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We develop a theory for the description of ionic liquids (ILs) confined in a porous medium formed by a matrix
of immobile randomly placed uncharged particles. The IL is modelled as an electroneutral mixture of hard-
sphere anions and flexible linear chain cations, represented by tangentially bonded hard spheres with the
charge located on one of the terminal beads. The theory combines a generalization of the scaled particle theory,
Wertheim’s thermodynamic perturbation theory, and the associative mean-spherical approximation and allows
one to obtain analytical expressions for the pressure and chemical potentials of the matrix–IL system. Using the
theory, we calculate the vapour–liquid phase diagrams for two versions of the IL model, i.e., when the cation is
modelled as a dimer and as a chain, in a complete association limit. The effects of the matrix confinement and
of the non-spherical shape of the cations on the vapour-liquid phase diagrams are studied.
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1. Introduction

We dedicate the article to the memory of Ihor Yukhnovsky, who recently passed away, and who,
starting from the 1950s, made a significant contribution to the development of the theory of electrolyte
solutions. He founded a scientific school on the theory of ionic systems in Lviv, of which the authors of
this article have the honor to be a part.

Ionic liquids (ILs) are a subclass of molten salts with a melting temperature lower than 373 K. In
general, ILs are composed of organic cations with either inorganic or organic anions. There are many
possibilities of making ILs due to the variety of ions and the variations in side chains of the ions. ILs and
ionic solutions of complex molecular ions, due to their unique physical and chemical properties, play
an important role in fundamental research and have an important applied value in modern technological
processes [1–5]. A significant part of technological applications is based on the properties of ionic
liquids in porous materials. In particular, ILs in porous electrodes are potentially important in innovative
electrochemistry [6, 7]. The presence of a porous medium can substantially affect the properties of ILs
including their phase behavior. The development of a theory for the study and prediction of the phase
behavior of ILs with a complex structure of ions under disordered porous confinement still remains a
relevant problem.

Phase behavior of the bulk ionic solutions with Coulomb-dominated interactions has been a subject of
active research for the last few decades. The simplest and most frequently used model for such systems is a
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restricted primitive model (RPM) which consists of equal numbers of equisized positively and negatively
charged hard spheres (HSs) immersed in a structureless dielectric continuum. The RPM undergoes a
vapour-liquid-like phase transition at low temperature and at low density (see review [8] and the literature
cited therein). Further studies focused on the modified versions of the RPM that takes into account charge
and/or size asymmetry of ions.

Significant progress in a theoretical description of the vapour-liquid phase behavior in the above-
mentioned models was made within the approaches that take into account ion association. Among them
there is a generalized Debye-Hückel theory proposed by Fisher and Levin [9, 10], the associative mean
spherical approximation (AMSA) [11–13], and the binding mean spherical approximation (BIMSA) [14–
18]. It is worth noting that both the AMSA and the BIMSA are, in fact, identical. In addition, the
method of collective variables (CVs) appeared to be successful for the description of these models [19–
21]. The advantage of this approach is that one can derive an analytical expression for the relevant
chemical potential which includes the effects of higher-order correlations between the ions. The historical
discussion of the vapour-liquid phase behaviour and criticality in the RPM is available in [8, 22].

Despite a significant progress in understanding the phase behavior of relatively simple models of
electrolyte solutions, today’s challenges require consideration of more complex ionic systems. Real ILs
and ionic solutions are characterized by a specific intermolecular interaction that is important at both
short and long distances. In particular, all these objects, in addition to the presence of charges, have a
complex molecular structure and geometry of ions which are far from spherical shape. The location of
charges is also important, i.e., the charge is frequently not located at the center of mass of molecular
ions. These features can have a significant impact on the properties of ILs. This also complicates the
development of theoretical approaches capable of properly predicting the properties of these systems.

Several simple IL models have been proposed over the past fifteen years [23–34]. Molecular ions
within the framework of these models are represented either as hard spheres with off-center point
charges [24, 28, 29, 32], as dimers with point charges located on one or both ends [23, 26–28, 34], or
as hard spherocylinders with a point charge located on one of their ends [25]. These models are mostly
studied using computer simulation methods. The vapour-liquid phase behavior of model ILs with chain-
like molecular ions was studied theoretically in [31, 34]. However, these studies were limited to the bulk
case.

The most frequently used model for the study of fluids in disordered porous media is the model
proposed by Madden and Glandt [35]. In this model, the porous medium is represented as a quenched
disordered matrix of HSs while the fluid is distributed inside the matrix. In this case, statistical-mechanical
averages used for calculations of thermodynamic properties become double ensemble averages: the first
average is taken over all degrees of freedom of fluid particles keeping the quenched particles fixed, and
the other average is performed over all realizations of a matrix. Using this approach, the scale particle
theory (SPT) was developed and analytical expressions for the thermodynamic functions of the HS fluid
in a disordered HS matrix were obtained [36–40]. This allowed one to use the model of a HS fluid in
a disordered HS matrix as a reference system (RS). Therefore, to study the effect of the presence of
a porous medium on the phase behavior in the RPM fluid, both the CV method [41] and the AMSA
approach [22] were used. It was shown that the presence of a porous medium results in a shift of the
vapour-liquid phase diagram of the RPM towards lower densities and temperatures. Later on SPT was
generalized and applied to the study of the properties of the multicomponent HS fluid confined in the HS
disordered matrix [42]. This version of the SPT was used to extend the theory proposed in [22, 41] for
the case of primitive models with ions of a spherical shape and different sizes [43, 44], as well as the
models involving oppositely charged spherical ions differing in both size and valence [45].

In this work, we study the vapour-liquid phase diagrams of ILs in a disordered porous medium.
Following [34], we model an IL as a two-component mixture of HS anions and flexible linear chain
cations, represented by the tangentially bonded HSs with the charge located on one of the terminal beads.
The existing theoretical approaches used for describing the chain ions provide a fairly good description
of the thermodynamics of these systems in the bulk case. However, in the presence of a disordered
matrix, this problem is much more difficult and has remained unsolved until recently. We propose a
theoretical approach that allows one to obtain the thermodynamic functions of the system of chain ions in
a disordered porous matrix. The approach combines the extension of the AMSA theory for chain-forming
fluids [11, 46–49] and the extension of the SPT theory for HS fluids in a disordered HS matrix [37, 40, 50–
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53]. Using this approach we calculate the vapour-liquid phase diagrams of the IL models with molecular
ions, represented by homo- and hetero-nuclear charged chains confined in a disordered HS matrix of
different porosities.

The remainder of the paper is organised as follows. In section 2, we present the models and develop
the theoretical formalism. The results are presented and discussed in section 3. We conclude in section 4.

2. Models and theory

2.1. Models

We present an IL as an electroneutral mixture of cations and anions with the number densities 𝜌𝑐 and
𝜌𝑎 (𝜌𝑖 = 𝑁𝑖/𝑉), respectively, immersed in a structureless dielectric continuum. The anions are modelled
as charged HSs with diameter 𝜎1 = 𝜎− and charge 𝑒𝑧1 = 𝑒𝑧− . The cations are represented by 𝑚 − 1
tangentially bonded HS monomers with the charge located on one of the terminal beads. The charged
monomer of the cation has a diameter 𝜎2 = 𝜎+ and a charge 𝑒𝑧2 = 𝑒𝑧+, while all uncharged monomers
have the same diameter 𝜎𝑛. It is assumed that the charges are in the center of the spheres.

The pair potential acting between the particles is represented by the sum of site-site HS potentials
𝑈hs
𝑖 𝑗
(𝑟):

𝑈hs
𝑖 𝑗 (𝑟) =

{
∞, 𝑟 < 𝜎𝑖 𝑗 = (𝜎𝑖 + 𝜎𝑗 )/2,
0, 𝑟 ⩾ 𝜎𝑖 𝑗

(2.1)

and Coulomb potential𝑈C
𝑖 𝑗
(𝑟):

𝑈C
𝑖 𝑗 (𝑟) =

𝑒2𝑧𝑖𝑧 𝑗

𝜀𝑟
, (2.2)

between charged HSs. Here, 𝜀 is the dielectric constant of the continuum. In general, we assume that

𝜎+ = 𝜎− = 𝜎 ≠ 𝜎𝑛

and |𝑧1 | = |𝑧2 | = 𝑧. The total number density of the system is 𝜌𝑡 = 2𝜌, where 𝜌 = 𝜌− = 𝜌+. For
𝜎+ = 𝜎− = 𝜎 = 𝜎𝑛, the cation model reduces to a homo-nuclear chain. Two versions of the above
described model of ILs are presented in figure 1.

Figure 1. (Colour online) Two models of ILs distinguished by the model for the cation: hetero-nuclear
dimer (model A) and mono-nuclear chain (model B). In both cases, the anion is modelled as a single
charged hard sphere.

The IL model is confined in a disordered porous matrix formed by hard spheres of diameter 𝜎0. The
interaction potentials between an ion and a matrix particle 𝑈hs

0𝑖 (𝑟) (𝑖 = +,−, 𝑛) and between two matrix
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particles𝑈hs
00(𝑟) are described by the HS potentials:

𝑈hs
0𝑖 (𝑟) =

{
∞, 𝑟 < 𝜎0𝑖
0, 𝑟 ⩾ 𝜎0𝑖

, 𝑈hs
00(𝑟) =

{
∞, 𝑟 < 𝜎0
0, 𝑟 ⩾ 𝜎0

. (2.3)

In (2.3), 𝜎0𝑖 =
1
2 (𝜎0 + 𝜎𝑖) and, in general, 𝜎 ≠ 𝜎𝑛 ≠ 𝜎0.

The matrix is characterised by different types of porosity, namely, geometrical porosity 𝜙0 and probe-
particle porosity 𝜙𝑖 for the 𝑖th species of the HS mixture. The probe-particle porosity 𝜙𝑖 is defined by the
excess value of the chemical potential of a fluid particle with diameter 𝜎𝑖 in the limit of infinite dilution
and, hence, takes into account the size of adsorbate species [42]. Explicit expressions for 𝜙0 and 𝜙𝑖 will
be given below. In order to distinguish a pure geometrical effect of confinement, we restrict the model
only to a hard-core interaction between the fluid and matrix particles with the latter being uncharged.

We present Helmholtz free energy 𝑓 = 𝐹/𝑉 of the matrix-IL system [equations (2.1)–(2.3)] in the
form:

𝛽 𝑓 =
𝛽𝐹

𝑉
= 𝛽 𝑓 (id) + 𝛽 𝑓 (ref) + 𝛽Δ 𝑓 ,

where 𝛽 𝑓 id is an ideal-gas contribution, 𝑓 ref is the free energy of a reference system (RS), which is
represented by a multi-component HS fluid confined in the HS matrix. Δ 𝑓 is the part connected with
the ionic subsystem, and 𝛽 = 1/𝑘B𝑇 . Below we present expressions for these contributions to the free
energy and the corresponding contributions to the pressure and chemical potentials. Here, we provide a
brief description of each theoretical approach upon which our theory is based. A detailed presentation of
the generalized SPT theory and the extension of the AMSA theory for chain-forming fluids can be found
elsewhere [11, 40, 42, 54–58].

2.2. Reference system

To calculate thermodynamic properties of the RS we use a generalized version of the SPT theory, in
particular, the approach, proposed recently for a two-component mixture of hard convex bodies confined
in a disordered HS matrix [59]. In order to characterize each particle of the system, we use three
geometrical parameters: the volume 𝑉 of a particle, its surface area 𝑆 and the mean curvature 𝑟 taken
with a factor 1/4π [54]. For a multicomponent HS mixture and for HS matrix particles we have:

𝑉𝑖 =
1
6
π𝜎3

𝑖 , 𝑆𝑖 = π𝜎2
𝑖 , 𝑟𝑖 = 𝜎𝑖/2 , 𝑖 = 0, . . . , 𝑚. (2.4)

The geometrical porosity depends on a matrix structure and is related to the volume of a void existing
between the matrix particles, i.e.,

𝜙0 = 1 − 𝜂0, (2.5)

where 𝜂0 = π𝜌0𝜎
3
0 /6 is the packing fraction of the matrix particles. The second type of porosity is

defined by the chemical potential of a fluid in the limit of infinite dilution and it is called a probe-particle
porosity 𝜙. This porosity characterises the adsorption of a fluid particle in an empty matrix. For a
multicomponent HS fluid confined in a hard-sphere matrix, we have the probe-particle porosity 𝜙𝑖 for
each species 𝑖. The probe-particle porosity 𝜙 depends only on the nature of the 𝑖th species and has the
form [42]:

𝜙𝑖 = (1 − 𝜂0) exp
[
− 3𝑘𝑖0 (1 + 𝑘𝑖0)

𝜂0
1 − 𝜂0

− 9
2
𝑘2
𝑖0

𝜂2
0

(1 − 𝜂0)2

− 𝑘3
𝑖0

𝜂0

(1 − 𝜂0)3

(
1 + 𝜂0 + 𝜂2

0

) ]
,

where 𝑘𝑖0 = 𝜎𝑖/𝜎0.
We present the pressure of the HS fluid mixture confined in a disordered HS matrix in the form [59]:

𝛽𝑃ref = 𝛽𝑃SPT2b3★ + 𝛽Δ𝑃CS, (2.6)
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where 𝛽𝑃SPT2b3★ is the contribution due to the SPT2b3* approximation [40]. This approximation provides
a correct description of the thermodynamic properties of the RS in a wide range of a fluid packing fraction
𝜂 = π

∑𝑚
𝑖=1 𝜌𝑖𝜎

3
𝑖
/6, starting from the smallest ones and ending with the packing fractions close to the

maximum values possible in a given matrix. 𝛽Δ𝑃CS is the Carnahan-Starling correction for the case of a
mixture in a porous medium [53]. Following [59], we obtain:

𝛽𝑃SPT2b3★

𝜌𝑚
=

1
1 − 𝜂/𝜙0

+ 𝐴

2
𝜂/𝜙0

(1 − 𝜂/𝜙0)2 + 2𝐵
3

(𝜂/𝜙0)2

(1 − 𝜂/𝜙0)3

+ 𝜙0 − 𝜙★
𝜙★

𝜙0
𝜂

[
ln(1 − 𝜂/𝜙0) +

𝜂/𝜙0
1 − 𝜂/𝜙0

]
+ 𝜙★ − 𝜙

𝜂

[
ln(1 − 𝜂/𝜙★) + 𝜂/𝜙★

1 − 𝜂/𝜙★

]
, (2.7)

𝛽Δ𝑃CS

𝜌𝑚
= − (𝜂/𝜙0)3

(1 − 𝜂/𝜙0)3
𝑞𝑚𝑠

2
𝑚

9𝑣2
𝑚

, (2.8)

where 𝜙★ =
𝜙0𝜙
𝜙0−𝜙 ln 𝜙0

𝜙
is the maximum value of the packing fraction of the fluid in the disordered

matrix [39], 𝜙 is the total thermodynamic porosity of the matrix for a given fluid mixture:

1
𝜙
=

1
𝜂

𝑚∑︁
𝑖=1

𝜌𝑖𝑉𝑖

𝜙𝑖
. (2.9)

𝐴 and 𝐵 are given by

𝐴 =

𝑚∑︁
𝑖=1

𝑥𝑖𝑎𝑖 , 𝐵 =

𝑚∑︁
𝑖=1

𝑥𝑖𝑏𝑖 , (2.10)

where the coefficients 𝑎𝑖 and 𝑏𝑖 define the porous medium structure [42, 59], the expressions for them
are too cumbersome to be presented here (they can be found in [59]), 𝑥𝑖 = 𝜌𝑖/𝜌𝑚 denotes the fluid
composition, and 𝑣𝑚, 𝑠𝑚, 𝑞𝑚, and 𝜌𝑚 have the form [53]:

𝑣𝑚 =

𝑚∑︁
𝑖=1

𝑥𝑖𝑉𝑖 , 𝑠𝑚 =

𝑚∑︁
𝑖=1

𝑥𝑖𝑆𝑖 , 𝑞𝑚 =

𝑚∑︁
𝑖=1

𝑥𝑖𝑟
2
𝑖 , 𝜌𝑚 =

𝑚∑︁
𝑖=1

𝜌𝑖 , (2.11)

where 𝑉𝑖 , 𝑆𝑖 , and 𝑟𝑖 are given in (2.4), 𝜌𝑖 is the number density of the 𝑖th species of the HS mixture.
Similarly, we present the partial chemical potential 𝛽𝜇𝑖 as follows:

𝛽𝜇
(ref)
𝑖

= 𝛽𝜇SPT2b3∗
𝑖 + 𝛽Δ𝜇CS

𝑖 , (2.12)

𝛽𝜇SPT2b3★
𝑖 = 𝛽𝜇SPT2a

𝑖 + 𝜂(𝜙0 − 𝜙★)
𝜙0𝜙★ (1 − 𝜂/𝜙0)

+ 𝜂 (𝜙★ − 𝜙)
𝜙★𝜙★ (1 − 𝜂/𝜙★)

+
(
𝜌𝑉𝑖

𝜂
− 1

) [
𝜙0 − 𝜙
𝜂

ln(1 − 𝜂/𝜙0) +
𝜙(𝜙0 − 𝜙★)

𝜙0𝜙★ (1 − 𝜂/𝜙0)

+ 𝜙 (𝜙★ − 𝜙)
𝜙★𝜙★ (1 − 𝜂/𝜙★)

]
− 𝜌𝑉𝑖

𝜂

(
𝜙

𝜙𝑖
− 1

) [
𝜙

𝜂
ln (1 − 𝜂/𝜙0)

− 𝜙(𝜙0 − 𝜙★)
𝜙0𝜙★ (1 − 𝜂/𝜙0)

− 𝜙 (𝜙★ − 𝜙)
𝜙★𝜙★ (1 − 𝜂/𝜙★) + 1

]
, (2.13)

𝛽Δ𝜇CS
𝑖 = − 𝑉𝑖

𝑣𝑚

(𝜂/𝜙0)3

(1 − 𝜂/𝜙0)3
𝑞𝑚𝑠

2
𝑚

9𝑣2
𝑚

+ 𝑠𝑚

9𝑣3
𝑚

[
(𝑞𝑖𝑠𝑚 + 2𝑆𝑖𝑞𝑚) 𝑣𝑚 − 2𝑉𝑖𝑞𝑚𝑠𝑚

]
×

[
ln(1 − 𝜂/𝜙0) +

𝜂/𝜙0
1 − 𝜂/𝜙0

− 1
2

(𝜂/𝜙0)2

(1 − 𝜂/𝜙0)2

]
, (2.14)

where 𝛽𝜇SPT2a
𝑖

is given in [60]. The other notations are the same as in (2.7)–(2.8).
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2.3. Ionic subsystem

We consider an ionic subsystem consisting of an electroneutral mixture of chain cations and
monomeric anions in a structureless dielectric medium. The model can be considered as a partial
case of the 𝑚-component HS mixture with two “sticky” spots (patches) of the type 𝐴 and 𝐵, randomly
placed on the surface of each particle forming the cation chain, simultaneously assuming an infinitely
strong attraction between the patches of the type 𝐵 and 𝐴 located on the surface of the particles of the
type 𝑖 and 𝑖 + 1, respectively. Importantly, the size of each patch is small enough to ensure that only
one 𝐴-𝐵 bond can be created. Thermodynamic properties for such a generalized model were obtained
using a modified Wertheim’s multidensity Ornstein-Zernike (OZ) equation supplemented by the AMSA
theory [11] formulated for the case of chain-forming fluids [55, 57]. Here, we present only the final
expressions for the IL model under consideration.

The solution of the AMSA theory for our IL model can be reduced to the solution of a nonlinear
algebraic equation for Blum’s screening parameter Γ [34, 55–57]:

Γ2 =
π𝛽𝑒2

𝜀
𝜌

𝑚∑︁
𝑖=1

X𝑖𝛼X𝑇𝑖 , (2.15)

where X𝑖 = (𝑋0
𝑖
, 𝑋𝐴
𝑖
, 𝑋𝐵
𝑖
) is a row matrix and 𝛼 is a symmetrical 3 × 3 matrix

𝛼 =
©«
1 1 1
1 0 1
1 1 0

ª®¬ .
A general form of the matrix elements 𝑋𝛼

𝑖
with 𝑖 = 1, 2, . . . , 𝑚 and 𝛼 = 0, 𝐴, 𝐵 was obtained in [34].

As will be shown below, the elements of the matrix X𝑖 contain the quantity 𝑡

𝑡 = 2π𝜎2
12𝑥

2𝐾
(0)
as exp

(
𝐺00(𝜎+

12) − 𝛽𝑈
(𝐶 ) (𝜎+

12)
)
𝑔00

12 (𝜎
+
12) |𝑧𝑖=0, (2.16)

where 𝑔00
12 (𝜎

+
12) |𝑧𝑖=0 is the contact value of the radial distribution function at zero charges on the anion

and cation bead, 𝐺00(𝜎+
12) = 𝑔

00
12 (𝜎

+
12) − 𝑔

00
12 (𝜎

+
12) |𝑧𝑖=0, 𝐾 (0)

as is the association constant, 𝑥 is the fraction
of free anions (or cations) determined from the solution of the mass action law type of equation

2𝜌𝑡𝜎12 + 𝑥 − 1 = 0. (2.17)

In order to obtain (2.16), the exponential approximation [58] is used.
We consider two versions (model A and model B) of the IL model which differ by the cation shape

(see figure 1). In model A, the cations are modelled as a hetero-nuclear dimers (𝜎− = 𝜎+ = 𝜎 ≠ 𝜎𝑛),
where indices −, +, 𝑛 indicate anion, cation, and neutral monomer, respectively) and in model B the
cations are modelled as homo-nuclear chains (𝜎1 = 𝜎2 = . . . = 𝜎𝑚 = 𝜎). In both models, the anions are
modelled as single charged HSs. The expressions for 𝑋𝛼

𝑖
for each of the models are presented below.

Model A: the cation modelled as hetero-nuclear dimer. In this case, the matrix elements X𝑖 have the
form:
for X1 = X− ,

𝑋0
− = −Γ𝜎− (𝑧 + 𝜂𝐵𝜎2

−), 𝑋𝐴− = 0, (2.18)

𝑋𝐵− = Γ𝜎−Γ𝜎+𝜎−𝜌𝑡

(
𝑧 − 𝜂𝐵𝜎2

+ − 𝜂𝐵Γ𝜎𝑛

𝜎+𝜎2
𝑛

2𝜎+𝑛

)
,

for X2 = X+,

𝑋0
+ = Γ𝜎+ (𝑧 − 𝜂𝐵𝜎2

+), (2.19)
𝑋𝐴+ = −Γ𝜎−Γ𝜎+𝜎+𝜌𝑡 (𝑧 + 𝜂𝐵𝜎2

−),

𝑋𝐵+ = −Γ𝜎+Γ𝜎𝑛
𝜂𝐵
𝜎+𝜎2

𝑛

2𝜎+𝑛
,
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for X3 = X𝑛,

𝑋0
𝑛 = −Γ𝜎𝑛

𝜂𝐵𝜎2
𝑛 ,

𝑋𝐴𝑛 =
Γ𝜎+Γ𝜎𝑛

𝜎𝑛

2𝜎+𝑛
[
𝑧 − 𝜂𝐵𝜎2

+ − 𝜌𝑡Γ𝜎−𝜎+(𝑧 + 𝜂𝐵𝜎2
−)

]
,

𝑋𝐵𝑛 = 0.

The expression for 𝜂𝐵 is as follows:

𝜂𝐵 =

π𝜌

2Δ

{
𝜎+Γ𝜎+ − 𝜎−Γ𝜎− +

[
𝜎2
𝑛Γ𝜎𝑛

2𝜎𝑛+
+ 𝜌Γ𝜎− 𝑡

(
𝜎2
− − 𝜎2

+ − 𝜎+𝜎2
𝑛Γ𝜎𝑛

2𝜎𝑛+

)]
Γ𝜎+

}
1 + π𝜌

2Δ

{∑𝑛
𝑖=− 𝜎

3
𝑖
Γ𝜎𝑖

+ 𝜎2
+

[
𝜎2
𝑛Γ𝜎𝑛

2𝜎𝑛+
+ 𝜎2

−𝜌Γ𝜎− 𝑡

(
2 + 𝜎2

𝑛Γ𝜎𝑛

𝜎+𝑛𝜎+

)]
Γ𝜎+

} , (2.20)

where 𝜎+𝑛 = (𝜎+ + 𝜎𝑛)/2, Δ and Γ𝜎𝑖
have the form:

Δ = 1 − π𝜌
∑︁

𝑖=1,...,𝑚
𝜎3
𝑖 /6, (2.21)

Γ𝜎𝑖
= (1 + 𝜎𝑖Γ)−1 . (2.22)

Model B: a chain cation with monomers of the same size. In the case where 𝑚 monomers forming a
chain cation are HSs of the same diameter, the elements 𝑋𝛼

𝑖
of the matrix X𝑖 can be presented in the

following compact form [34]:

𝑋0
𝑖 =

[
𝑧𝑖 − 𝜂𝐵𝜎2

𝑖

]
Γ𝜎𝑖

, (2.23)
𝑋𝛼𝑖 = 𝜎𝑖

[
𝜏𝛼𝑖 (𝑧) − 𝜂𝐵𝜏𝛼𝑖 (𝜎2)

]
, 𝛼 ≠ 0 (𝛼 = 𝐴, 𝐵),

𝜂𝐵 =

π
2Δ 𝜌

∑𝑚
𝑖=1 𝜎𝑖

{
𝑧𝑖Γ𝜎𝑖

+ 𝜎𝑖
[
𝜏𝐴
𝑖
(𝑧) + 𝜏𝐵

𝑖
(𝑧)

]}
1 + π

2Δ 𝜌
∑𝑚
𝑖=1 𝜎

2
𝑖

[
𝜎𝑖Γ𝜎𝑖

+ 𝜏𝐴
𝑖
(𝜎2) + 𝜏𝐵

𝑖
(𝜎2)

] ,
where the following notations are introduced:

𝜏𝐴1 (𝑦) = 0, 𝜏𝐴2 (𝑦) = 𝜌Γ𝜎−Γ𝜎+𝑦−𝑡,

𝜏𝐴3 (𝑦) =
Γ𝜎𝑛

Γ𝜎+

2𝜎𝑛+
(
𝑦+ + 𝜌𝜎+𝑦−Γ𝜎− 𝑡

)
,

𝜏𝐴𝑖 (𝑦) =
Γ2
𝜎𝑛

2𝜎𝑛

[ (
𝑦+ + 𝜌𝜎+𝑦−Γ𝜎− 𝑡

) 𝜎𝑛Γ𝜎+

2𝜎𝑛+

(
Γ𝜎𝑛

2

) 𝑖−4
+ 𝑦𝑛

𝑖∑︁
𝑙=4

(
Γ𝜎𝑛

2

) 𝑖−𝑙]
, 4 ⩽ 𝑖 ⩽ 𝑚,

𝜏𝐵1 (𝑦) = 𝜌Γ𝜎−Γ𝜎+ 𝑡

[
𝑦+ + 𝑦𝑛

𝜎+
𝜎+𝑛

𝑚∑︁
𝑙=3

(
Γ𝜎𝑛

2

) 𝑙−2
]
,

𝜏𝐵2 (𝑦) =
Γ𝜎+Γ𝜎𝑛

2𝜎+𝑛
𝑦𝑛

𝑚∑︁
𝑙=3

(
Γ𝜎𝑛

2

) 𝑙−3
,

𝜏𝐵𝑖 (𝑦) =
Γ2
𝜎𝑛

2𝜎𝑛
𝑦𝑛

𝑚∑︁
𝑙=𝑖+1

(
Γ𝜎𝑛

2

) 𝑙−𝑖−1
, 3 ⩽ 𝑖 < 𝑚, 𝜏𝐵𝑚 (𝑦) = 0,

and 𝑦 is taking on the values either 𝑧 or 𝜎2. Γ𝜎𝑖
and Δ entering the above equations are presented in

(2.21) and (2.22), respectively.
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2.4. Structural properties

Equations (2.16)–(2.17) include contact values of the radial distribution function 𝑔00
+− (𝜎+−) between

oppositely charged ions of the matrix–IL model, which includes charges and the model with 𝑧𝑖 = 0,
respectively [34, 55, 57]

𝑔00
+− (𝜎+−) = 𝑔00

+− (𝜎+−) |𝑧𝑖=0 −
𝛽𝑒2

𝜀𝜎𝑖 𝑗
𝑋0
+𝑋

0
− , (2.24)

where the expressions for 𝑋0
+ and 𝑋0

− are the same for both models (see (2.18), (2.19), and (2.23)).
The contact value of the radial distribution function of the model at zero charge within the framework

of the AMSA theory coincides with the contact value of the corresponding radial distribution function
of the 𝑚-component HS mixture. For our model, this will be the contact value of the radial distribution
function of a two-component HS mixture in the presence of immobile matrix particles. It can be obtained
by generalizing the result of [61, 62] for the case of a two-component HS fluid in a disordered porous
medium. According to the SPT, the contact value of the radial distribution function between a scaled
particle of infinitesimally small size 𝜎𝑠 and the 𝑖th species particle of HS mixture confined in a porous
matrix can be presented as follows [36, 42]:

𝑔hs
𝑖𝑠 (𝜎𝑖𝑠) =

1
𝑝𝑖0(𝜎𝑠) −

∑
𝑏 𝜂𝑏 (1 + 𝜎𝑠/𝜎𝑖)3 ,

where 𝜎𝛼𝑠 = (𝜎𝛼 + 𝜎𝑠)/2, 𝑝𝛼0 (𝜎𝑠) is the probability of finding a cavity created by the scaled particle in
the matrix in the absence of fluid particles [38]. For a point scaled particle, 𝑝𝛼0 (𝜎𝑠 = 0) is the geometric
porosity of the matrix 𝜙0 [42]. To obtain the contact value of the radial distribution function between two
fluid particles of type 𝑖 and 𝑗 , we follow [59, 61] and express 𝑔hs

𝑖𝑠
(𝜎𝑖𝑠) as

𝑔hs
𝑖𝑠 (𝜎𝑖𝑠) = 𝐺

(0)
𝑖𝑠

+ 𝐺 (1)
𝑖𝑠

𝜎𝑠

𝜎𝑠 + 𝜎𝑖
+ 1

2
𝐺

(2)
𝑖𝑠

(
𝜎𝑠

𝜎𝑠 + 𝜎𝑖

)2
,

where 𝐺 (0)
𝑖𝑠

, 𝐺 (1)
𝑖𝑠

and 𝐺 (2)
𝑖𝑠

are found from the continuity of 𝑔hs
𝑖𝑠
(𝜎+
𝑖𝑠
) and the first and second derivatives

with respect to 𝜎𝑠 at 𝜎𝑠 = 0.
As a result, we get for 𝑔 (hs)

+− (𝜎+−)

𝑔
(hs)
+− (𝜎+−) =

1
𝜙0 − 𝜂

+ 3
2

1
(𝜙0 − 𝜂)2

(
𝑘10𝜂0 + 𝜂− + 𝜂+ +

1
𝑘1
𝜂𝑛

)
+ 1

2
1

(𝜙0 − 𝜂)3

(
𝑘10𝜂0 + 𝜂− + 𝜂+ +

1
𝑘1
𝜂𝑛

)2
, (2.25)

where 𝜙0 is the geometrical porosity of a HS matrix (2.5), 𝜂 =
∑
𝑖=−,+,𝑛 𝜂𝑖 , 𝜂𝑖 = π𝜌𝑖𝜎

3
𝑖
/6 is the

packing fraction of the 𝑖th species of HS fluid mixture. For the model with a hetero-nuclear cation,
𝜎− = 𝜎+ = 𝜎 ≠ 𝜎𝑛 and we have:

𝜂− = 𝜂+, 𝑘10 = 𝜎0/𝜎, 𝑘1 = 𝜎𝑛/𝜎. (2.26)

Similarly, we obtain the expression for the contact value of the radial distribution function 𝑔 (hs)
+𝑛 (𝜎+𝑛)

𝑔
(hs)
+𝑛 (𝜎+𝑛) =

1
𝜙0 − 𝜂

+ 3
2

1
(𝜙0 − 𝜂)2

[
𝑘10𝜂0 +

2
1 + 𝑘1

(𝑘1(𝜂− + 𝜂+) + 𝜂𝑛)
]

+ 1
2

1
(𝜙0 − 𝜂)3

[
𝑘10𝜂0 +

2
1 + 𝑘1

(𝑘1(𝜂− + 𝜂+) + 𝜂𝑛)
]2
, (2.27)

where the notations are the same as in (2.25).
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The contact value of the radial distribution function 𝑔 (hs)
𝑛𝑛 (𝜎+

𝑛𝑛), has the form:

𝑔
(hs)
𝑛𝑛 (𝜎+

𝑛𝑛) =
1

𝜙0 − 𝜂
+ 3

2
1

(𝜙0 − 𝜂)2 (𝑘10𝜂0 + 𝑘1(𝜂− + 𝜂+) + 𝜂𝑛)

+ 1
2

1
(𝜙0 − 𝜂)3 (𝑘10𝜂0 + 𝑘1(𝜂− + 𝜂+) + 𝜂𝑛)2 . (2.28)

For the model of chain cations with monomers of the same diameter 𝑘1 = 1. In this case, from
(2.25)–(2.28) we have 𝑔 (hs)

+− (𝜎) = 𝑔 (hs)
+𝑛 (𝜎) = 𝑔 (hs)

−𝑛 (𝜎).

2.5. Thermodynamic properties

We write the excess internal energy Δ𝐸 of our model at 𝑧 = 1 as [34, 55, 57]

𝛽
Δ𝐸

𝑉
=
𝛽𝑒2

𝜀

𝜌

𝜎

[(
𝐵∑︁
𝛼=0

𝑋𝛼+ − 1

)
−

(
𝐵∑︁
𝛼=0

𝑋𝛼− + 1

)]
. (2.29)

It is worth noting that equations (2.24) and (2.29) include 𝑋𝛼
𝑖

, which, in turn, depend on the parameter Γ.
The free energy of the ionic subsystem 𝛽Δ 𝑓 is presented in the form of the sum of two terms, namely,

the contribution due to bonding or the so-called mass action law (MAL) [15, 17] and the contribution
due to electrostatic interactions:

𝛽Δ 𝑓 = 𝛽Δ 𝑓 (MAL) + 𝛽Δ 𝑓 (el) , (2.30)

where

𝛽Δ 𝑓 (MAL) = 𝜌

(
ln 𝑥 − 1

2
𝑥 + 1

2

)
− 𝜌

𝑚−1∑︁
𝑖=2

ln
[
𝑔
(hs)
𝑖,𝑖+1(𝜎𝑖,𝑖+1)

]
. (2.31)

Here, 𝑥 is the fraction of free anions (or cations). 𝑔 (hs)
𝑖,𝑖+1(𝜎𝑖,𝑖+1) is the contact values of the radial distribution

functions between monomers in the chain cation [see (2.27)–(2.28)]. For a model with a cation having
the form of a hetero-nuclear dimer, the second term in (2.31) is given by (2.27).

According to [17] and in the spirit of Wertheim’s multidensity thermodynamic perturbation the-
ory [46, 48] we assume different approximations for different terms in the expression for Helmholtz free
energy (2.30), i.e., we calculate Δ 𝑓 (el) using the parameter Γ obtained in the complete dissociation limit
(𝐾 (0)

as = 0 and 𝑡 = 0). In this approach, the effects connected with ion screening are taken into account
exactly, while the effects of ion association are neglected. As a result, 𝛽Δ 𝑓 (el) is presented as follows:

𝛽Δ 𝑓 (el) =
𝛽Δ𝐸 (0)

𝑉
+ (Γ (0) )3

3π
, (2.32)

where, Γ (0) = Γ|
𝐾

(0)
as =0 andΔ𝐸 (0) = Δ𝐸 |

𝐾
(0)
as =0. Accordingly, the equation for Γ (0) is obtained from (2.15)

if one put 𝑡 = 0. It should be noted that Γ (0) contains a contribution related to the presence of the neutral
beads of the cation chain, and cannot be reduced to the screening parameter Γ in the MSA theory.

For 𝛽Δ𝐸 (0) we have:

𝛽
Δ𝐸 (0)

𝑉
=
𝛽𝑒2

𝜀

𝜌

𝜎

(
�̄�0
+ + �̄�𝐵+ − �̄�0

− − 2
)
, (2.33)

where �̄�𝛼
𝑖
= 𝑋𝛼

𝑖
|Γ=Γ (0) .

The pressure and chemical potentials of the ionic subsystem can be obtained using standard thermo-
dynamic relations, namely:

𝑃 = −𝜕𝐹
𝜕𝑉

, 𝜌(𝛽𝜇− + 𝛽𝜇+) = 𝛽 𝑓 + 𝛽𝑃, (2.34)

where 𝐹 = 𝑓 𝑉 .
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Thermodynamic functions in the complete association limit. Consider the complete association limit
[12, 13, 17] when all anions and cations are dimerized. In this limit 𝐾 (0)

as → ∞ and we get [see (2.16)–
(2.17)]

𝑡 =
1

2𝜌𝜎
. (2.35)

Taking into account this assumption, we obtain [34]:

𝛽Δ 𝑓 (MAL) |
𝐾

(0)
as →∞ = −𝜌

{
ln 𝜌 − 1 + ln

[
𝑔
(hs)
−+ (𝜎−+)

]
+ ln

[
𝑔
(hs)
+𝑛 (𝜎+𝑛)

]
+

𝑚−1∑︁
𝑖=4

ln
[
𝑔
(hs)
𝑖,𝑖+1(𝜎𝑖,𝑖+1)

]
+ 𝛽𝑈 (𝐶 )

−+ (𝜎−+) + 𝐺 (∞)
00 (𝜎−+)

}
, (2.36)

where

𝐺
(∞)
00 (𝜎−+) = 𝐺00(𝜎−+) |𝐾 (0)

as →∞ =
1
𝑇∗

[
1 − (𝜂𝐵(∞)𝜎−+)2]
(1 + 𝜎−+Γ (∞) )2 , (2.37)

Γ (∞) = Γ|𝐾as→∞, 𝜂𝐵(∞) = Γ|𝐾as→∞.

Here, Γ (∞) is obtained from (2.15) under the condition (2.35). In the same way, we obtain 𝜂𝐵(∞) .
As the result, the pressure of the original matrix-IL system in the complete association limit can be

presented as follows:
𝛽𝑃 = 𝜌 + 𝛽𝑃 (ref) + 𝛽Δ𝑃 (MAL) + 𝛽Δ𝑃 (el) , (2.38)

where 𝛽𝑃 (ref) is given by (2.6)–(2.11). Taking into account (2.34) and (2.36), we obtain for 𝛽Δ𝑃 (MAL)

𝛽Δ𝑃 (MAL) = −𝜌2

[
𝜕 ln[𝑔 (hs)

−+ (𝜎−+)]
𝜕𝜌

+ 𝜕 ln[𝑔 (hs)
+𝑛 (𝜎+𝑛)]
𝜕𝜌

+
𝑚−1∑︁
𝑖=4

𝜕 ln
[
𝑔
(hs)
𝑖,𝑖+1(𝜎𝑖,𝑖+1)

]
𝜕𝜌

+
𝜕𝐺

(∞)
00 (𝜎−+)
𝜕𝜌

 , (2.39)

where 𝑔 (hs)
−+ (𝜎−+), 𝑔 (hs)

+𝑛 (𝜎+𝑛), 𝑔 (hs)
𝑖,𝑖+1(𝜎𝑖,𝑖+1), and 𝐺

(∞)
00 (𝜎−+) are given in (2.25)–(2.28), and (2.37),

respectively.
Electrostatic contribution 𝛽Δ𝑃 (el) is

𝛽Δ𝑃 (el)

𝜌
= − (Γ (0) )3

3π𝜌
− 2𝛽𝑒2

π𝜀𝜌
(𝜂𝐵0 )

2. (2.40)

Similar to (2.38), we represent the chemical potential 𝛽𝜇 = (𝛽𝜇− + 𝛽𝜇+) in the form:

𝛽𝜇 = ln 𝜌 + 𝛽𝜇 (ref) + 𝛽Δ𝜇 (MAL) + 𝛽Δ𝜇 (el) , (2.41)

where 𝛽𝜇 (ref) = (𝛽𝜇ref
− + 𝛽𝜇ref

+ ) can be obtained from (2.12)–(2.14). For 𝛽Δ𝜇 (MAL) , using (2.34), we have

𝛽Δ𝜇 (MAL) =
𝛽Δ 𝑓 (MAL)

𝜌
+ 𝛽Δ𝑃

(MAL)

𝜌
, (2.42)

where 𝛽Δ 𝑓 (MAL) and 𝛽Δ𝑃 (MAL) are given in (2.36) and (2.39), respectively. The contribution 𝛽Δ𝜇 (el)

has the form:

𝛽Δ𝜇 (el) = 𝛽
Δ𝐸 (0)

𝑉𝜌
− 2𝛽𝑒2

π𝜀𝜌
(𝜂𝐵0 )

2. (2.43)
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Figure 2. (Colour online) Vapour-liquid phase diagrams of model A with 𝑘1 = 1 (upper left-hand panel),
𝑘1 = 1.5 (upper right-hand panel), 𝑘1 = 2 (lower left-hand panel), 𝑘1 = 2.5 (lower right-hand panel),
confined in a porous matrix with different porosity. From the top to the bottom: 𝜙0 = 1.0 (red lines and
squares), 𝜙0 = 0.95 (black lines), 𝜙0 = 0.9 (blue lines). The diameter of matrix particles 𝜎0 = 1.5𝜎.
Here, the lines represent theoretical results, and the symbols are the results of computer simulations [34].
Notations: 𝑇∗ = 𝑘B𝑇𝜀𝜎/𝑒2, 𝜌∗ = 𝜌𝜎3, 𝑘1 = 𝜎𝑛/𝜎, and 𝜙0 = 1 − 𝜂0, where 𝜂0 = π𝜌0𝜎

3
0 /6.

3. Results and discussion

Using the theory proposed in the previous section, we have studied the vapour-liquid phase behaviour
of two models of ILs, model A and model B, confined in a disordered matrix in the approximation of
complete ion association [see equations (2.38)–(2.43)].

The phase diagrams were obtained at subcritical temperatures using the conditions of two-phase
equilibrium

𝜇(𝜌 (v) , 𝑇) = 𝜇(𝜌 (l) , 𝑇),
𝑃(𝜌 (v) , 𝑇) = 𝑃(𝜌 (l) , 𝑇),

where the subscripts “v” and “l” refer to the vapour and the liquid phases, respectively.
We introduce dimensionless units for the temperature, pressure, cation (anion) number density, and

volume fraction

𝑇∗ =
𝑘B𝑇𝜀𝜎

e2 , 𝑃∗ =
𝑃𝜀𝜎4

e4 , 𝜌∗ = 𝜌𝜎3, 𝜂 =
π

6
𝜌

∑︁
𝛼=−,+,𝑛

𝜎3
𝛼,

where 𝜎 = 𝜎− = 𝜎+ is the diameter of the charged monomer which is the same for anion and cation,
and 𝜎𝑛 is the diameter of the uncharged monomer of the cation. The ionic model is characterised by the
parameter 𝑘1 = 𝜎𝑛/𝜎 [equation (2.26)].
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Figure 3. (Colour online) Vapour-liquid critical temperature𝑇∗𝑐 of model A confined in the porous medium
as a function of the porosity 𝜙0. From the top to the bottom: 𝑘1 = 1, 𝑘1 = 1.5, 𝑘1 = 2, 𝑘1 = 2.5. Notations:
𝑇∗𝑐 = 𝑘B𝑇𝑐𝜀𝜎/𝑒2, 𝑘1 = 𝜎𝑛/𝜎 and 𝜙0 = 1 − 𝜂0, where 𝜂0 = π𝜌0𝜎

3
0 /6.

3.1. Model A

First, we present the results for model A (see figure 1). Calculations are done for three values of the
matrix porosity 𝜙0, i.e., 𝜙0 = 1 (bulk case), 𝜙0 = 0.95 and 𝜙0 = 0.9. We fix the diameter of the matrix
particles 𝜎0 and study the effect of the porous medium on the phase behavior of model A with different
𝑘1. In figure 2, we present the vapour-liquid phase diagrams of model A confined in a disordered matrix
with the diameter of matrix particles 𝜎0 = 1.5. Comparing the results obtained for different 𝑘1 in the
absence of a porous matrix, the case 𝜙0 = 1 in figure 2 (red curves), we see that an increase of 𝑘1 leads to
a shift of the phase diagrams to lower temperatures and to lower number densities which agrees with the
results obtained in [34]. For the fixed porosity 𝜙0 < 1 (black and blue curves), an increase of 𝑘1 also has
a similar effect: the coexistence curves shift to lower temperatures and densities when 𝑘1 increases, and
it can be concluded that the presence of the porous medium strengthens the effects previously observed
for the bulk case. On the other hand, for the fixed 𝑘1, a decrease of matrix porosity 𝜙0 also leads to a
shift of the phase diagram to lower temperatures 𝑇∗ and to lower densities 𝜌∗, and the phase coexistence
region becomes narrower. For comparison, figure 2 (upper left-hand panel) shows the results of computer
simulations for 𝑘1 = 1 in the absence of a porous medium. It should be noted that the agreement of
our theoretical results for the IL model in the absence of a porous matrix with the results of computer
simulations is within the same order of accuracy as the theoretical predictions made earlier for the RPM
model (see [34]).

The dependence of the critical temperature 𝑇∗
𝑐 on the matrix porosity 𝜙0 for 𝑘1 = 1, 1.5, 2 and 2.5 is

shown in figure 3. It is seen that the critical temperature 𝑇∗
𝑐 decreases almost linearly with a decreasing

porosity for all considered values of 𝑘1, although a small deviation from linearity can be observed for
𝑘1 = 2.5. Moreover, the critical temperature 𝑇∗

𝑐 decreases with an increase of 𝑘1.
In figure 4, we show the dependence of the critical density 𝜌∗𝑐 and the critical volume fraction 𝜂𝑐

(𝜂𝑐 = π𝜌𝑐
∑
𝛼=−,+,𝑛 𝜎

3
𝛼/6) on the matrix porosity 𝜙0. Again, the critical density 𝜌∗𝑐 decreases almost

linearly with a decreasing matrix porosity for all values of 𝑘1 except for 𝑘1 = 2.5, for which some
deviation from a linear behavior is observed: a decrease of 𝜌∗𝑐 becomes steeper for 𝜙0 ⩽ 0.925. Similar
to 𝑇∗

𝑐 , the critical density 𝜌∗𝑐 decreases when 𝑘1 increases. It should be noted that a similar behavior of
the critical density with a decreasing porosity was obtained for a size-asymmetric primitive model of
spherical ions if the difference between the ion diameters increases [44]. Regarding the critical volume
fraction 𝜂𝑐, its behavior with a decrease of matrix porosity is similar to the behavior of 𝜌∗𝑐, except that
the deviation from the linear dependence of 𝜂𝑐 is more pronounced for 𝜙0 ⩽ 0.925. On the other hand,
the dependence of 𝜂𝑐 on 𝑘1 is opposite to that obtained for 𝜌∗𝑐, i.e., when 𝑘1 increases 𝜂𝑐 also increases.

In figure 5, we show the vapour-liquid phase diagrams obtained for model A with 𝑘1 = 2.5 confined
in a porous matrix with the matrix particles of the diameter 𝜎0 = 2.5𝜎. Comparing these phase diagrams
with the corresponding phase diagrams in figure 2 (lower right-hand panel) for 𝜎0 = 1.5𝜎, one can see
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Figure 4. (Colour online) Critical density 𝜌∗𝑐 (left-hand panel) and critical volume fraction 𝜂𝑐 (right-hand
panel) of model A confined in the porous medium as a function of the porosity 𝜙0 at different values
of 𝑘1 (as indicated on the plots). Notations: 𝜌∗𝑐 = 𝜌𝑐𝜎

3, 𝜂𝑐 = π𝜌𝑐
∑
𝛼=−,+,𝑛 𝜎

3
𝛼/6, 𝑘1 = 𝜎𝑛/𝜎, and

𝜙0 = 1 − 𝜂0, where 𝜂0 = π𝜌0𝜎
3
0 /6.
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Figure 5. (Colour online) Vapour-liquid phase diagrams of model A with 𝑘1 = 2.5, confined in a porous
matrix with a matrix porosity 𝜙0 = 1.0 (red curves ), 𝜙0 = 0.95 (black curves), 𝜙0 = 0.9 (blue curves).
The diameter of matrix particles 𝜎0 = 2.5𝜎. Notations: 𝑇∗ = 𝑘B𝑇𝜀𝜎/𝑒2, 𝜌∗ = 𝜌𝜎3, 𝑘1 = 𝜎𝑛/𝜎 and
𝜙0 = 1 − 𝜂0, where 𝜂0 = π𝜌0𝜎

3
0 /6.

that an increase of the diameter of the matrix particles for the fixed matrix porosity 𝜙0 leads to a shift of
the phase diagrams to higher temperatures 𝑇∗ and to higher densities 𝜌∗, as well as to the broadening of
the range of phase coexistence.

The dependence of the critical temperature 𝑇∗
𝑐 and the critical number density 𝜌∗𝑐 for model A with

𝑘1 = 2.5 on the matrix porosity 𝜙0 for two diameters of matrix particles 𝜎0 = 1.5𝜎 (solid curve) and
𝜎0 = 2.5𝜎 (dashed curve) is shown in figure 6. It is seen that an increase of the diameter of matrix
obstacles does not generally change the behavior of 𝑇∗

𝑐 and 𝜌∗𝑐: both 𝑇∗
𝑐 and 𝜌∗𝑐 decrease with a decrease

of the matrix porosity, as it was observed in the case of 𝜎0 = 1.5𝜎. However, the decrease of both critical
parameters is much slower for 𝜎0 = 2.5𝜎 and the difference between 𝑇∗

𝑐 (𝜌∗𝑐) obtained for 𝜎0 = 1.5𝜎
and 𝜎0 = 2.5𝜎 increases with a decreasing porosity. Such a behaviour of the critical parameters with
the change of the size of matrix particles is consistent with the results obtained earlier for the RPM
model [22, 41] as well as with the results for a size-asymmetric primitive models [44, 45].
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Figure 6. Critical temperature 𝑇∗𝑐 (left-hand panel) and the critical density 𝜌∗𝑐 (right-hand panel) of
model A with 𝑘1 = 2.5 confined in a porous matrix as a function of matrix porosity 𝜙0 for two sizes of
matrix particles: 𝜎0 = 1.5𝜎 (solid curve) and 𝜎0 = 2.5𝜎 (dashed curve). Notations: 𝑇∗𝑐 = 𝑘B𝑇𝑐𝜀𝜎/𝑒2,
𝑘1 = 𝜎𝑛/𝜎 and 𝜙0 = 1 − 𝜂0, where 𝜂0 = π𝜌0𝜎
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Figure 7. (Colour online) Vapour-liquid phase diagrams of model B with cation chain length: 𝑚+ = 3
(upper panel), 𝑚+ = 5 (lower left-hand panel), 𝑚+ = 8 (lower right-hand panel), confined in a porous
matrix with porosity 𝜙0 = 1.0 (red lines and squares), 𝜙0 = 0.925 (black lines), 𝜙0 = 0.85 (blue lines).
Here, the lines represent theoretical results, and the symbols are the results of computer simulation [34].
Notations: 𝑇∗ = 𝑘B𝑇𝜀𝜎/𝑒2 and 𝜌∗ = 𝜌𝜎3.

3.2. Model B

Now we focus on model B. In this model, the cations are presented as mononuclear chains with 𝑚+
beads (figure 1). The vapour-liquid phase diagrams are calculated for four values of the length of the
cation chain 𝑚+ = 𝑚 − 1 = 3, 5, 8 and for three values of the matrix porosity 𝜙0 = 1.0, 0.925, 0.85. In our
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Figure 8. Dependence of the critical temperature (left-hand panel) and the critical density (right-hand
panel) on the matrix porosity 𝜙0 for model B with different lengths of the cation chains 𝑚+ = 2, 3, 5, 8
confined in a porous medium. Notations are the same as in figure 7.

calculations, we fix the diameter of matrix particles 𝜎0 = 1.5. The phase diagrams are shown in figure 7.
In the upper panel of these figures, in addition to the theoretical results, we also show the simulation
results for 𝑚+ = 3 and 𝜙0 = 1 (bulk case) [34]. In this case, our theoretical results for the vapour-liquid
phase diagram are in a good agreement with the results obtained using the Monte Carlo simulations.
Moreover, the agreement for the cation with 𝑚+ = 3 is much better than in the case of mononuclear
dimer corresponding to 𝑚+ = 2 (see figure 2, upper left-hand panel). We can expect that in the presence
of a porous medium and longer cation chains, our results are satisfactory. As for model A, the presence
of a porous medium shifts the phase diagrams of model B to lower temperatures and to lower number
densities when the matrix porosity decreases (figure 7). Both the critical temperature and the critical
number density decrease almost linearly when the matrix porosity decreases (figure 8). An increase of
the cation chain length in the absence of a porous medium (𝜙0 = 1.0) has a similar effect. The presence
of the porous matrix significantly enhances this effect.

It should be noted that there is a small difference between the present results for the bulk case and the
results obtained in [34]. Comparing the results, one can see that the critical temperatures for 𝜙0 = 1 in
figure 2 (upper left-hand panel) and figure 7 (upper panel) are about 3% higher than the corresponding
critical temperatures obtained for the same models in [34]. The difference appears due to different
approximations used to calculate the contact values, i.e., in this work the expressions for the contact
values of the radial distribution functions [equations (2.25)–(2.28)] include the term corresponding to
the Boublik-Mansoori-Carnahan-Starling-Leland approximation while in [34] the Percus-Yevick contact
values are used. Here, contrary to [34], we use the same approximation for the thermodynamic functions
of the RS and for the contact values.

4. Conclusions

We have studied the vapour-liquid phase behaviour of ILs with complex molecular structures of ions
(cations) confined in a disordered matrix formed by neutral HSs. The IL is modelled as an electroneutral
mixture of HS anions and flexible linear chain cations, formed by the tangentially bonded HSs with the
charge located on one of the terminal beads [34]. To this end, we have developed the theoretical ap-
proach which combines a generalization of the scaled particle theory (SPT), Wertheim’s thermodynamic
perturbation theory, and the associative mean-spherical approximation (AMSA). Using this theory, we
obtained analytical expressions for the Helmholtz free energy, pressure, and chemical potentials of ions
in the complete association limit. The thermodynamic functions contain contributions from the RS,
represented by a multicomponent HS fluid of different sizes, confined in the HS matrix, and the ionic
subsystem, represented by spherical anions and chain cations. It should be noted that the contribution of
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the ionic subsystem to the thermodynamics of the full IL-matrix system depends on the contact values
of the radial distribution functions of the RS, particularly, on the contact values of the radial distribution
functions between the HSs belonging to the anion and the cation and on the contact values of the radial
distribution function between the HSs belonging only to the cation.

We have calculated the vapour-liquid phase diagrams of two versions of the above described IL model,
i.e., models with cations represented by dimers with charged and neutral beads of different size and by
chains with neutral beads of the same size, respectively. Our results show that a decrease in the geometric
porosity leads to a shift of the phase diagrams to lower temperatures and to lower values of the number
density of anions (cations), as well as to lower values of volume fractions of IL for all considered models
of the cation, while the region of the coexistence of the two phases narrows. This agrees with the results
obtained for both simple (nonionic) liquids and model ILs with spherical ions. On the other hand, the
results for IL models with molecular cations represented by dimers with the neutral bead of different
size and by chains with the neutral beads of the same size in the bulk showed [34] that an increase of
the diameter of the neutral bead or chain length also leads to a shift of the vapour-liquid phase diagram
to lower temperatures and densities. Therefore, the presence of a disordered porous medium enhances
these effects on the vapour-liquid phase diagram of ILs. Accordingly, the critical temperature and critical
number density decrease when the matrix porosity decreases and the diameter/length of the neutral part
of the cation increases. An increase in the size of the matrix particles at a fixed matrix porosity leads
to the opposite effect, i.e., the critical temperature 𝑇∗

𝑐 and the critical number density 𝜌∗𝑐 increase with
an increase of the diameter of the matrix particles and, accordingly, the phase diagram shifts to higher
values of temperature and density.

It should be noted that in this paper the thermodynamic functions of the reference system and
the contact values of the radial distribution functions are treated within the framework of the same
approximation. This leads, in general, to a bit better agreement between the theoretical and simulation
results in the bulk case compared to [34]. We hope that this is also valid in the presence of a disordered
matrix.

Acknowledgements

We thank the Ministry of Education and Science of Ukraine for its financial support (Agreement
No PH/16-2023). YVK acknowledge financial support through the MSCA4Ukraine project, which is
funded by the European Union.

References
1. Buzzeo M. C., Evans R. G., Compton R. G., ChemPhysChem, 2004, 5, No. 8, 1106–1120,

doi:10.1002/cphc.200301017.
2. Silvester D. S., Compton R. G., Z. Phys. Chem., 2006, 220, No. 10, 1247–1274,

doi:10.1524/zpch.2006.220.10.1247.
3. Suo L., Borodin O., Gao T., Olguin M., Ho J., Fan X., Luo C., Wang C., Xu K., Science, 2015, 350, No. 6263,

938–943, doi:10.1126/science.aab1595.
4. Correia D. M., Fernandes L. C., Martins P. M., García-Astrain C., Costa C. M., Reguera J., Lanceros-Méndez S.,

Adv. Funct. Mater., 2020, 30, No. 24, 1909736, doi:10.1002/adfm.201909736.
5. Egorova K. S., Gordeev E. G., Ananikov V. P., Chem. Rev., 2017, 117, No. 10, 7132–7189,

doi:10.1021/acs.chemrev.6b00562.
6. Singh M. P., Singh R. K., Chandra S., Prog. Mater. Sci., 2014, 64, 73–120, doi:10.1016/j.pmatsci.2014.03.001.
7. Kondrat S., Feng G., Bresme F., Urbakh M., Kornyshev A. A., Chem. Rev., 2023, 123, No. 10, 6668–6715,

doi:10.1021/acs.chemrev.2c00728.
8. Patsahan O., Mryglod I., In: Order, Disorder and Criticality, Vol. 3, Holovatch Yu. (Ed.), World Scientific,

Singapore, 47–92.
9. Fisher M. E., Levin Y., Phys. Rev. Lett., 1993, 71, 3826–3829, doi:10.1103/PhysRevLett.71.3826.

10. Levin Y., Fisher M. E., Physica A, 1996, 225, No. 2, 164–220, doi:10.1016/0378-4371(95)00336-3.
11. Holovko M. F., Kalyuzhnyi Yu. V., Mol. Phys., 1991, 73, No. 5, 1145–1157, doi:10.1080/00268979100101831.
12. Kalyuzhnyi Yu., Mol. Phys., 1998, 94, No. 4, 735–742, doi:10.1080/00268979809482366.

23602-16

https://doi.org/10.1002/cphc.200301017
https://doi.org/10.1524/zpch.2006.220.10.1247
https://doi.org/10.1126/science.aab1595
https://doi.org/10.1002/adfm.201909736
https://doi.org/10.1021/acs.chemrev.6b00562
https://doi.org/10.1016/j.pmatsci.2014.03.001
https://doi.org/10.1021/acs.chemrev.2c00728
https://doi.org/10.1103/PhysRevLett.71.3826
https://doi.org/10.1016/0378-4371(95)00336-3
https://doi.org/10.1080/00268979100101831
https://doi.org/10.1080/00268979809482366


Phase behaviour of ionic liquids in disordered porous media

13. Kalyuzhnyi Yu. V., Holovko M. F., Vlachy V., J. Stat. Phys., 2000, 100, No. 1/2, 243–265,
doi:10.1023/a:1018699914319.

14. Blum L., Bernard O., J. Stat. Phys., 1995, 79, No. 3–4, 569–583, doi:10.1007/bf02184871.
15. Bernard O., Blum L., J. Chem. Phys., 1996, 104, No. 12, 4746–4754, doi:10.1063/1.471168.
16. Jiang J. W., Blum L., Bernard O., Mol. Phys., 2001, 99, No. 20, 1765–1767, doi:10.1080/00268970110072764.
17. Jiang J., Blum L., Bernard O., Prausnitz J. M., Sandler S. I., J. Chem. Phys., 2002, 116, No. 18, 7977–7982,

doi:10.1063/1.1468638.
18. Qin Y., Prausnitz J. M., J. Chem. Phys., 2004, 121, No. 7, 3181–3183, doi:10.1063/1.1770651.
19. Caillol J.-M., Patsahan O., Mryglod I., Condens. Matter Phys., 2005, 8, No. 4, 665–684,

doi:10.5488/cmp.8.4.665.
20. Patsahan O., Mryglod I., Patsahan T., J. Phys.: Condens. Matter, 2006, 18, No. 45, 10223–10235,

doi:10.1088/0953-8984/18/45/009.
21. Patsahan O. V., Patsahan T. M., Phys. Rev. E, 2010, 81, No. 3, 031110, doi:10.1103/physreve.81.031110.
22. Holovko M., Patsahan T., Patsahan O., J. Mol. Liq., 2017, 228, 215–223, doi:10.1016/j.molliq.2016.10.045.
23. Malvaldi M., Chiappe C., J. Phys.: Condens. Matter, 2007, 20, No. 3, 035108, doi:10.1088/0953-

8984/20/03/035108.
24. Spohr H. V., Patey G. N., J. Chem. Phys., 2009, 130, No. 10, 104506, doi:10.1063/1.3078381.
25. Martín-Betancourt M., Romero-Enrique J. M., Rull L. F., J. Phys. Chem. B, 2009, 113, No. 27, 9046–9049,

doi:10.1021/jp903709k.
26. Fedorov M., Georgi N., Kornyshev A., Electrochem. Commun., 2010, 12, No. 2, 296–299,

doi:10.1016/j.elecom.2009.12.019.
27. Wu J., Jiang T., Jiang D., Jin Z., Henderson D., Soft Matter, 2011, 7, No. 23, 11222, doi:10.1039/c1sm06089a.
28. Ganzenmüller G., Camp P., Condens. Matter Phys., 2011, 14, No. 3, 33602, doi:10.5488/cmp.14.33602.
29. Lindenberg E. K., Patey G. N., J. Chem. Phys., 2014, 140, No. 10, 104504, doi:10.1063/1.4867275.
30. Lindenberg E. K., Patey G. N., J. Chem. Phys., 2015, 143, No. 2, 024508, doi:10.1063/1.4923344.
31. Guzmán O., Ramos Lara J. E., del Río F., J. Phys. Chem. B, 2015, 119, No. 18, 5864–5872,

doi:10.1021/jp511571h.
32. Silvestre-Alcantara W., Bhuiyan L., Lamperski S., Kaja M., Henderson D., Condens. Matter Phys., 2016, 19,

No. 1, 13603, doi:10.5488/cmp.19.13603.
33. Lu H., Li B., Nordholm S., Woodward C. E., Forsman J., J. Chem. Phys., 2016, 145, No. 23, 234510,

doi:10.1063/1.4972214.
34. Kalyuzhnyi Yu. V., Reščič J., Holovko M., Cummings P. T., J. Mol. Liq., 2018, 270, 7–13,

doi:10.1016/j.molliq.2018.01.109.
35. Madden W. G., Glandt E. D., J. Stat. Phys., 1988, 51, No. 3-4, 537–558, doi:10.1007/bf01028471.
36. Holovko M., Dong W., J. Phys. Chem. B, 2009, 113, No. 18, 6360–6365, doi:10.1021/jp809706n.
37. Patsahan T., Holovko M., Dong W., J. Chem. Phys., 2011, 134, No. 7, 074503: 1–11, doi:10.1063/1.3532546.
38. Holovko M., Patsahan T., Dong W., Pure Appl. Chem., 2013, 85, No. 1, 115–133, doi:10.1351/pac-con-12-05-06.
39. Holovko M. F., Patsahan T., Dong W., Condens. Matter Phys., 2012, 15, No. 2, 23607: 1–13,

doi:10.5488/cmp.15.23607.
40. Holovko M., Patsahan T., Dong W., Condens. Matter Phys., 2017, 20, No. 3, 33602: 1–14,

doi:10.5488/cmp.20.33602.
41. Holovko M. F., Patsahan O., Patsahan T., J. Phys.: Condens. Matter, 2016, 28, No. 24, 414003, doi:10.1088/0953-

8984/28/41/414003.
42. Chen W., Zhao S. L., Holovko M., Chen X. S., Dong W., J. Phys. Chem. B, 2016, 120, No. 24, 5491–5504,

doi:10.1021/acs.jpcb.6b02957.
43. Holovko M. F., Patsahan T. M., Patsahan O. V., J. Mol. Liq., 2017, 235, 53–59, doi:10.1016/j.molliq.2016.11.030.
44. Patsahan O. V., Patsahan T. M., Holovko M. F., Phys. Rev. E, 2018, 97, No. 2, 022109,

doi:10.1103/physreve.97.022109.
45. Patsahan O., Patsahan T., Holovko M., J. Mol. Liq., 2018, 270, 97–105, doi:10.1016/j.molliq.2017.12.033.
46. Wertheim M. S., J. Stat. Phys., 1984, 35, No. 1-2, 19–34, doi:10.1007/bf01017362.
47. Wertheim M. S., J. Stat. Phys., 1984, 35, No. 1-2, 35–47, doi:10.1007/bf01017363.
48. Wertheim M. S., J. Stat. Phys., 1986, 42, No. 3-4, 459–476, doi:10.1007/bf01127721.
49. Wertheim M. S., J. Stat. Phys., 1986, 42, No. 3-4, 477–492, doi:10.1007/bf01127722.
50. Reiss H., Frisch H. L., Lebowitz J. L., J. Chem. Phys., 1959, 31, No. 2, 369–380, doi:10.1063/1.1730361.
51. Reiss H., Frisch H. L., Helfand E., Lebowitz J. L., J. Chem. Phys., 1960, 32, No. 1, 119–124,

doi:10.1063/1.1700883.
52. Lebowitz J. L., Helfand E., Praestgaard E., J. Chem. Phys., 1965, 43, No. 3, 774–779, doi:10.1063/1.1696842.
53. Boublík T., Mol. Phys., 1974, 27, No. 5, 1415–1427, doi:10.1080/00268977400101191.

23602-17

https://doi.org/10.1023/a:1018699914319
https://doi.org/10.1007/bf02184871
https://doi.org/10.1063/1.471168
https://doi.org/10.1080/00268970110072764
https://doi.org/10.1063/1.1468638
https://doi.org/10.1063/1.1770651
https://doi.org/10.5488/cmp.8.4.665
https://doi.org/10.1088/0953-8984/18/45/009
https://doi.org/10.1103/physreve.81.031110
https://doi.org/10.1016/j.molliq.2016.10.045
https://doi.org/10.1088/0953-8984/20/03/035108
https://doi.org/10.1088/0953-8984/20/03/035108
https://doi.org/10.1063/1.3078381
https://doi.org/10.1021/jp903709k
https://doi.org/10.1016/j.elecom.2009.12.019
https://doi.org/10.1039/c1sm06089a
https://doi.org/10.5488/cmp.14.33602
https://doi.org/10.1063/1.4867275
https://doi.org/10.1063/1.4923344
https://doi.org/10.1021/jp511571h
https://doi.org/10.5488/cmp.19.13603
https://doi.org/10.1063/1.4972214
https://doi.org/10.1016/j.molliq.2018.01.109
https://doi.org/10.1007/bf01028471
https://doi.org/10.1021/jp809706n
https://doi.org/10.1063/1.3532546
https://doi.org/10.1351/pac-con-12-05-06
https://doi.org/10.5488/cmp.15.23607
https://doi.org/10.5488/cmp.20.33602
https://doi.org/10.1088/0953-8984/28/41/414003
https://doi.org/10.1088/0953-8984/28/41/414003
https://doi.org/10.1021/acs.jpcb.6b02957
https://doi.org/10.1016/j.molliq.2016.11.030
https://doi.org/10.1103/physreve.97.022109
https://doi.org/10.1016/j.molliq.2017.12.033
https://doi.org/10.1007/bf01017362
https://doi.org/10.1007/bf01017363
https://doi.org/10.1007/bf01127721
https://doi.org/10.1007/bf01127722
https://doi.org/10.1063/1.1730361
https://doi.org/10.1063/1.1700883
https://doi.org/10.1063/1.1696842
https://doi.org/10.1080/00268977400101191


T. Hvozd, T. Patsahan, Yu. Kalyuzhnyi, O. Patsahan, M. Holovko

54. Holovko M., Shmotolokha V., Patsahan T., In: Physics of Liquid Matter: Modern Problems, Vol. 171, Bulavin L.,
Lebovka N. (Eds.), Springer International Publishing, Heidelberg, 3–30.

55. Protsykevytch I., Kalyuzhnyi Yu. V., Holovko M. F., Blum L., J. Mol. Liq., 1997, 73-74, 1–20, doi:10.1016/s0167-
7322(97)00053-6.

56. Bernard O., Blum L., J. Chem. Phys., 2000, 112, No. 16, 7227–7237, doi:10.1063/1.481287.
57. Kalyuzhnyi Yu. V., Cummings P. T., J. Chem. Phys., 2001, 115, No. 1, 540–551, doi:10.1063/1.1376426.
58. Holovko M., In: Ionic Soft Matter: Modern Trends in Theory and Applications, Vol. 206, Henderson D.,

Holovko M., Trokhymchuk A. (Eds.), Springer Netherlands, Dordrech, 45–81.
59. Hvozd M., Patsahan O., Patsahan T., Holovko M., J. Mol. Liq., 2022, 346, 117888,

doi:10.1016/j.molliq.2021.117888.
60. Hvozd M., Patsahan T., Holovko M., J. Phys. Chem. B, 2018, 122, No. 21, 5534–5546,

doi:10.1021/acs.jpcb.7b11834.
61. Kalyuzhnyi Yu. V., Holovko M., Patsahan T., Cummings P. T., J. Phys. Chem. Lett., 2014, 5, 4260–4264,

doi:10.1021/jz502135f.
62. Holovko M. F., Korvatska M. Y., Condens. Matter Phys., 2020, 23, No. 2, 23605, doi:10.5488/cmp.23.23605.

Фазова поведiнка газ-рiдина примiтивних моделей iонних
рiдин у невпорядкованому пористому середовищi

Т. Гвоздь1, Т. Пацаган1,2, Ю. Калюжний1,3, О, Пацаган1, М. Головко1
1 Iнститут фiзики конденсованих систем Нацiональної академiї наук України 79011, м. Львiв, вул.
Свєнцiцького, 1, Україна

2 Iнститут прикладної математики та фундаментальних наук, Нацiональний унiверситет “Львiвська
полiтехнiка”, 79013, Львiв, вул. С. Бандери, 12, Україна,

3 Факультет хiмiї i хiмiчної технологiї, Унiверситет Любляни, вул. Вечна, 113, 1000 Любляна, Словенiя

Ми розробляємо теорiю для опису iонних рiдин у пористому середовищi, сформованому матрицею неру-
хомих хаотично розмiщених незаряджених частинок. Iонна рiдина моделюється як електронейтральна
сумiш анiонiв сферичної форми та ланцюговoподiбних катiонiв, представлених тангенцiально зв’язаними
твердими сферами iз зарядом, розташованим на однiй iз кiнцевих сфер. Теорiя поєднує в собi узагальне-
ння теорiї масштабної частинки, термодинамiчної теорiї збурень Вертгайма та асоцiативного середньо-
сферичного наближення i дозволяє отримати аналiтичнi вирази для тиску та хiмiчних потенцiалiв систе-
ми “матриця–iонна рiдина”. Використовуючи цю теорiю, ми розрахували фазовi дiаграми “газ-рiдина” для
двох версiй моделi iонної рiдини, а саме, коли катiон моделюється як димер i як ланцюг, в наближеннi
повної асоцiацiї. Дослiджено вплив невпорядкованої матрицi та несферичної форми катiонiв на фазовi
дiаграмах “газ-рiдина”.

Ключовi слова: iоннi рiдини, невпорядковане пористе середовище, ланцюговоподiбнi катiони, фазовi
дiаграми “газ-рiдина”

23602-18

https://doi.org/10.1016/s0167-7322(97)00053-6
https://doi.org/10.1016/s0167-7322(97)00053-6
https://doi.org/10.1063/1.481287
https://doi.org/10.1063/1.1376426
https://doi.org/10.1016/j.molliq.2021.117888
https://doi.org/10.1021/acs.jpcb.7b11834
https://doi.org/10.1021/jz502135f
https://doi.org/10.5488/cmp.23.23605

	Introduction
	Models and theory 
	Models
	Reference system
	Ionic subsystem
	Structural properties
	Thermodynamic properties

	Results and discussion
	Model A
	Model B

	Conclusions

