
Condensed Matter Physics, 2024, Vol. 27, No. 2, 23601: 1–15
DOI: 10.5488/CMP.27.23601
http://www.icmp.lviv.ua/journal

Hamiltonian limited valence model for liquid
polyamorphism

S. V. Buldyrev 1,2∗

1 Department of Physics, Yeshiva University, New York, NY 10033, USA
2 Department of Physics, Boston University, MA 02215, USA

Received January 26, 2024, in final form March 05, 2024

Liquid–liquid phase transitions have been found experimentally or by computer simulations inmany compounds
such as water, hydrogen, sulfur, phosphorus, carbon, silica, and silicon. Limited valence model implemented via
event-driven molecular dynamics algorithm provides a simple generic mechanism for the liquid–liquid phase
transitions in all these diverse cases. Here, we introduce a variant of the limited valence model with a well
defined Hamiltonian, i.e., a unique algorithm by which the potential energy of the system of particles can be
computed solely from the coordinates of the particles and is thus equivalent to a complex multi-body potential.
We present several examples of the model which can be used to reproduce liquid–liquid phase transition in
systems with maximum valence 𝑧 = 1 (hydrogen), 𝑧 = 2 (sulfur) and 𝑧 = 4 (water), where 𝑧 is the maximum
number of bonds an atom is allowed to have. For 𝑧 = 1, we find a set of parameters for which the system has a
liquid–liquid and an isostructural solid–solid critical points. For 𝑧 = 4, we find a set of parameters for which the
phase diagram resembles that of water with a wide region of negative thermal expansion coefficient (density
anomaly) extending into themetastable region of negative pressures. The limited valencemodel can bemodified
to forbid not only too large valences but also too low valences. In the case of sulfur, we forbid the formation of
monomers, thus restricting the valence 𝑣 of an atom to be within an interval 1 = 𝑣min ⩽ 𝑣 ⩽ 𝑣max ≡ 𝑧 = 2.

Key words: liquid–liquid phase transition, liquid–gas phase transition, solid–solid transformations, phase
diagrams

1. Introduction

Typically, pure substances may be found with only one gaseous or liquid state, while their solid state
may exist in various polymorphic crystalline forms. The existence of two distinct liquid forms in a single
component substance is more unusual since liquids lack the long-range order common to crystals. Yet,
the existence of multiple amorphous liquid states in a single component substance, a phenomenon known
as “liquid polyamorphism” [1–4], has been observed or predicted in a wide variety of substances, such as
superfluid helium [5, 6], high-pressure hydrogen [7–11], sulfur [12], phosphorous [13, 14], carbon [15],
silicon [16–19], silica [20, 21], selenium and tellurium [22, 23], and cerium [24]. Liquid polyamorphism
is also highly plausible in deeply supercooled liquid water [1–4, 25–33].

The limited valence model introduced by Cummings and Stell [34] in 1984 has been used extensively
in condensed matter physics [35–48]. More recently, it has been shown that a variant of limited valence
model can reproduce liquid–liquid phase transitions (LLPT) in some cases listed above [49, 50]. The
main idea of the model is that the system consists of identical atoms interacting via spherically symmetric
potentials. Depending on the number of atoms within a certain distance 𝑤𝑏 away from a given atom,
this atom is assigned a unique type or valence, 𝑣: 𝑣 = 0 with no neighbors within this distance, 𝑣 = 1
with one neighbor, 𝑣 = 2 with two neighbors and so on. If an atom has more than 𝑧 neighbors, where
𝑧 is the limited valence, the potential energy of the system is assigned to be infinity and hence such
a configuration cannot exist. After the types of atoms are determined by counting their neighbors, the
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potential energy is computed using a table of pair-wise potentials 𝑈𝑖 𝑗 (𝑟) defined as the potential energy
of the pair of atoms of types 𝑖 and 𝑗 separated by distance 𝑟. Similarly, we can forbid not only too large
valences but also too low valences assigning atoms with 𝑣 < 𝑣min an infinite potential energy. The model
can be straightforwardly implemented by the Monte-Carlo method.

This approach does not contradict the quantum understanding of inter-atomic interactions which
suggests that for a fixed position of ions, the solution of the Schrodinger equation for electrons has a
ground state with the energy which depends in a very complex way on the position of the ions and,
thus, does not allow simple parametrization of the force field in terms of the ion coordinates. Recently
these difficulties were addressed by the machine learning [51] in which the force field is learned from
an extensive data base of sample solutions for typical ionic configuration. However, machine learning
does not provide us with a simple physical interpretation of the inter-atomic interactions. The maximum
valence model, on the other hand, provides a simple cartoon interpretation of this mechanism if we
postulate that the changes in the density in a very small vicinity of atoms limited to a length of a covalent
bond or a hydrogen bond leads to drastic effects on longer range inter-atomic interactions. In the case
of hydrogen, the pioneering quantum calculations of Wigner and Huntington [52] suggested that at high
density the energy of the metallic lattice is lower than the energy of the molecular lattice. In other words,
at high densities, H2, dimers disassociate due to a steric effect; i.e., the electron shells of H2 dimers are
getting larger than the intermolecular distances. This steric repulsion is expected to happen not only for
the case of hydrogen but also for other molecular liquids with higher valences. Similar arguments may be
applied to the case of water. It was found experimentally that, at high densities, when the fifth neighbor
is being pushed into the first coordination shell of a molecule, hydrogen bonds bifurcate and the energy
of the bifurcated bonds is roughly half of the energy of the straight bonds [53]. Essentially, this implies
that the shells of the atoms with coordination number 4 become impenetrable for a fifth intruder at low
temperatures.

Historically, the limited valence model was implemented using a reaction scheme in the discrete
molecular dynamics (DMD) algorithm [54]. DMD which is also known as event driven molecular
dynamics was first applied in 1959 to a system of hard spheres [55]. The simplest case is the model
with 𝑧 = 1 [50], which mimics the dimerization of metallic hydrogen into molecular hydrogen when the
pressure is lowered. The model also reproduces a LLPT in sulfur for 𝑧 = 2 [49], which is associated with
the polymerization at high pressure [12], and a LLPT for 𝑧 = 4 [50], which mimics the hypothesized
LLPT in the four coordinated liquids such as water and silica and also reproduces the region of density
anomaly known to exist in these liquids.

In the previous publications [49, 50] using the DMD algorithm, the Hamiltonian requirement for
the limited valence model was omitted. This omission, obviously contradicts the regular definition of
statistical mechanics, since in this case the potential energy of the system depends not only on the
configurational space but also on the trajectory of the system in this space, thus making the definition
of the entropy ambiguous. This problem also arises in a directional variant of the limited valence model
based on the Kern-Frenkel model of patchy colloids [41] in which a pair of particles with overlapping
patches may or may not have a bond, but if the patches are so wide that a patch overlaps with multiple
patches of other particles, only one bond per patch is allowed. This is solved by introducing random
reassignment of bonds among pairs of particles for which their geometrical position allows them to have
a bond, so that only at most one bond per patch can exist at each moment of time. The reassignment is
produced with a probability proportional to the Boltzmann factor of the bond formation, which ensures
correct evaluation of entropy via thermodynamic integration.

In this paper, we make a Hamiltonian formulation of the model by simply forbidding all other particles,
except the bonded ones, to be closer to each other than the bond length, 𝑤𝑧 . We reexamine the results
obtained previously [49, 50] for 𝑧 = 1, 𝑧 = 2, and 𝑧 = 4 and see how the Hamiltonian condition alters the
results.

The paper is organized as follows. In section 2 we define the Hamiltonian limited valence model and
describe its in detail. In section 3 we compare the results of the Hamiltonian variant of the model with
the previously studied non-Hamiltonian variant [50] for 𝑧 = 1 and study how the LLPT changes with the
width of the repulsive shoulder 𝑤𝑧 in the dimerization transition (𝑧 = 1). In section 4 we study the same
question for 𝑧 = 4 and show that for the wide shoulder 𝑤𝑧 ≈ 1.34, the phase diagram resembles that of
water. In section 5 we study the problem of polymerization for 𝑧 = 2 as function of the bond potential
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strength and find the values at which the positions of the LLPT and liquid–gas phase transition (LGPT)
resemble those in sulfur.

2. The model

The original DMD limited valence model for spherically symmetric step potentials is described in
reference [49]. The potential energy of the system changes when the particles collide, forming bonds or
coming to the distance from each other at which the interparticle potential has a step. Moreover, certain
pairs of particles when they come to a particular distance from each other can react and change their
types. Some of the reactions are bond forming and they are reversible, so that when the bonded pair of
particles come to the distance equal to the limited bond length, the bond can break and the particles
change their types back to their original types before the bond formation. The model can produce a
cascade of reactions in which the type of particles is determined by how many bonds they have, so if
a particle 𝑖 of type 𝑘 with 𝑘 bonds react with a particle 𝑗 with 𝑙 bonds they can form a new bond and
their types become 𝑘 + 1 and 𝑙 + 1, respectively, if 𝑘 + 1 ⩽ 𝑧 and 𝑙 + 1 ⩽ 𝑧, where 𝑧 is the maximum
valence. The potential energy of the system changes by Δ𝑈, where Δ𝑈 is the potential energy change
of the system associated with the changes of the types of the reacting particles with each other and due
to their interactions with all other particles. Δ𝑈 also includes a term associated to the change of the
potential energy of the interacting pair due to the bond formation. Note that if before the reaction a pair
potential energy of the reacting pair is 𝑈𝑏, after the reaction the pair potential energy is 𝑈𝑎 = 𝑈𝑏 + 𝜖𝑏,
where 𝜖𝑏 is the bond energy. In the example of figure 1(b), 𝜖𝑏 = −6𝜖 . Before the reaction, the pair of
reacting particles separated by the reaction distance 𝑤𝑏 has only the energy of van der Waals interaction
𝑈𝑏 = −𝜖 , while after the reaction the pair has a potential energy 𝑈𝑏 + 𝜖𝑏 = −7𝜖 .

Conversely, the bond between the two particles of types 𝑘 > 1 and 𝑙 > 1 breaks if their distance
exceeds the bond length. The particles change their types to 𝑘 −1 and 𝑙 −1, respectively, and the potential
energy of the system changes by the bond energy −Δ𝑈. The kinetic energy of the colliding pair changes
by the opposite value so that the total energy is conserved. Besides this, the colliding particles change
their velocities so that the total linear and angular momenta of the pair are conserved. The laws of energy
and momenta conservation give six scalar equations from which the new components of velocities of the
colliding pairs can be found by solving a quadratic equation. If this quadratic equation [54] does not have
real roots, the particles does not change their types, the bond does not break or form and the particles
bounce off like hard spheres by changing the signs of their velocity components in the reference frame
of the center of mass of the colliding pair.

This scheme possesses almost all features for the implementation of the Hamiltonian formalism except
that we must make sure that the particles of bond forming types cannot exist within the bond forming
range without forming a bond, so that the number of bonds of each particle exactly corresponds to its
type. This can be achieved by adding an effectively infinite repulsive shoulder with the diameter equal
to the bond-forming distance for the interaction potential of the pair of particles with the bond forming
types. We chose the value of this quasi-infinite shoulder to be 100𝜖 , where 𝜖 is the energy of the van der
Waals interactions.

Another feature of the DMD algorithm that was used in references [49, 50] is that each atom is split
into the “shell” which is a bond forming reactive part and the “core” which is inert and is responsible
for the van der Waals long-range interactions. The shell and the core were connected by a short infinite
square well bond of length 𝑑. In this work, we eliminate that unnecessary split and assign both the
van der Waals interactions and bond formation ability to a single particle representing an entire atom,
which significantly increases the computational efficiency of the model, because it reduces the number
of particles by a factor of two. We verify that the phase diagram of the core-shell model converges to the
phase diagram of the single-particle model when 𝑑 → 0.

In principle, the limited valence model allows us to construct the tables of interatomic potentials
𝑈𝑖 𝑗 (𝑟) and bond potentials 𝑈𝑏

𝑖 𝑗
(𝑟) for bonds between atoms of different types as complex as we wish,

with multiple steps at different distances 𝑟. This might be necessary in order to accurately reproduce the
behavior of various compounds. For example, one may want to make interatomic potentials consisting of
many small steps to create a ramp like in the Jagla model [56, 57] or make a bond potential resembling
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Figure 1. (Colour online) Panels (a, b, c). Pairwise potentials𝑈𝑖 𝑗 which we use to model hydrogen (𝑧 = 1)
and water (𝑧 = 4). Atoms interact with the square well potential of width 𝑤 > 𝑤𝑏 > 𝜎 and energy −𝜖
[black line, panel (a)] if their types are 𝑖 < 𝑧 and 𝑗 < 𝑧. If they come closer than the bond width 𝑤𝑏,
they change their types to 𝑖 + 1 an 𝑗 + 1 and they form a bond [magenta line, panel (b)] and their pair
potential becomes 𝑈𝑎 = 𝑈𝑏 + 𝜖𝑏 = −7𝜖 (in this example, 𝑈𝑏 = −𝜖 and 𝜖𝑏 = −6𝜖). If the type of at least
one atom in the interacting pair is 𝑧, their interaction potential has an additional square shoulder of width
𝑤𝑧 and height 𝜖𝑧 [blue line, panel (c)]. Both blue and black lines go to infinity at the bond distance 𝑤𝑏,
to satisfy the Hamiltonian condition. Panels (d, e, f) are the same as (a, b, c) but for the case of sulfur
(𝑧 = 2). Atoms interact with the square well potential of width 𝑤 > 𝑤𝑏 > 𝜎 and energy −𝜖 [black line,
panel (d)] if their types are not both equal to 𝑧: 𝑖 < 𝑧 and 𝑗 ⩽ 𝑧. If they come closer than the bond width
𝑤𝑏, they change their types to 𝑖 + 1 an 𝑗 + 1 and form a bond [magenta line, panel (e)] and their pair
potential becomes𝑈𝑎 = 𝑈𝑏 + 𝜖𝑏 (in this example,𝑈𝑎 = −𝜖 and 𝜖𝑏 = 3). If the types of both atoms in the
interacting pair are 𝑧, their interaction potential has an additional square shoulder of width 𝑤𝑧 [blue line,
panel (f)]. Both blue and black lines go to infinity at the bond distance 𝑤𝑏, to satisfy the Hamiltonian
condition.

a parabola of a harmonic oscillator [58]. But in this paper our goal is to keep the model as simple as
possible with potentials being a square well potential or a combination of a square well and a square
shoulder. Moreover, we choose interatomic potential to be the same for atoms of all types 𝑖 < 𝑧 and
𝑗 < 𝑧, adding to it a repulsive shoulder if 𝑖 = 𝑧 or 𝑗 = 𝑧 to model dissociation of bonds under pressure
as in hydrogen, or adding an attractive well if both 𝑖 = 𝑧 and 𝑗 = 𝑧 to model association under pressure
as in sulfur. This reduces the number of parameters of the model to six: the maximum valence 𝑧, the
width of van der Waals attraction well, 𝑤, (the diameter of hard core of this well, 𝜎, and the depth of
this well 𝜖 serving, respectively, as units of length and energy), the width of the bond 𝑤𝑏, the energy of
the bond, 𝜖𝑏, the width of the repulsive shoulder or an attractive well, 𝑤𝑧 , and the height of the shoulder
(depth of the well), 𝜖𝑧 , with 𝜖𝑧 > 0 for repulsion and 𝜖𝑧 < 0 for attraction. Figure 1(a, b, c) illustrates
the potentials of the single-particle model for the case when the atoms with maximum valence have an
additional potential shoulder which repel all types of atoms [figure 1(c)]. This variant is used to model
hydrogen and water. Figure 1(d, e, f) illustrates the potentials for the case when the atoms with maximal
valence have an additional attractive well which attracts only atoms of maximum valence [figure 1(f)].
This variant is used to model sulfur.
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To summarize, the model has three essential potentials, without which it cannot reproduce the
phenomenon of liquid polyamorphism for all values of 𝑧 > 0:
the van der Waals potential:

𝑈𝑖 𝑗 (𝑟) =


∞ 𝑟 ⩽ 𝑤𝑏,

−𝜖 𝑤𝑏 < 𝑟 ⩽ 𝑤,

0 𝑟 > 𝑤,

(2.1)

the bond potential for 0 < 𝑖 ⩽ 𝑧 and 0 < 𝑗 ⩽ 𝑧:

𝑈𝑏
𝑖 𝑗 (𝑟) =


∞ 𝑟 ⩽ 𝜎,

𝜖𝑏 − 𝜖 𝜎 < 𝑟 ⩽ 𝑤𝑏,

0 𝑟 > 𝑤𝑏,

(2.2)

and the modified van der Waals potential:

𝑈𝑖 𝑗 (𝑟) =


∞ 𝑟 ⩽ 𝑤𝑏,

𝜖𝑧 − 𝜖 𝑤𝑏 < 𝑟 ⩽ 𝑤𝑧 ,

−𝜖 𝑤𝑧 < 𝑟 ⩽ 𝑤,

0 𝑤 < 𝑟.

(2.3)

Note, that matrix 𝑈𝑖 𝑗 is symmetric. For the case of dissociation under pressure (𝜖𝑧 > 0 like in hydrogen
and water), we take 𝑖 < 𝑧 and 𝑗 < 𝑧 in equation (2.1) and we take 𝑗 = 𝑧 or 𝑖 = 𝑧 in equation (2.3). In the
case of association under pressure (𝜖𝑧 < 0 like in sulfur) we take 𝑖 < 𝑧 and 𝑗 ⩽ 𝑧 in equation (2.1) and
we take 𝑖 = 𝑗 = 𝑧 in equation (2.3). In principle, we can take 𝜖 = 0 if 𝑧 ⩾ 3 because the liquid for 𝑧 ⩾ 3
can form due to multipe bonds between the particles wihout van der Waals attraction [38].

All results below are presented in dimensionless units based on the three basic units [49, 50]: 𝜎, the
hard core diameter is the unit of length; 𝜖 , the depth of the van der Waals potential well is the unit of
energy; and the mass of a particle,𝑚, is the unit of mass. We perform all simulations in the NVT ensemble
with a constant number of atoms 𝑁 = 1000, in a cubic box with periodic boundaries of fixed volume
𝑉 such that the density 𝜌 = 𝑁/𝑉 has a given value. The temperature is controlled by the Berendsen
thermostat [59] modified for the DMD algorithm [54]. To estimate the location of the critical points, we
first perform preliminary simulations of the single particle model for 105 time units by slowly cooling the
system from the initial temperature greater than critical temperature to a very low temperature which is
below all interesting features of the phase diagram, saving average temperature, pressure, and potential
energy every 1000 time units, which is well above the equillibration time, estimated to be below 500 time
units in the entire range of temperatures and densities studied. Then, for selected points in the parameter
space we perform long equillibration runs of 105 time units for each state point.

3. Liquid–liquid phase transition associated with dimerization (𝒛 = 1)
The results for the single-particle model with the Hamiltonian restriction does not differ much from

the previously obtained ones for the core-shell model without the Hamiltonian restriction [50]. Here, we
tested the case of 𝑤𝑧 = 1.1, 𝑤𝑏 = 1.2, 𝜖𝑧 = −6, 𝜖𝑏 = 12, which corresponds to almost totally impenetrable
shoulder. We find the LLCP at 𝑇𝐿𝐿 = 2.33, 𝑃𝐿𝐿 = 9.07, 𝜌𝐿𝐿 = 0.575 for the single-particle Hamiltonian
model instead of the previously found [50] for the core-shell model 𝑇𝐿𝐿 = 2.12, 𝑃𝐿𝐿 = 8.17 and the
same density 𝜌𝐿𝐿 . The shape of the coexistence curve on the 𝜌 − 𝑇 plane in reduced coordinates closely
follows the tilted parabola published in figure 3 of reference [50] [figure 2(a)]. We also carefully tested
the slope of the coexistence line on the 𝑃 −𝑇 phase diagram [figure 2(b)] and found a definitely negative
slope d𝑝/d𝑇 = −0.7 ± 0.2, but this value is two times smaller than for the maximum valence core-shell
model without the Hamiltonian restriction.

To understand what causes this difference, we perform the simulations of the core-shell model with
the Hamiltonian restriction and compare it with the results of the same model without the Hamiltonian
restriction as in reference [50]. We obtained very similar results: 𝜌𝐿𝐿 = 0.575, 𝑇𝐿𝐿 = 2.11, 𝑃𝐿𝐿 = 8.07,
and d𝑃/d𝑇 = −1.6. This is not surprising, because the number of shells which stay within the bond
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Figure 2. (Colour online) Comparison of the liquid–liquid coexistence lines of the single-particle Hamil-
tonian maximum valence model and the core-shell non-Hamiltonian model studied in reference [50]
for 𝑧 = 1, 𝑤 = 1.5, 𝑤𝑏 = 1.1, 𝑤𝑧 = 1.2, 𝜖𝑏 = −6, 𝜖𝑧 = 12. (a) Coexistence line in the 𝜌 − 𝑇 plane in
reduced coordinates. Circles are the results obtained by Maxwell construction for the Hamiltonian model.
The jumps in the results are due to the discreteness of the values of 𝜌 which are produced with step
Δ𝜌 = 0.005. The black curve shows the same results after a smoothing procedure. The red curve shows
the results for the core-shell model without the Hamiltonian restriction. One can see that the results are
very close to each other, but the Hamiltonian variant produces a slightly narrower coexisting curve but
not significant in reproducing the hypothesized transition for real hydrogen [11]. (b) The coexisting lines
on the 𝑃−𝑇 plane. The dashed straight line is the straight line fit of the results of reference [50]. One can
see that in reduced coordinates, the slope of the coexistence line in the Hamiltonian model is two times
smaller than in the non-Hamiltonian core-shell model, However, it is still negative as it is predicted for
real hydrogen [11].

distance from another shell without forming a bond and without the potential energy loss associated
with the bond is small in the range of temperatures and densities we studied. For example, for 𝑇 = 2.11,
𝜌 = 0.58, in the bond range of the shell of type 1, there are on average 0.015 non-bonded intruders,
while in the bond range of the shell of type 0, there are on average 0.005 intruders. Such small values are
caused by a very high repulsive shoulder 𝜖𝑧 = 12. For smaller values of 𝜖𝑧 , we expect stronger differences
between the Hamiltonian and the non-Hamiltonian variants of the model.

The larger discrepancy with the Hamiltonian single-particle model is caused by the fact that the
core and the shell of the same atom do not exactly coincide with each other but are connected by the
permanent bond of distance 𝑑 = 0.1. In principle, the Hamiltonian core-shell model must converge to the
Hamiltonian single-particle model when 𝑑 → 0. We test this convergence in figure 2. The values of 𝜌𝐿𝐿
remain 0.575 for the entire range of 𝑑, while the values of 𝑇𝐿𝐿 , 𝑃𝐿𝐿 and d𝑃/d𝑇 change almost linearly
with 𝑑, smoothly converging to the values of the single-particle model (𝑑 = 0).

In addition, we study the effect of the width of the repulsive shoulder 𝑤𝑧 on the location of the critical
points and the slope of the coexistence line (figure 4). We observe that the critical density, temperature,
and pressure of the LLPT all strongly decrease when the width of the repulsive shoulder increases. By
contrast, the slope of the coexistence line behaves non-monotonously with a minimum at 𝑤𝑧 = 1.2, where
d𝑃/d𝑡 is definitely negative as hypothesized to be the case for real hydrogen [11].

At the widest repulsive shoulder 𝑤𝑧 = 1.4, the dimeric (molecular) liquid becomes metastable with
respect to the monomeric (metallic) liquid. This is because the van der Waals effective attractive range
of dimers becomes just 𝑤 − 𝑤𝑧 = 1.5 − 1.4 = 0.1, compared to practically impenetrable shoulder of
𝑤𝑧 = 1.4. Such a system would have a very low temperature of the liquid–gas critical point (LGCP) which
is metastable to crystallization [60]. However, the dimeric liquid also becomes metastable with respect to
the metallic liquid in which monomers lacking the repulsive shoulder may have 12 or more neighbors in
the wide van der Waals well of 𝑤 = 1.5, which gives the average potential energy per particle −6𝜖 = −6.
If we assume that an atom in the dimeric liquid has 11 neighbors in a very thin attractive well (one place is
taken by the atom forming a bond with energy −6), the potential energy per atom is (−11− 6)/2 = −8.5,
but the entropy cost for forming such a dense configuration is such that the liquid near the critical point
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Figure 3. Convergence of the phase diagram of the core-shell model to that of the single-particle model
as the bond length connecting the core and the shell tends to zero. The parameters of the model are taken
for the case attempting to mimic dimerization of metallic hydrogen: 𝑧 = 1, 𝑤 = 1.5, 𝑤𝑏 = 1.1, 𝑤𝑧 = 1.2,
𝜖𝑏 = −6, 𝜖𝑧 = 12. Panels (a, b, c) show the parameters of the critical points 𝑇𝐿𝐿 , 𝑃𝐿𝐿 and 𝑑𝑃/𝑑𝑇 as
functions of 𝑑. One can see that their dependence on 𝑑 is almost linear, including the last point for the
single-particle model 𝑑 = 0.
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Figure 4. (Colour online) (a) Dependence of the location of the critical points on the repulsive shoulder
width, 𝑤𝑧 for the dimerization model 𝑧 = 1, 𝑤 = 1.5, 𝑤𝑏 = 1.1, 𝜖𝑏 = −6 and 𝜖𝑧 = 13. The critical density
decreases from 0.735 at 𝑤𝑧 = 1.15 to 0.285 at 𝑤𝑧 = 1.4. The critical temperature decreases by factor of
3 and pressure decreases even more dramatically, approximately as 0.056(𝑤𝑧 − 𝑤𝑏)−2. (b) The slope of
the coexistence line versus 𝑤𝑧 estimated by the slopes of the two isochores with step 𝛿𝜌 = 0.01 crossing
in the 𝑃 − 𝑇 plane at the maximum temperature, which is also how we obtain the location of the critical
points in panel (a).

never achieves such a density and its free energy is greater than that of monomeric liquid.

At the narrowest repulsive shoulder 𝑤𝑧 = 1.15, we observe spontaneous crystallization into the
face centered cubic (fcc) crystal upon cooling for 𝜌 ⩾ 0.75, indicated by the abrupt drop of pressure,
because the ordered fcc crystal occupies less volume than the disordered liquid. The LLPT is still
present at 𝜌 = 0.735, 𝑇 = 3.88, 𝑃 = 0.441. In addition, we observe the isostructural phase transition
between two fcc crystals with different lattice constants. This phase transition ends at the isostructural
critical point [61] at larger 𝜌 = 0.78, but smaller 𝑇 = 3.21 (figure 5). It is worth mentioning that the
isostructural critical point was discovered experimentally and was explained theoretically using core-
softened potentials [61, 62] long before the LLCP [63]. The systems with core-softened potentials with a
narrow repulsive shoulder are prone to crystallization at high density, while the maximum valence model
based on the same potentials, with the restriction that only 𝑧 neighbors can enter the shoulder, is not [43].
Here, we observe a novel situation, when both the solid–solid and the liquid–liquid critical points can be
observed simultaneously.
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Figure 5. (Colour online) (a) The 𝑃−𝑇 phase diagram of the dimerization model (𝑧 = 1) with 𝑤𝑧 = 1.15,
𝑤 = 1.5, 𝑤𝑏 = 1.1, 𝜖𝑏 = −6 and 𝜖𝑧 = 13. The black curves are parts of the isochores corresponding to
the liquid state, and the red curves are parts of the isochores corresponding to crystalline state, obtained
by slow cooling with equilibrarion time of 1000 time units. The crystallization event is shown at the
isochore with 𝜌 = 0.77. The two critical points are visible: the liquid–liquid one indicated by a circle
and the isostructural solid–solid one indicated by a square. (b) The snapshot of the system taken along
the the liquid–liquid critical isochore 𝜌 = 0.74 above the critical point at 𝑇 = 4.44, 𝑃 = 49.7, (c) the
snapshot of the system taken along the same isochore 𝜌 = 0.74 below the critical point at 𝑇 = 3.02,
𝑃 = 39.5, (d) the snapshot of the system taken along the solid–solid critical isochore 𝜌 = 0.77 above the
critical point at 𝑇 = 4.8, 𝑃 = 47.7, (e) the snapshot of the system taken along the the solid–solid critical
isochore 𝜌 = 0.77 below the critical point at 𝑇 = 2.42, 𝑃 = 31.4. In (d) and (e) one can clearly see the
crystalline plane (1,0,0) of the fcc lattice. Atoms of type 0 (monomers) are shown in red. Atoms of type
1 (belonging to dimers) are shown in white.

4. Liquid–liquid phase transition in tetrahedral networks (𝒛 = 4)
The hypothetical LLPT in the supercooled water is associated with the reordering of the tetrahedral

network of hydrogen bonds [30]. The justification of the application of the limited valence model with
𝑧 = 4 is as follows. In the low density liquid, each oxygen is linked with its four neighbors by 4 hydrogen
bonds forming a rigid first coordination shell, penetration into which has a high energy cost modelled
by a repulsive shoulder 𝑤𝑧 . These oxygens are assumed to be of type 4. In the high density liquid, some
of the bonds are bifurcated. These bonds have much higher potential energy than the normal bonds [53].
Thus, in our model we assume that the oxygens which have a bifurcated bond have only 3 bonds and
these oxygens belong to type 3. They are not surrounded by a repulsive shoulder and hence they allow
other oxygens of type 3 to enter their first coordination shell. The core-shell variant of this model has
been already studied in reference [50] and shows the LLPT with a negative slope of the coexistence line,
surrounded by a region of density anomaly on the 𝑃 − 𝑇 plane. The region of density anomaly existed
only at very high pressures and did not reach 𝑃 = 0 line like in real water.

Here we will study how the change of the repulsive shoulder width 𝑤𝑧 affects the position of the
LLCP and the entire phase diagram for 𝑧 = 4. The motivation for this study is to try to relate the known
experimental properties of the water radial oxygen-oxygen distribution function 𝑔OO(𝑟) (see, e.g., figure 6
of reference [30]) to the shoulder width, 𝑤𝑧 . One can see that both high density liquid (HDL) and low
density liquid (LDL) have a sharp peak of the radial distribution function at 𝑟 ≈ 0.27 nm. By contrast, the
LDL have a minimum at 𝑟 = 0.33 nm absent in the HDL which instead has a shoulder at this point and
meets the LDL graph at 𝑟 = 3.9 nm. In terms of the limited valence model, this means that the repulsive
shoulder 𝑤𝑧 of the atoms with 𝑧 = 4 bonds (which prevents the fifth intruder to enter the vicinity of
the first coordination shell) extends up to 𝑟 ≈ 3.9 nm. Thus, we can conclude that in order to achieve
good agreement with water we need to set 3.3/2.7 ≈ 1.2 < 𝑤𝑧 < 3.9/2.7 ≈ 1.4. Figure 6 shows the
dependence of the location of the critical points on 𝑤𝑧 for 𝑧 = 4, 𝑤 = 1.5, 𝑤𝑏 = 1.1, 𝜖𝑏 = −6, 𝜖𝑧 = 6. The
behavior of all the variables qualitatively resembles their behavior for 𝑧 = 1. Except that the dependence
is weaker and the critical pressure becomes negative for the shoulder width 𝑤𝑧 = 1.35. The slope of the
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Figure 6. (Colour online) The dependence of the location of the critical points for the tetrahedral model
𝑧 = 4, 𝑤 = 1.5, 𝑤𝑏 = 1.1, 𝜖𝑏 = −6, 𝜖𝑧 = 6 on the width of the repulsive shoulder 𝑤𝑧 . One can see that as
𝑤𝑧 increases, the critical density, temperature and pressure decrease, until the pressure becomes negative
and the LLCP disappears below the liquid gas spinodal for 𝑤𝑧 ⩾ 1.4. The liquid–gas critical temperature
and pressure also decreases. The liquid–liquid critical temperature is always below the liquid–gas critical
temperature as in water.

liquid–liquid coexistence line is always negative. For 𝑤𝑧 = 1.4, the LLCP becomes submerged below
the liquid–gas spinodal. For 𝑤𝑧 = 1.15, the system crystallizes into a body centered cubic lattice at
high densities. The isostructural solid–solid critical point may exist at even higher densities, but this
question requires further investigation. Figure 7 shows the 𝑃 − 𝑇 phase diagrams which resemble those
of water [30], showing the region of density anomaly at negative pressures [64], the compressibility
minimum and the heat capacity maximum near the critical point.

The exact location of the hypothetical (LLCP) of water is unknown. The simulations of the ST2
model [65] give the value of 𝑃𝐿𝐿 = 195 MPa and 𝑇𝐿𝐿 = 245 K. More recent estimates based on the
TIP4P/ice model [66] suggest the values 𝑃𝐿𝐿 = 125 MPa, 𝑇𝐿𝐿 = 195 K. Theoretically, the LLCP can be
at negative pressures or can even disappear below the liquid–gas spinodal [30]. The LGCP of water is
located at 𝑃𝐿𝐺 = 22 MPa which is several times smaller than 𝑃𝐿𝐿 , and 𝑇𝐿𝐺 = 647 K, which is several
times larger than 𝑇𝐿𝐿 . It is clear that the maximum valence model with 𝑧 = 4 can reproduce these values
after some additional tweaking of parameters. Beside this, the maximum valence model qualitatively
correctly describes the water anomalies. The best agreement with water is reached at 𝑤𝑧 = 1.34 which
does not contradict our estimates based on 𝑔OO(𝑟).

5. Liquid–liquid phase transition associated with polymerization of
dimers (𝒛 = 2)
The maximum valence model for 𝑧 = 2 has been used to mimic the LLPT associated with polymer-

ization [49] as was experimentally observed in sulfur at high pressures [12]. One of many unrealistic
features of that model is that real sulfur remains molecular S2 near its liquid–gas critical temperature,
while in the limited valence model the dimers at such a temperature dissociate into monomers. Here,
we modify the maximum valence model in its Hamiltonian formulation assigning the atoms with zero
neighbors in their bond range an infinite potential energy. Within the DMD package, this can be achieved
by modifying a bond potential between an atom with one bond and its neighbor which may have either
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Figure 7. (Colour online) 𝑃 − 𝑇 phase diagrams of the 𝑧 = 4 with 𝑤 = 1.5, 𝑤𝑏 = 1.1, 𝜖𝑏 = −6 and
𝜖𝑧 = 6 for 𝑤𝑧 = 1.34 (a) and 𝑤𝑧 = 1.35 (b). One can see the isochores crossing at the critical points
surrounded by the region of the density anomaly as in reference [65] for the ST2 model of water. This
region is separated by the TMD (temperature of maximum and minimum density) line connecting the
points of minimum and maximum pressure at constant density. Also are shown the line of isothermal
compressibility, 𝜅𝑇 maxima and minima (KTM) which crosses the TMD line at its vertical point [67]
and the constant pressure specific heat maxima (CPM) line (green) which coincides with the KTM line
near the critical point [67]. The TMD, KTM and CPM lines are obtained by the polynomial interpolation
of the computed points on the isocores, obtained with steps Δ𝜌 = 0.01 and Δ𝑇 = 0.01. Some of the
inflections and irregularities on these lines can be due to the boundaries of the fitted region. The low
density isochores in (b) start to intersect with each other forming a liquid–gas spinodal, which becomes
non-monotonious following the isochores with a minimum at the point of maximum density like in the
IAPWS95 [68] equation of state of water extrapolated to the metastable region of negative pressures.

one or two bonds a quasi-infinite very narrow square potential of barrier as shown in figure 8. In this new
model, the only possible types of atoms are atoms with one bond forming dimers or being at the end of
a polymer chain and atoms with two bonds forming a chain. We tested that near the LGCP, the gaseous
phase has only 5.5% atoms with two bonds, which are the middle atoms of the trimers and no atoms with
zero bonds.
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Figure 8. The potential of the bond between atoms of type 1 and 1 and atoms of 1 and 2. preventing atoms
of type 1 to separate and become monomers. The height of the potential barrier can be taken as high as
1000 and the width 𝛿 can be taken as small as 0.0001.
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Qualitatively, the new Hamiltonian model with 𝑧 = 2 and forbidden monomers have phase diagrams
similar to the cases studied in reference [49]. Here, as an example, we present a 𝑃 −𝑇 phase diagram for
𝑤 = 1.7, 𝑤𝑏 = 0.01, 𝑤𝑧 = 1.3, 𝜖𝑏 = 2 and 𝜖𝑧 = −1 (figure 9). Note that the atoms belonging to polymer
chains attract each other due to the additional attraction for atoms of type 2, but the cost of forming a
bond is positive. Moreover, the bonds are very narrow. Technically, it is not the bonds which hold the
polymer chain together but the additional attractive potential between the atoms with two bonds. These
bonds with positive energy are not necessarily very unstable. They can be metastable with as long life
time as we wish if we add to the bond potential a large enough potential barrier as in figure 8. In the limit
of 𝛿 → 0, this potential will not change the Hamiltonian, and thus will not affect the phase diagram, but
will dramatically slow down the kinetics. Whether this type of bond potential can be justified by quantum
chemistry remains an open question.

Nevertheless, the model qualitatively describes the LLPT in sulfur [figure 9(a)]. It shows two phase
transitions and their spinodals indicated by the loci of isochore crossing which join at critical points: the
liquid–liquid one indicated by a circle at 𝜌𝐿𝐿 = 0.865±0.005, 𝑇𝐿𝐿 = 1.86±0.01, and 𝑃𝐿𝐿 = 5.54±0.05
and a liquid–gas one indicated by a square at 𝜌𝐿𝐺 = 0.275 ± 0.025, 𝑇𝐿𝐺 = 2.30 ± 0.05, 𝑃𝐿𝐺 = 0.078.
Note that in real sulfur 𝑇𝐿𝐺 = 1314 K, 𝑃𝐿𝐺 = 20.7 MPa, and 𝜌𝐿𝐺 = 563 kg/m3 [69], while the LLCP
is located at 𝑇𝐿𝐿 = 1035 K, 𝑃𝐿𝐿 = 2.15 GPa, and 𝜌𝐿𝐿 ≈ 2000 kg/m3 [12], making the ratios of critical
parameters for real sulfur equal to 𝜌𝐿𝐿/𝜌𝐿𝐺 = 3.55, 𝑇𝐿𝐿/𝑇𝐿𝐺 = 0.79, 𝑃𝐿𝐿/𝑃𝐿𝐺 = 104, while for the
model with the given set of parameters they are, respectively, 3.2, 0.81 and 7.1. As one can see from
figure 9(b) a further increase of 𝜖𝑏, can easily increase both 𝑃𝐿𝐿/𝑃𝐿𝐺 and 𝜌𝐿𝐿/𝜌𝐿𝐺 . Note also that the
liquid–liquid coexistence line must belong to a narrow region between the spinodals and thus must have a
very large positive slope. Moreover, it crosses the liquid–gas coexistence line at a very small temperature
and at a small pressure almost equal to zero, where crystallization can be anticipated, making the phase
diagram very realistic, because according to reference [12], the liquid–liquid coexistence line in sulfur
ends at a triple point with the crystalline phase.
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Figure 9. (Colour online) (a) The 𝑃 −𝑇 phase diagram for model of the polymerization of dimers (𝑧 = 2,
𝑤 = 1.7, 𝑤𝑏 = 0.01, 𝑤𝑧 = 1.3, 𝜖𝑏 = 2 and 𝜖𝑧 = −1). The lines are isochores with step Δ𝜌 = 0.05 from
𝜌 = 0.05 to 𝜌 = 0.85 and with step Δ𝜌 = 0.01 from 𝜌 = 0.85 to 𝜌 = 0.95. The LLCP is indicated
by a circle while the LGCP is indicated by a square. The results are obtained by slow cooling with
equillibration time for each point 1000 time units. (b) The dependence of the critical point location
on the repulsion/attraction energy of the bond 𝜖𝑏 for 𝑧 = 2, 𝑤 = 1.7, 𝑤𝑏 = 0.01, 𝑤𝑧 = 1.3, and
𝜖𝑧 = −1.3. The values for LLCP (filled symbols) are connected with bold lines, while the values for
LGCP (empty symbols) are connected with thin lines. One can see that changing bond from attractive
to repulsive significantly increases 𝑃𝐿𝐿 , making the ratio 𝑃𝐿𝐿/𝑃𝐿𝐺 ≈ 100 as in real sulfur for 𝜖𝑏 ≈ 3.
Two additional points are given for 𝜖𝑧 = −1, which yields a better agreement with the experimental
data because reducing 𝜖𝑧 significantly reduces 𝑇𝐿𝐿 making it below the 𝑇𝐿𝐺 as in real sulfur, without
affecting other critical values. These two points for 𝜖𝑏 = 2 and 3 are connected with dashed lines.

In order to improve the agreement with the experimental data on sulfur, we explore how the location
of the critical points is affected by the bond strength 𝜖𝑏 ≡ Δ𝐻0 (enthalpy of bond formation), figure 9. We
see that for negative bond formation enthalpy (exothermic reaction) leads to a very low critical pressure
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of the LLCP making it even negative if 𝜖𝑏 < −2. As 𝜖𝑏 grows, 𝑃𝐿𝐿 increases and for 𝜖𝑏 ≈ 3 it becomes
100 times larger than 𝑃𝐿𝐺 as in real sulfur. When 𝜖𝑏 increases, the critical density, 𝜌𝐿𝐿 , also increases
from 0.63 at 𝜖𝑏 = −2 to 0.915 at 𝜖𝑏 = 4. The critical temperature 𝑇𝐿𝐿 slowly increases with 𝜖𝑏, becoming
greater than 𝑇𝐿𝐺 for 𝜖𝑏 > 3, which is not correct for real sulfur. The way to overcome this problem is
to increase 𝜖𝑧 from −1.3 to −1.0. This significantly reduces 𝑇𝐿𝐿 without any significant effect on other
critical parameters. The parameters of the LGCP do not depend on 𝜖𝑏 and 𝜖𝑧 in any significant way.

6. Conclusion

We develop a Hamiltonian variant of the limited valence model in which each atom is represented
by a single particle and implement it via the event driven molecular dynamics. The new model has a
well-defined Hamiltonian, which allows it to be treated within the formalism of statistical mechanics. For
example, it has a well-defined entropy and can be studied by the Monte Carlo method. We show that this
model provides a simple way to reproduce LLPT in various substances. The six independent parameters
of the model 𝑧, 𝑤, 𝑤𝑏, 𝑤𝑧 , 𝜖𝑏, and 𝜖𝑧 strongly change the location of the LLPT and its interplay with
the LGPT. We also study the relation of this new model with the previously studied core-shell non-
Hamiltonian limited valence model of references [49, 50] and show that qualitatively all the phenomena
observed there are reproduced by the new model, which is much faster computationally.

For 𝑧 = 1, we show that the model can reproduce molecular-metallic transition in liquid hydrogen.
For 𝑧 = 2, it can reproduce the LLPT associated with polymerization of dimers in sulfur. And for 𝑧 = 4, it
can reproduce the phase diagram of water with a LLPT at low temperature and high pressure. The limited
valence model is thus a powerful, versatile and simple tool to study LLPTs. We hope that in future it can
be applied to the LLPT in phosphorus for 𝑧 = 3 and in many other compounds.

We find that for 𝑧 = 1 and narrow repulsive shoulder𝑤𝑧 = 1.15, it is possible to simultaneously observe
the LLCP and the solid–solid isostructural critical point at slightly different densities and temperatures.

For the case of 𝑧 = 4, we find that for the large values of 𝑤𝑧 ≈ 1.34 which can be relatated to the
position of the minimum of the oxygen-oxygen radial distribution function in water, the phase diagram
of the model resembles the phase diagram of water obtained by all-atom simulations.

For the case of sulfur (𝑧 = 2) we modify the limited valence model to also include the minimum
valence 𝑣min = 1, forbidding the formation of monomers.
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Hamiltonian limited valence model

Гамiльтонiан-обмеженi валентнi моделi для полiморфiзму
рiдин

С. В. Булдирев1,2
1 Фiзичний факультет, Унiверситет Єшиви, Нью-Йорк, NY 10033, США
2 Фiзичний факультет, Бостонський унiверситет, MA 02215, США

Фазовi переходи “рiдина–рiдина” знайденi експериментально або з використанням комп’ютерного мо-
делювання у багатьох сполуках, таких як вода, водень, сiрка, фосфор, вуглець, кремнезем та кремнiй.
Обмежена валентна модель, застосована через алгоритм керованої подiями молекулярної динамiки, за-
безпечує простий загальний механiзм для фазових переходiв “рiдина–рiдина” в усiх цих рiзноманiтних
випадках. У статтi представлено один варiант обмеженої валентної моделi з добре визначеним гамiльто-
нiаном, а саме: унiкальний алгоритм, з допомогою якого потенцiальну енергiю системи частинок можна
обчислити виключно з їх координат, що є еквiвалентним до потенцiалу багатьох частинок. Представлено
декiлька прикладiв моделi, якi можна застосовувати для вiдтворення фазового переходу “рiдина–рiдина”
в системi з максимальними валентностями 𝑧 = 1 (водень), 𝑧 = 2 (сiрка) та 𝑧 = 4 (вода), де 𝑧 — найбiль-
ше число зв’язкiв, якi може мати атом. Для 𝑧 = 1 встановлено низку параметрiв, при яких дана система
має критичнi точки “рiдина–рiдина” та iзоструктурнi критичнi точки “тверде тiло–тверде тiло”. Для 𝑧 = 4
знайдено параметри, при яких фазова дiаграма подiбна на фазову дiаграму води з широкою областю
вiд’ємних коефiцiєнтiв теплового розширення (густинних аномалiй), яка поширюється на метастабiльну
область вiд’ємного тиску. Модель обмеженої валентностi може бути модифiкована для того, щоб заборо-
нити не тiльки занадто великi валентностi, але й досить малi. У випадку сiрки забороняється утворення
мономерiв, що обмежує валентнiсть 𝑣 атома в межах iнтервалу 1 = 𝑣min ⩽ 𝑣 ⩽ 𝑣max ≡ 𝑧 = 2.

Ключовi слова: фазовi переходи рiдина–рiдина, рiдина–газ, перетворення тверде тiло–тверде тiло,
фазовi дiаграми
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