preferred direction, the so-called nematic director. Thus,

𝜌1(1) = 𝜌1 𝑓1(Ω1) = 𝜌1 𝑓1(𝜃1),
𝜌10(1) = 𝜌10 𝑓10(Ω1) = 𝜌10 𝑓10(𝜃1), (2.3)
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where 𝜌1 is the total number density of spherocylinders, 𝜌10 is the number density of monomers, and 𝜃
is the angle between the molecular axis and the nematic director. The functions 𝑓1(Ω) and 𝑓10(Ω) are
normalized to unity: ∫

𝑓1(Ω) dΩ =

∫
𝑓10(Ω) dΩ = 1. (2.4)

Here, dΩ = 1
4π sin 𝜃 d𝜃 d𝜑 is the normalized element of body angle.

For the isotropic phase, 𝑓1(Ω) = 𝑓10(Ω) = 1. The free energy of the system within the approximation
obtained in the framework of the first-order thermodynamic perturbation theory [15, 20, 51–54] can be
written as the sum of three contributions:

𝛽𝐴 =

∫ {
𝜌1 (1) ln

[
𝜌10 (1) Λ3

1
]
− 𝜌10 (1)

}
d1 + 𝛽𝐴HSC

− 1
2

∫
𝜌10 (1) 𝜌10 (2) 𝑔HSC (12) 𝑓as (12) d1 d2, (2.5)

where Λ1 is the de Broglie wavelength, 𝑔HSC(12) is the binary distribution function of the hard sphero-
cylinders. The first term represents the ideal contribution to the free energy of the system of dimerizing
spherocylinders. It includes the contribution from orientational entropy

𝜎( 𝑓1, 𝑓10) =
∫
𝑓1(Ω) ln 𝑓10(Ω)dΩ, (2.6)

which appears from the first term in (2.5) after substitution of (2.3).
The second term in (2.5) 𝛽𝐴HSC accounts for the hard-particle interaction of the spherocylinders,

which in the Onsager limit reduces to the excluded volume integral in the form of the second virial
coefficient [16, 19]

𝐵2 =
1
2

∫
𝑓1(Ω1) 𝑓1(Ω2)𝑉exc(Ω1,Ω2) dΩ1 dΩ2,

where
𝑉exc(Ω1,Ω2) = 2𝐿2

1𝐷1 sin(𝜃12) + 2π𝐿1𝐷
2
1 +

4
3
π𝐷3

1,

𝜃12 is the angle between the principal axis of two spherocylinders. The third term in (2.5) reflects the
associative dimerization contribution.

2.1. Hard spherocylinder contribution

To describe the second term — the hard spherocylinder contribution — the scaled particle method is
employed. This method involves introducing an additional spherocylindrical particle into the system of
hard spherocylinders in porous media, characterized by two scale parameters: diameter 𝐷𝑠 and length of
the cylinder 𝐿𝑠:

𝐷𝑠 = 𝜆𝑠𝐷1, 𝐿𝑠 = 𝛼𝑠𝐿1. (2.7)

Between different approximations considered in the framework of SPT2 approach we restrict here to
the SPT2b1 approximation which is quite accurate at small, intermediate and higher fluid densities. The
expressions obtained using the scaled particle method for the pressure and chemical potential within the
SPT2b1 approximation can be represented as follows [43, 44]:[

𝛽
(
𝜇ex

1 − 𝜇0
1
) ]SPT2b1

= 𝜎( 𝑓1, 𝑓10) − ln(1 − 𝜂1/𝜙0) +
[
1 + 𝐴

(
𝜏( 𝑓1)

) ] 𝜂1/𝜙0
1 − 𝜂1/𝜙0

+ 𝜂1(𝜙0 − 𝜙)
𝜙0𝜙(1 − 𝜂1/𝜙0)

+ 1
2
[
𝐴
(
𝜏( 𝑓1)

)
+ 2𝐵

(
𝜏( 𝑓1)

) ] (𝜂1/𝜙0)2

(1 − 𝜂1/𝜙0)2

+ 2
3
𝐵
(
𝜏( 𝑓1)

) (𝜂1/𝜙0)3

(1 − 𝜂1/𝜙0)3 , (2.8)
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(
𝛽𝑃

𝜌1

)SPT2b1
=

1
1 − 𝜂1/𝜙0

𝜙0
𝜙

+
(
𝜙0
𝜙

− 1
)
𝜙0
𝜂1

ln(1 − 𝜂1/𝜙0)

+
𝐴
(
𝜏( 𝑓1)

)
2

𝜂1/𝜙0

(1 − 𝜂1/𝜙0)2 +
2𝐵

(
𝜏( 𝑓1)

)
3

(𝜂1/𝜙0)2

(1 − 𝜂1/𝜙0)3 , (2.9)

where 𝜂1 = 𝜌1𝑉1 is the packing fraction parameter of the system of spherocylindrical particles, 𝜌1 is
the density of spherocylindrical particles, and 𝑉1 = (π𝐷3

1/6) + (π𝐿1𝐷
2
1/4) is the volume of the hard

spherocylindrical particles. We note that in (2.8) we introduced the orientational entropy term 𝜎( 𝑓1, 𝑓10),
defined by (2.6). The coefficients 𝐴(𝜏( 𝑓1)) and 𝐵(𝜏( 𝑓1)) are defined by the expressions.

𝐴(𝜏( 𝑓1)) = 6 + 6(𝛾1 − 1)2𝜏( 𝑓1)
3𝛾1 − 1

−
𝑝′0𝜆
𝜙0

[
4 + 3(𝛾1 − 1)2𝜏( 𝑓1)

3𝛾1 − 1

]
−

𝑝′0𝛼
𝜙0

(
1 + 6𝛾1

3𝛾1 − 1

)
−

𝑝′′0𝛼𝜆
𝜙0

− 1
2
𝑝′′0𝜆𝜆
𝜙0

+ 2
𝑝′0𝛼𝑝

′
0𝜆

𝜙2
0

+
(
𝑝′0𝜆
𝜙0

)2

, (2.10)

𝐵(𝜏( 𝑓1)) =

(
6𝛾1

3𝛾1 − 1
−
𝑝′0𝜆
𝜙0

)
×

[
3(2𝛾1 − 1)

3𝛾1 − 1
+ 3(𝛾1 − 1)2𝜏( 𝑓1)

3𝛾1 − 1
−
𝑝′0𝛼
𝜙0

− 1
2
𝑝′0𝜆
𝜙0

]
, (2.11)

where

𝜏( 𝑓1) =
4
π

∫
𝑓1(Ω1) 𝑓1(Ω2) sin 𝜗12 dΩ1 dΩ2. (2.12)

𝑝′0𝜆 =
𝜕𝑝0 (𝛼𝑠 ,𝜆𝑠 )

𝜕𝜆𝑠
, 𝑝′0𝛼 =

𝜕𝑝0 (𝛼𝑠 ,𝜆𝑠 )
𝜕𝛼𝑠

, 𝑝′′0𝛼𝜆 =
𝜕2𝑝0 (𝛼𝑠 ,𝜆𝑠 )

𝜕𝛼𝑠𝜕𝜆𝑠
, 𝑝′′0𝜆𝜆 =

𝜕2𝑝0 (𝛼𝑠 ,𝜆𝑠 )
𝜕𝜆2

𝑠
are suitable derivatives at

𝛼𝑠 = 𝜆𝑠 = 0.
𝑝0(𝛼𝑠, 𝜆𝑠) = exp

[
− 𝛽𝜇0

𝑠 (𝛼𝑠, 𝜆𝑠)
]

(2.13)

is the probability of finding a cavity in an empty matrix which is determined by the excess of the chemical
potential 𝜇0

𝑠 (𝛼𝑠, 𝜆𝑠) of the scale particle at infinite dilution.
The probability 𝑝0(𝛼𝑠, 𝜆𝑠) is associated with two types of porosity [28, 30, 42, 44]. The first is

geometric porosity, defined as:

𝜙0 = 𝑝0(𝛼𝑠 = 𝜆𝑠 = 0), (2.14)

which describes the free volume available for fluid molecules. In the case of a hard-spherical matrix, it
is given by:

𝜙0 = 1 − 𝜂0, (2.15)

where 𝜂0 = 1
6 π𝐷

3
0𝜌0 represents the packing fraction of matrix particles, 𝜌0 is the density of matrix

particles, and 𝐷0 is the diameter of matrix particles.
The second type of porosity is defined at 𝜆𝑠 = 𝛼𝑠 = 1, which corresponds to thermodynamic porosity.

𝜙 = 𝑝0(𝛼𝑠 = 𝜆𝑠 = 1) = exp(−𝛽𝜇0
1), (2.16)

which is described by the excess of the chemical potential of the molecules of fluid 𝜇0
1 at infinite dilution.
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In this case we are considering [44]

𝜙 = (1 − 𝜂0) exp
{
− 𝜂0

1 − 𝜂0
𝜏

[
3
2
(𝛾1 + 1) + 3𝛾1𝜏

]
−

𝜂2
0

(1 − 𝜂0)2
9
2
𝛾1𝜏

2

− 1
2

𝜂0

(1 − 𝜂0)3 (3𝛾1 − 1)𝜏3(1 + 𝜂0 + 𝜂2
0)
}
, (2.17)

where 𝜏 = 𝐷1
𝐷0

, 𝛾1 = 1 + 𝐿1
𝐷1

.
For the free energy, we can get an expression from the thermodynamic relationship

𝛽𝐴

𝑉
= 𝛽𝜇1𝜌1 − 𝛽𝑃. (2.18)

The free energy, limited by fluid in the SPT2b1 approximation, is presented as follows:(
𝛽𝐴

𝑁

)SPT2b1
= 𝜎( 𝑓1, 𝑓10) + ln

𝜂1
𝜙

− 1 − ln(1 − 𝜂1/𝜙0)

+
(
1 − 𝜙0

𝜙

) [
1 + 𝜙0

𝜂1
ln(1 − 𝜂1/𝜙0)

]
+

𝐴
(
𝜏( 𝑓1)

)
2

𝜂1/𝜙0
1 − 𝜂1/𝜙0

+
𝐵
(
𝜏( 𝑓1)

)
3

(
𝜂1/𝜙0

1 − 𝜂1/𝜙0

)2
. (2.19)

According to the [43], we should add the CS terms to expressions (2.8), (2.9), and (2.18).(
𝛽𝑃

𝜌1

)SPT2b1-CS
=

(
𝛽𝑃

𝜌1

)SPT2b1
+
(
𝛽𝑃

𝜌1

)CS
, (2.20)

(𝛽𝜇1)SPT2b1-CS = (𝛽𝜇1)SPT2b1 + (𝛽Δ𝜇1)CS , (2.21)

(
𝛽𝐴

𝑁1

)SPT2b1-CS
=

(
𝛽𝐴

𝑁1

)SPT2b1
+
(
𝛽𝐴

𝑁1

)CS
, (2.22)

where (
𝛽Δ𝑃

𝜌1

)CS
= − (𝜂1/𝜙0)3

(1 − 𝜂1/𝜙0)3 , (2.23)

(𝛽Δ𝜇1)CS = ln
(
1 − 𝜂1

𝜙0

)
+ 𝜂1/𝜙0

1 − 𝜂1/𝜙0
− 1

2

(
𝜂1/𝜙0

1 − 𝜂1/𝜙0

)2

−
(
𝜂1/𝜙0

1 − 𝜂1/𝜙0

)3
, (2.24)

(
𝛽Δ𝐴

𝑁1

)CS
= ln

(
1 − 𝜂1

𝜙0

)
+ 𝜂1/𝜙0

1 − 𝜂1/𝜙0
− 1

2

(
𝜂1/𝜙0

1 − 𝜂1/𝜙0

)2
. (2.25)
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2.2. Associative contribution and the integral equations for the singlet distribution
functions

The free energy of the considered system is given by the expression (2.5), in which the first two terms
can be presented in the form (2.19). This expression includes contributions from hard spherocylinders
and from associative interactions. To complete this, we should determine the expressions for the singlet
distribution functions 𝜌1(1) = 𝜌1 𝑓1(Ω1) and 𝜌10(1) = 𝜌10 𝑓10(Ω1). Both functions can be found from
the minimization of the free energy with respect to variations in these distributions. In particular, from
variation in 𝜌10(1), we have the generalization of a very known relation between 𝜌1(1) and 𝜌10(1) in the
theory of associative fluids for the anisotropic associative fluids in porous media, which plays the role of
the mass action law (MAL) in the theory of associative fluids:

𝜌1(1) = 𝜌10(1) + 𝜌10(1)
∫
𝜌10(2)𝑔HCS(12) 𝑓as(12) d2. (2.26)

In this relation, it is convenient, according to (2.3), to move from 𝜌1(1) and 𝜌10(1) to functions 𝑓1(1)
and 𝑓10(1). Since in the isotropic phase the functions 𝑓1(1) = 𝑓10(1) = 1 and in the nematic phase
all spherocylinders are nearly parallel, in (2.26) we can use the approximation 𝑓10(2) = 𝑓10(1), for the
first time introduced by Sear and Jackson [15]. Finally, due to the delta-like character of the associative
interaction, the relation (2.26) can be written in the form:

𝑓1(Ω1) = 𝑓10(Ω1)𝑋 + 𝑋2 𝑓 2
10(Ω1)𝜌1𝐾𝐹𝑔

cont
HCS, (2.27)

where 𝑋 = 𝜌10/𝜌1 is the fraction of monomers, 𝐹 = exp(𝛽𝜖1) − 1, and 𝐾 is the geometric multiplier,
determined by the volume of overlap of the two interactive bonding sites [55]. The contact value of the
binary function of hard spherocylinders 𝑔cont

HSC will be approximated by the corresponding contact value
of hard spheres, which, with the help of previous works [8, 9], can be presented in the following form:

𝑔cont
HCS = 𝑔cont =

1
𝜙0 − 𝜂1

+ 3
2
𝛿𝜂1 + 𝜏𝜂0

(𝜙0 − 𝜂1)2 + 1
2
(𝛿𝜂1 + 𝜏𝜂0)2

(𝜙0 − 𝜂1)3 , (2.28)

where 𝛿 = 2𝛾1/(3𝛾1 − 1), 𝜏 = 𝜎1/𝜎0.
After integration of equation (2.27) over the angles, we obtain the following equation for 𝑋:

1 = 𝑋 + 𝑋2𝜌1𝐾𝐹
¯𝑓 2
10𝑔

cont, (2.29)

where
¯𝑓 2
10 =

∫
dΩ 𝑓 2

10(Ω). (2.30)

The second relation between 𝑓1(1) and 𝑓10(1) can be found from the minimization of the free energy
with respect to 𝜌1(1):

ln 𝑓10(Ω1) + 1 + 𝐶 8
𝜋

∫
𝑓1(Ω2) sin 𝜗12 dΩ2 = 0, (2.31)

where

𝐶 =
𝜂1/𝜙0

1 − 𝜂1/𝜙0

[
3(𝛾1 − 1)2

3𝛾1 − 1

(
1 −

𝑝′0𝜆
2𝜙0

)
+ 𝜂1/𝜙0

1 − 𝜂1/𝜙0
𝜈
(𝛾1 − 1)2

3𝛾1 − 1

(
6𝛾1

3𝛾1 − 1
−
𝑝′0𝜆
𝜙0

)]
. (2.32)

𝜈 = 3
8 is the Parsons–Lee correction introduced by us in [43]. As a result, we found that the functions 𝑓1(Ω)

and 𝑓10(Ω) are defined by the systems of equations (2.27) and (2.31). Substituting from expression (2.27)
the equation for the unary function 𝑓1(Ω1) into expression (2.31), we obtain the following equation for
the function 𝑓10(Ω1):

ln 𝑓10(Ω1) = −1 − 𝐶𝑋 8
π

∫
𝑓10(Ω2) sin 𝜗12 dΩ2

− 8
π
𝐶𝑋2𝜌1𝐾𝐹𝑔

cont
∫
𝑓 2
10(Ω2) sin 𝜗12 dΩ2. (2.33)
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After the normalization, equation (2.33) can be represented in the form:

𝑓10 (Ω1)

=
exp

[
− 8

π
𝐶𝑋

∫
𝑓10 (Ω2) sin 𝛾12dΩ2

]
exp

[
− 8

π
𝐶𝜌1𝐾𝑔

cont𝐹𝑋2
∫
𝑓 2
10 (Ω2) sin 𝛾12dΩ2

]
8
π

∫
exp

[
− 8

π
𝐶𝑋

∫
𝑓10 (Ω2) sin 𝛾23dΩ2

]
exp

[
− 8

π
𝐶𝜌1𝐾𝑔cont𝐹𝑋2

∫
𝑓 2
10 (Ω2) sin 𝛾23dΩ2

]
dΩ3

. (2.34)

This equation is solved numerically by generalizing the iterative procedure proposed in [56] for a more
simple case when the associative interactions are absent. Now, the expressions for free energy, pressure,
and chemical potential can be written as the sum of two terms:

𝛽𝐴

𝑁1
=
𝛽𝐴ref
𝑁1

+ 𝛽𝐴as
𝑁1

, (2.35)

𝛽𝑃

𝜌1
=
𝛽𝑃ref

𝜌1
+ 𝛽𝑃

as

𝜌1
, (2.36)

𝛽𝜇1 = 𝛽𝜇ref
1 + 𝛽𝜇as

1 , (2.37)
where the first term has a form similar to that for hard spherocylinders in porous media, with a modifi-
cation in the entropy term 𝜎( 𝑓 ) to 𝜎( 𝑓1, 𝑓10), as defined by (2.6). In accordance with thermodynamic
perturbation theory, the associative terms can be written as follows:

𝛽𝐴as
𝑁1

=

(
ln 𝑋 − 𝑋

2
+ 1

2

)
, (2.38)

𝛽𝑃as

𝜌1
= −1

2
(1 − 𝑋)

(
1 + 𝜌1

𝜕 ln 𝑔cont

𝜕𝜌1

)
, (2.39)

𝛽𝜇as
1 =

[
ln 𝑋 − 1

2
(1 − 𝑋) 𝜌1

𝜕 ln 𝑔cont

𝜕𝜌1

]
. (2.40)

3. Results and discussions

In this section, we illustrate the theory presented in the previous section for the dimerizing hard
spherocylinder fluid in a hard sphere matrix. During this study, we aim to elucidate the influence of
associative interactions and porous media on the isotropic-nematic phase transition in the system of
dimerizing hard spherocylinders. It is noted that, according to the results of computer simulation [57], in
a system of hard spherocylinders, only an isotropic phase is observed at 𝐿1/𝐷1 < 3.7, and a transition
from isotropic to nematic phase is observed at 𝐿1/𝐷1 > 3.7. In order to check the accuracy of our
theoretical predictions, we also compare the obtained theoretical results with the data from computer
modelling [20] for the dimerization model of hard spherocylinders in the bulk case. For this purpose,
we consider spherocylinders with an aspect ratio of 𝐿1/𝐷1 = 5. We also select interaction parameters
between patches, as in the case of computer simulation [20]. In theory, the specific geometry of the
bonding site is not provided, whereas in simulation studies, this area is strictly defined. The bonding
volume of the overlap of two sites 𝐾 = 5.17 × 10−4𝐷3

1, and the temperature 𝑇∗ = 𝑘𝑇/𝜖1 = 0.1429. This
temperature corresponds to the depth of the square-well 𝜖1 = 7𝑘𝑇 , indicating that the formed bonds will
be relatively strong. Figure 2 shows the dependence of the fraction of monomers 𝑋 on the packing fraction
of hard spherocylinders 𝜂1 at 𝐿1/𝐷1 = 5 with one sticky point site. A matrix is modelled by a frozen
configuration of hard spheres randomly located in space with the packing fraction 𝜂0 = 0.1, 0.2, 0.3.

Figure 2 also shows data from computer simulation [20] in the absence of a matrix (𝜂0 = 0).
Theoretical curves qualitatively reproduce the data from computer simulations but slightly underestimate
the value of the fraction 𝑋 , particularly in the nematic region. The results of improving the theory are due
to the improvement of the expression (2.28) for the contact value of a binary function. Both theoretical
and computer data show a jump of 𝑋 in the area 𝜂1 of the order of 0.345 (theory) and 𝜂1 ≈ 0.351 for the
simulation. This jump is due to the phase transition from the isotropic phase to the nematic phase. As the
matrix packing fraction increases, the value of 𝑋 decreases and the jump of 𝑋 shifts toward smaller 𝜂1.
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Figure 2. (Colour online) The fraction of monomers 𝑋 as a function of 𝜂1 for the dimerization of hard
spherocylinders with an aspect ratio 𝐿1/𝐷1 = 5. Data points, representing results from simulations [20],
are plotted alongside the curves derived from theoretical models. These curves correspond to the isotropic
and nematic phases. The colors of the curves indicate various packing fractions of the matrix, represented
by 𝜂0 = 0 (red color), 0.1 (magenta color), 0.2 (blue color), and 0.3 (green color).

Figure 3 shows the dependence of the parameter of nematic order 𝑆2 for the same system. 𝑆2 is defined
as:

𝑆2 =

∫
𝑓1(Ω)𝑃2(cos 𝜃) dΩ, (3.1)

where 𝑃2(cos 𝜃) is the second Legendre polynomial.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.0
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0.4

0.6

0.8

1.0

S
2

h1

Figure 3. (Colour online) The nematic order parameter 𝑆2 as a function of 𝜂1 for the dimerization of
hard spherocylinders with an aspect ratio of 𝐿1/𝐷1 = 5. Data points represent results from computer
simulations [20], while the curves are based on our theoretical calculations. The colors of the curves
indicate various packing fractions of the matrix, represented by 𝜂0 = 0 (red color), 0.1 (magenta color),
0.2 (blue color), and 0.3 (green color).

As can be seen, the order parameter for the bulk case agrees well with the data from computer
simulation [20]. In the presence of the matrix, the curves for the order parameter are shifted toward lower
densities. The location of isotropic-nematic transition is confirmed by the variation of the nematic order
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Figure 4. (Colour online) The pressure 𝑃∗ as a function of fluid packing fraction for dimerizing hard
spherocylinders with 𝐿1/𝐷1 = 5. The curves represent isotropic and nematic branches obtained from
the theory. The colors of the curves indicate various packing fractions of the matrix, represented by
𝜂0 = 0 (red color), 0.1 (magenta color), 0.2 (blue color), and 0.3 (green color). The points represent the
computer simulation data. The black curve represents the theoretical results for the bulk case from [20].

parameter 𝑆2 (figure 3) and the fraction of monomer 𝑋 (figure 2) as function of packing fraction 𝜂1.
Figure 5 illustrates the effect of disordered porous media on the fraction of monomers 𝑋 as a function

of pressure 𝑃 in nondimensional form 𝑃∗ = 𝑃𝑉1/𝑘𝑇 , where 𝑉1 = 1
6 π𝐷

3
1 +

1
4 π𝐿1𝐷

2
1 is the volume of a

hard spherocylinder. The most striking feature of this figure is the exceptionally clear isotropic-nematic
transition for the dimerizing spherocylinders. The degree of association is predicted accurately by the
theory in the isotropic and nematic phases, as is its first-order jump at the nematic phase. In the presence
of the matrix, the curves are shifted toward lower pressures. Figure 4 illustrates the effect of porous
media on pressure as a function of density for the dimerization of hard spherocylinders. For the bulk
case (𝜂0 = 0), the theoretical results qualitatively reproduce the computer simulation data up to the point
𝜂1 = 0.482, 𝑃∗ = 5.78 corresponding to the nematic-smectic A transition. This point cannot be predicted
by the considered here Onsager-like theory. The influence of matrix packing fraction 𝜂0 = 0.1, 0.2, 0.3
was studied, and the data from computer simulation [20] in the absence of a matrix (𝜂0 = 0) are
also presented. It is shown that with increasing matrix packing fraction 𝜂0, the isotropic-nematic phase
transition shifts to lower densities, with this effect being more noticeable for pressure (figure 4). In figure 5
the theoretical results obtained in [20] are also shown by black curves. As we can see, there is a good
agreement between our theoretical results and theoretical results obtained in [20] only in the isotropic
phase. However, in the nematic phase, our theoretical results are in better agreement with simulation
data. This is not surprising because in [20], a trial function was used for the description of the singlet
distribution functions 𝑓1(Ω1) and 𝑓10(Ω1). As known [19], the trial function approach overestimates the
nematic ordering at the isotropic-nematic transition.

Finally, figure 6 presents the phase diagram of the isotropic-nematic phase transition. The phase
transition predicted by the theory, as illustrated in figure 6 by lines, is qualitatively consistent with the
results of Monte Carlo modelling [20]. At high temperatures, the transition densities correspond to those
expected in a system of simple monomers without dimerization. At very low temperatures, where dimers
predominate, the transition density is much lower and exhibits little sensitivity to temperature changes.
Dimerization stabilizes the nematic phase relative to the isotropic fluid. Only within a narrow temperature
range does the density change rapidly. In this region, dimerization greately affects the density ranges
near the isotropic-nematic (I–N) transition zone, where there is also a noticeable expansion of the two-
phase area. The theoretical conclusions summarized in figure 6 indicate that the reduced temperature
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Figure 5. (Colour online) The fraction of monomers 𝑋 as a function of nondimensional pressure 𝑃∗
for dimerizing hard spherocylinders with 𝐿1/𝐷1 = 5. The curves correspond to isotropic and nematic
branches obtained from the theory. The colors of the curves indicate various packing fractions of the
matrix, represented by 𝜂0 = 0 (red color), 0.1 (magenta color), 0.2 (blue color), and 0.3 (green color).
The points represent computer simulation data. The black curve represents the theoretical results for the
bulk case from [20].

𝑇∗ = 𝑘𝑇/𝜖1 = 0.1429 corresponds to the region where dimerization will have the greatest influence on
the I–N phase transition. The presence of a porous medium leads to a shift in the phase transition density
to lower values.
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Figure 6. (Colour online) The temperature dependence of the isotropic-nematic phase transition obtained
from the theory for dimerizing hard spherocylinders with 𝐿1/𝐷1 = 5. The reduced temperature is defined
as 𝑇∗ = 𝑘𝑇/𝜖1. The red lines correspond to the bulk case, while other colors indicate cases with different
packing fractions of the matrix 𝜂0 (similar as in the previous figures). The left-hand branch corresponds
to the end of the stable isotropic phase, and the right-hand branch to the beginning of the stable nematic
phase. The points are taken from computer simulation [20].
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4. Conclusions

In this article, we have presented a study on phase transitions in the system of dimerizing hard
spherocylinders taking into account the influence of a porous medium. The porous medium is considered
as quenched configurations of randomly distributed hard spheres. The developed theoretical approach is
based on the combination of the recently developed in our previous works scaled particle theory for the
description of a hard spherocylinder fluid in random porous media [43, 44], with Wertheim multidensity
formalism [17, 18] for the treatment of the effects of dimerization of spherocylinders. We note that in order
to check the accuracy of our theoretical predictions, we compare the obtained theoretical results with
the data from computer modelling [20] for the dimerization model of hard spherocylinders in the bulk
case. However we should note that computer simulations for dimerazing model of hard spherocylinder
fluid in porous media are needed for subsequent progress. Using a combination of theoretical analysis
and computer modelling, we were able to gain a deeper understanding of how associative interactions
and properties of the porous matrix affect the isotropic-nematic phase transition. It was discovered
that dimerization effectively promotes the stabilization of the nematic phase. This is confirmed by
comparing theoretical predictions with computer modelling data for a bulk case. The study showed
that the porous medium causes a shift in the phase transition to lower density values. Increasing the
packing fraction of the matrix enhances this effect. The analysis of temperature dependencies indicates a
significant influence of dimerization on the phase transition, especially at low temperatures where dimers
predominate. This research not only expands our understanding of the fundamental aspects of phase
transitions in colloidal systems but can also provide new prospects for the development of materials
with specific properties. Future studies will focus on exploring the impact of more complex particle
shapes and a variety of associative interactions on the system behavior. We should emphasize that
Wertheim extended his formalism to account for polymerization for description of a flexible chain of
hard spheres [51, 52, 58]. We note that in [59, 60] the phase behaviour of hard spherocylinder fluid
with possibility of polymerization between spherocylinders were considered but without the presence
of porous media. Thus, the possibility for investigation of polimerizable hard spherocylinder fluid in
presence of porous media is possible. However, we should note that in the framework of the considered
approach, the orientational ordering is connected only with a nonspherical form of colloids. Associative
interactions stabilize the ordering but cannot be the source of ordering due to flexibility of clustering
in Wertheim formalism. Another important aspect of generalization of the considered theory can be
connected with introduction of stiffness parameters in the framework of the approach developed by
Binder group [61].

Acknowledgement

We gratefully acknowledge financial support from the National Research Foundation of Ukraine
(project No. 2020.02/0317). The authors express their gratitude to Taras Patsahan for useful discussions.

References

1. Ilnytskyi J., Sokołowski S., Pizio O., Phys. Rev. E, 1999, 59, 4161, doi:10.1103/PhysRevE.59.4161.
2. Earl D. J., Ilnytskyi J., Wilson M. R., Mol. Phys., 2001, 99, 1719, doi:10.1080/00268970110069551.
3. Ilnytskyi J., Wilson M. R., J. Mol. Liq., 2001, 92, 21, doi:10.1016/S0167-7322(01)00174-X.
4. Ilnytskyi J., Trokhymchuk A., Schoen M., J. Chem. Phys., 2014, 141, 114903, doi:10.1063/1.4894438.
5. Ilnytskyi J., Patsahan T., Holovko M., Krouskop P. E., Makowski M. P., Macromolecules, 2008, 41, 9904,

doi:10.1021/ma801045z.
6. Bianchi E., Blaak R., Likos C. N., Phys. Chem. Chem. Phys., 2011, 13, 6397, doi:10.1039/C0CP02296A.
7. Kalyuzhnyi Yu. V., Bianchi E., Ferrari S., Kahl G., J. Chem. Phys., 2015, 142, 114108, doi:10.1063/1.4914345.
8. Kalyuzhnyi Yu. V., Holovko M., Patsahan T., Cummings P. T., J. Phys. Chem. Lett., 2014, 5, 4260,

doi:10.1021/jz502135f.
9. Holovko M. F., Korvatska M. Ya., Condens. Matter Phys., 2021, 24, 33605, doi:10.5488/CMP.24.33605.

10. Kuntz D., Walker L., Soft Matter, 2008, 4, 286, doi:10.1039/B714859C.

13607-13

https://doi.org/10.1103/PhysRevE.59.4161
https://doi.org/10.1080/00268970110069551
https://doi.org/10.1016/S0167-7322(01)00174-X
https://doi.org/10.1063/1.4894438
https://doi.org/10.1021/ma801045z
https://doi.org/10.1039/C0CP02296A
https://doi.org/10.1063/1.4914345
https://doi.org/10.1021/jz502135f
https://doi.org/10.5488/CMP.24.33605
https://doi.org/10.1039/B714859C


V. I. Shmotolokha, M. F. Holovko

11. Lee C. F., Phys. Rev. E, 2009, 80, 031902, doi:10.1103/PhysRevE.80.031902.
12. Saurabh S., Lansac Y., Jang Y. H., Glaser M. A., Clark N. A., Maiti P. R., Phys. Rev. E, 2017, 95, 032702,

doi:10.1103/PhysRevE.95.032702.
13. Liu K., Zhao N., Kumacheva E., Chem. Soc. Rev., 2011, 40, 656, doi:10.1039/C0CS00133C.
14. Cladis P. E., Mol. Cryst. Liq. Cryst., 1988, 165, 85, doi:10.1080/00268948808082197.
15. Sear R., Jackson G., Mol. Phys., 1994, 82, 473, doi:10.1080/00268979400100354.
16. Onsager L., Ann. N. Y. Acad. Sci., 1949, 51, 627, doi:10.1111/j.1749-6632.1949.tb27296.x.
17. Wertheim M. S., J. Stat. Phys., 1984, 35, 19, doi:10.1007/BF01017362.
18. Wertheim M. S., J. Stat. Phys., 1984, 35, 35, doi:10.1007/BF01017363.
19. Vroege G. J., Lekkerkerker H. N. W., Rep. Prog. Phys., 1992, 55, 1241, doi:10.1088/0034-4885/55/8/003.
20. McGrother S., Sear R., Jackson G., J. Chem. Phys., 1997, 106, 7315, doi:10.1063/1.473693.
21. Parsons J., Phys. Rev. A, 1979, 19, 1225, doi:10.1103/PhysRevA.19.1225.
22. Lee S., J. Chem. Phys., 1987, 87, 4972, doi:10.1063/1.452811.
23. Madden W. G., Glandt E. D., J. Stat. Phys., 1988, 51, 537, doi:10.1007/BF01028471.
24. Reiss H., Frisch H. L., Lebowitz J. L., J. Chem. Phys., 1959, 31, 369, doi:10.1063/1.1730361.
25. Holovko M., Dong W., J. Phys. Chem. B, 2009, 113, 6360, doi:10.1021/jp809706n.
26. Chen W., Dong W., Holovko M., Chen X. S., J. Phys. Chem. B, 2010, 114, 1225, doi:10.1021/jp9106603.
27. Holovko M. F., Shmotolokha V. I., Dong W., Condens. Matter Phys., 2010, 13, 23607,

doi:10.5488/CMP.13.23607.
28. Patsahan T., Holovko M., Dong W., J. Chem. Phys., 2011, 134, 074503, doi:10.1063/1.3532546.
29. Holovko M., Patsahan T., Dong W., Condens. Matter Phys., 2012, 15, 23607, doi:10.5488/CMP.15.23607.
30. Holovko M., Patsahan T., Dong W., Pure Appl. Chem., 2013, 85, 115, doi:10.1351/PAC-CON-12-05-06.
31. Chen W., Zhao S. L., Holovko M. F., Chen X. S., Dong W., J. Phys. Chem. B, 2016, 120, 5491,

doi:10.1021/acs.jpcb.6b02957.
32. Holovko M. F., Patsahan T., Dong W., Condens. Matter Phys., 2017, 20, 33602, doi:10.5488/CMP.20.33602.
33. Holovko M. F., Korvatska M. Ya., Condens. Matter Phys., 2020, 23, 23605, doi:10.5488/CMP.23.23605.
34. Thiele E., J. Chem. Phys., 1963, 39, 474, doi:10.1063/1.1734272.
35. Wertheim M. S., Phys. Rev. Lett., 1963, 10, 321, doi:10.1103/PhysRevLett.10.321.
36. Carnahan N. F., Starling K. E., J. Chem. Phys., 1969, 51, 635, doi:10.1063/1.1672048.
37. Yukhnovski I. R., Holovko M. F., Statistical Theory of Classical Equilibrium Systems, Naukova Dumka, Kyiv,

1980, (in Russian).
38. Cotter M. A., Phys. Rev. A, 1974, 10, 625, doi:10.1103/PhysRevA.10.625.
39. Cotter M. A., Wacker D. C., Phys. Rev. A, 1978, 18, 2669, doi:10.1103/PhysRevA.18.2669.
40. Holovko M. F., Hvozd M. V., Condens. Matter Phys., 2017, 20, 43501, doi:10.5488/CMP.20.43501.
41. Lago S., Cuetos A., Martínez-Haya B., Rull L. F., J. Mol. Recognit., 2004, 17, 417, doi:10.1002/jmr.704.
42. Holovko M., Shmotolokha V., Patsahan T., J. Mol. Liq., 2014, 189, 30, doi:10.1016/j.molliq.2013.05.030.
43. Holovko M., Shmotolokha V., Condens. Matter Phys., 2018, 21, 13602, doi:10.5488/CMP.21.13602.
44. Holovko M., Shmotolokha V., Patsahan T., In: Physics of Liquid Matter: Modern Problems, Springer Proceedings

in Physics, Vol. 171, Bulavin L., Lebovka N. (Eds.), Springer, Heidelberg, 2015, 3–30.
45. Hvozd M., Patsahan T., Holovko M., J. Phys. Chem. B, 2018, 122, 5534, doi:10.1021/acs.jpcb.7b11834.
46. Holovko M. F., Shmotolokha V. I., Ukr. J. Phys., 2015, 60, 770, doi:10.15407/ujpe60.08.0770.
47. Holovko M., Shmotolokha V., Condens. Matter Phys., 2020, 23, 13601, doi:10.5488/CMP.23.13601.
48. Shmotolokha V. I., Holovko M. F., Condens. Matter Phys., 2022, 25, 33602, doi:10.5488/CMP.25.33602.
49. Hvozd M., Patsahan T., Patsahan O., Holovko M., J. Mol. Liq., 2019, 285, 244, doi:10.1016/j.molliq.2019.03.171.
50. Hvozd M., Patsahan O., Patsahan T., Holovko M., J. Mol. Liq., 2022, 346, 117888,

doi:10.1016/j.molliq.2021.117888.
51. Wertheim M. S., J. Stat. Phys., 1986, 42, 459, doi:10.1007/BF01127721.
52. Wertheim M. S., J. Stat. Phys., 1986, 42, 477, doi:10.1007/BF01127722.
53. Holovko M. F., J. Mol. Liq., 2002, 96–97, 65, doi:10.1016/S0167-7322(01)00327-0.
54. Holovko M., Condens. Matter Phys., 1999, 2, 205, doi:10.5488/CMP.2.2.205.
55. Chapman W. G., Jackson G., Gubbins K. E., Mol. Phys., 1988, 65, 1057–1079,

doi:10.1080/00268978800101601.
56. Herzfeld J., Berger A. E., Wingate J. W., Macromolecules, 1984, 17, 1718, doi:10.1021/ma00139a014.
57. Bolhuis P., Frenkel D., J. Chem. Phys., 1997, 106, 666, doi:10.1063/1.473404.
58. Wertheim M. S., J. Chem. Phys., 1987, 87, 7323, doi:10.1063/1.453326.
59. De Michele C., Bellini T., Sciortino F., Macromolecules, 2012, 45, 1090, doi:10.1021/ma201962x.
60. De Michele C., Liq. Cryst., 2019, 46, 2003, doi:10.1080/02678292.2019.1645366.
61. Egorov S. A., Milchev A., Binder K., Polymers, 2016, 8, 296, doi:10.3390/polym8080296.

13607-14

https://doi.org/10.1103/PhysRevE.80.031902
https://doi.org/10.1103/PhysRevE.95.032702
https://doi.org/10.1039/C0CS00133C
https://doi.org/10.1080/00268948808082197
https://doi.org/10.1080/00268979400100354
https://doi.org/10.1111/j.1749-6632.1949.tb27296.x
https://doi.org/10.1007/BF01017362
https://doi.org/10.1007/BF01017363
https://doi.org/10.1088/0034-4885/55/8/003
https://doi.org/10.1063/1.473693
https://doi.org/10.1103/PhysRevA.19.1225
https://doi.org/10.1063/1.452811
https://doi.org/10.1007/BF01028471
https://doi.org/10.1063/1.1730361
https://doi.org/10.1021/jp809706n
https://doi.org/10.1021/jp9106603
https://doi.org/10.5488/CMP.13.23607
https://doi.org/10.1063/1.3532546
https://doi.org/10.5488/CMP.15.23607
https://doi.org/10.1351/PAC-CON-12-05-06
https://doi.org/10.1021/acs.jpcb.6b02957
https://doi.org/10.5488/CMP.20.33602
https://doi.org/10.5488/CMP.23.23605
https://doi.org/10.1063/1.1734272
https://doi.org/10.1103/PhysRevLett.10.321
https://doi.org/10.1063/1.1672048
https://doi.org/10.1103/PhysRevA.10.625
https://doi.org/10.1103/PhysRevA.18.2669
https://doi.org/10.5488/CMP.20.43501
https://doi.org/10.1002/jmr.704
https://doi.org/10.1016/j.molliq.2013.05.030
https://doi.org/10.5488/CMP.21.13602
https://doi.org/10.1021/acs.jpcb.7b11834
https://doi.org/10.15407/ujpe60.08.0770
https://doi.org/10.5488/CMP.23.13601
https://doi.org/10.5488/CMP.25.33602
https://doi.org/10.1016/j.molliq.2019.03.171
https://doi.org/10.1016/j.molliq.2021.117888
https://doi.org/10.1007/BF01127721
https://doi.org/10.1007/BF01127722
https://doi.org/10.1016/S0167-7322(01)00327-0
https://doi.org/10.5488/CMP.2.2.205
https://doi.org/10.1080/00268978800101601
https://doi.org/10.1021/ma00139a014
https://doi.org/10.1063/1.473404
https://doi.org/10.1063/1.453326
https://doi.org/10.1021/ma201962x
https://doi.org/10.1080/02678292.2019.1645366
https://doi.org/10.3390/polym8080296


Dimerizing hard spherocylinders in porous media

Димеризацiйнi твердi сфероцилiндри в пористому
середовищi

В. I. Шмотолоха, М. Ф. Головко
Iнститут фiзики конденсованих систем Нацiональної академiї наук України, вул. Свєнцiцького 1, 79011
Львiв, Україна,

Це дослiдження зосереджується на унiкальнiй фазовiй поведiнцi несферичних плямистих колоїдiв у
пористих середовищах. На основi теорiї масштабної частинки (ТМЧ) було вдосконаленометодику та засто-
совано її для аналiзу термодинамiчних властивостей несферичних плямистих частинок у невпорядкова-
ному пористому середовищi. Використовуючи асоцiативну теорiю рiдин в поєднаннi з ТМЧ, ми дослiдили
вплив асоцiативних взаємодiй та з’єднання мiж функцiональними вузлами частинок на процес формуван-
ня нематичної фази. Було проведено розрахунки орiєнтацiйних та просторових розподiлiв, якi допомогли
зрозумiти фазову поведiнку частинок при переходi вiд iзотропної до нематичної фази в умовах просторо-
вого обмеження, створеного невпорядкованою матрицею пористого середовища.

Ключовi слова: плямистi колоїди, сфероцилiндри, димеризацiя, невпорядкованi пористi середовища,
геометрична пористiсть, пористiсть пробної частинки
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