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The exactly solvable spin-1/2 Ising-Heisenberg distorted diamond chain in the presence of the external magnetic
field is investigated for the case of antiferromagnetic Ising and ferromagnetic XXZ Heisenberg interactions. The
influence of quantum fluctuations and the distortion on the ground state, magnetic and thermal properties of
the model are studied in detail. In particular, it is established that the zero-temperature magnetization curve
may involve intermediate plateaus just at zero and 1/3 of the saturation magnetization. It is demonstrated that
the temperature dependence of the specific heat reveals up to four distinct peaks at zero magnetic field and up
to five distinct peaks at a weak magnetic field. The physical origin of all observed additional peaks of the specific
heat has been clarified on the grounds of dominating thermal excitations. We have shown that the quantum
fluctuations give rise to an effective geometrical frustration in this chain.
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1. Introduction

Decorated spin chains, which can be exactly solved using the transfer-matrix method [1–7], are of
practical importance for the qualitative interpretation and the quantitative description of magnetic and
thermal properties of real solid-state materials. In particular, several exactly solved Ising-Heisenberg
decorated spin chains provide an in-depth understanding of a striking interplay between geometric spin
frustration and quantum fluctuations, which may manifest itself through various intriguing phenomena
such as the appearance of an intermediate plateaux in low-temperature magnetization curves and the
formation of additional maxima in the temperature dependence of the specific heat. Despite a certain
oversimplification, some exactly solved Ising-Heisenberg spin chains afford a plausible quantitative
description of the magnetic behavior of real spin-chain materials [8–17].

The natural mineral azurite Cu3(CO3)2(OH)2 provides an experimental realization of the geometri-
cally frustrated spin-1/2 diamond Heisenberg chain [18, 19] with spectacular magnetic properties [20–23].
Owing to this fact, a lot of attention has been paid to a research of different versions of the geomet-
rically frustrated spin-1/2 Ising-Heisenberg diamond chain [24–35]. Although a correct description
of magnetic properties of the azurite would require a modelling based on a more complex spin-1/2
Heisenberg model [18, 19], the simplified but still exactly solvable spin-1/2 Ising-Heisenberg diamond
chain [24, 27, 34] qualitatively reproduces the most prominent experimental features reported for the
azurite such as an intermediate one-third magnetization plateau as well as the double-peak tempera-
ture dependencies of specific heat [20–23]. On the other hand, much less attention has been paid to
non-geometrically frustrated cases of the spin-1/2 Ising-Heisenberg diamond chain.

Exactly solvable Ising-Heisenberg systems can be employed to formulate a theoretical framework
for describing quantum Heisenberg systems. This involves deriving effective Hamiltonians for these
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systems through many-body perturbation theory [36–39]. In particular, the geometrically frustrated
spin-1/2 Ising-Heisenberg diamond chain was generalized to a spin-1/2 Heisenberg diamond chain
by adding a perturbation, for which a much simpler effective Hamiltonian was obtained within the
many-body perturbation theory to reproduce its low-temperature behavior [36]. In addition, a quantum
spin-1/2 antiferromagnetic Heisenberg trimerized chain was studied using the many-body perturbation
expansion, which is developed from the exactly solved spin-1/2 antiferromagnetic Ising-Heisenberg
diamond chain [38].

The main purpose of this work is to examine the ground state and basic thermodynamic properties of
the spin-1/2 Ising-Heisenberg distorted diamond chain with antiferromagnetic Ising and ferromagnetic
Heisenberg interactions. This chain reduces to a usual spin-1/2 Ising-Heisenberg diamond chain when
the asymmetry of the Ising couplings along the diamond sides vanishes, while the spin-1/2 Ising-
Heisenberg doubly decorated chain is recovered under the extreme case of asymmetry. The ground
state, magnetization process and basic thermodynamic characteristics (specific heat, susceptibility) of
the spin-1/2 Ising-Heisenberg distorted diamond chain will be exactly calculated within the framework of
the transfer-matrix method. We explore how the quantum fluctuations and the coupling asymmetry will
affect the overall magnetic and thermal behavior. We show that quantum fluctuations create an effective
geometric frustration in this chain, which causes similar features in the properties of the ground state and
basic thermodynamic characteristics as in the case of the corresponding antiferromagnetic chain with
geometric frustration [27], while the features of the temperature dependence of the heat capacity are
more intriguing.

2. Model and its exact solution

Let us begin by considering the spin-1/2 Ising-Heisenberg distorted diamond chain in the presence
of an external magnetic field. The magnetic structure of the investigated model system is schematically
illustrated in figure 1. As one can see, the primitive cell in the shape of diamond spin cluster involves
two nodal Ising spins 𝑆𝑘 and 𝑆𝑘+1 along with two interstitial Heisenberg spins 𝜎𝑘,1 and 𝜎𝑘,2. The total
Hamiltonian for the spin-1/2 Ising-Heisenberg distorted diamond chain in the presence of an external
magnetic field, which contains 𝑁 primitive cells, reads

Ĥ =

𝑁∑︁
𝑘=1

[
𝑆𝑘

(
𝐼1�̂�

𝑧
𝑘,1 + 𝐼2�̂�

𝑧
𝑘,2

)
+ 𝑆𝑘+1

(
𝐼2�̂�

𝑧
𝑘,1 + 𝐼1�̂�

𝑧
𝑘,2

)]
+

𝑁∑︁
𝑘=1

(
𝐽1�̂�

𝑥
𝑘,1�̂�

𝑥
𝑘,2 + 𝐽2�̂�

𝑦

𝑘,1�̂�
𝑦

𝑘,2 + 𝐽3�̂�
𝑧
𝑘,1�̂�

𝑧
𝑘,2

)
−

𝑁∑︁
𝑘=1

ℎ

(
𝑆𝑘 + �̂�𝑧

𝑘,1 + �̂�𝑧
𝑘,2

)
, (2.1)

which involves the nodal Ising spins 𝑆𝑘 = ±1/2 and the interstitial Heisenberg spins 𝜎𝑘,𝑖 = 1/2 (𝑖 = 1, 2)
by assuming the periodic boundary conditions. The interaction constants 𝐼1 and 𝐼2 label the nearest-
neighbor interactions between the nodal Ising spins and interstitial Heisenberg spins along the sides of
the primitive diamond cell, while the coupling constants 𝐽1, 𝐽2 and 𝐽3 determine the spatially anisotropic
XYZ interaction between the nearest-neighbor interstitial Heisenberg spins from the same primitive cell.
Finally, the Zeeman’s term ℎ determines the magnetostatic energy of the nodal Ising spins and interstitial
Heisenberg spins in the external magnetic field. It should be mentioned that a particular case 𝐼2 = 0 (or
𝐼1 = 0) of the Hamiltonian (2.1) corresponds to the spin-1/2 Ising-Heisenberg doubly decorated chain.

For further manipulations, it is convenient to rewrite the total Hamiltonian (2.1) as a sum over the
cell Hamiltonians

Ĥ =

𝑁∑︁
𝑘=1

Ĥ𝑘 ,
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Figure 1. A fragment from the spin-1/2 Ising-Heisenberg distorted diamond chain. The nodal (𝑆𝑘 , 𝑆𝑘+1)
Ising spins and interstitial (𝜎𝑘,1, 𝜎𝑘,2) Heisenberg spins belonging to the 𝑘th primitive cell are shown.

whereas the cell Hamiltonian Ĥ𝑘 involves all the interaction terms of the 𝑘th diamond cell

Ĥ𝑘 = 𝐽1�̂�
𝑥
𝑘,1�̂�

𝑥
𝑘,2 + 𝐽2�̂�

𝑦

𝑘,1�̂�
𝑦

𝑘,2 + 𝐽3�̂�
𝑧
𝑘,1�̂�

𝑧
𝑘,2 + 𝐼1

(
𝑆𝑘�̂�

𝑧
𝑘,1 + �̂�𝑧

𝑘,2𝑆𝑘+1

)
+ 𝐼2

(
𝑆𝑘�̂�

𝑧
𝑘,2 + �̂�𝑧

𝑘,1𝑆𝑘+1

)
− ℎ

(
�̂�𝑧
𝑘,1 + �̂�𝑧

𝑘,2

)
− ℎ

2
(𝑆𝑘 + 𝑆𝑘+1) .

Since the cell Hamiltonians Ĥ𝑘 commute between themselves,
[
Ĥ𝑘 , Ĥ𝑛

]
= 0, the partition function of

the spin-1/2 Ising-Heisenberg diamond chain can be written in such a form:

Z ≡ Tr exp
(
−𝛽Ĥ

)
=

∑︁
{𝑆𝑘 }

𝑁∏
𝑘=1

Z𝑘 (𝑆𝑘 , 𝑆𝑘+1), (2.2)

where 𝛽 = 1/(𝑘B𝑇), and 𝑘B is the Boltzmann’s constant and 𝑇 is the absolute temperature, the symbol∑
{𝑆𝑘 }

denotes the summation over all possible spin configurations of the nodal Ising spins and

Z𝑘 (𝑆𝑘 , 𝑆𝑘+1) = Tr{𝜎𝑘,1 , 𝜎𝑘,2 } exp
(
−𝛽Ĥ𝑘

)
(2.3)

is the effective Boltzmann’s factor obtained after tracing out the spin degrees of freedom of two Heisenberg
spins from the 𝑘-th primitive cell. To proceed further with the calculation, one necessarily needs to
evaluate the effective Boltzmann’s factor Z𝑘 (𝑆𝑘 , 𝑆𝑘+1) given by equation (2.3). For this purpose, let us
pass to the matrix representation of the cell Hamiltonian Ĥ𝑘 in the basis spanned over four available
states of two Heisenberg spins 𝜎𝑧

𝑘,1 and 𝜎𝑧
𝑘,2:

| ↑, ↑⟩𝑘 = |↑⟩𝑘,1 |↑⟩𝑘,2 , | ↓, ↓⟩𝑘 = |↓⟩𝑘,1 |↓⟩𝑘,2 , | ↑, ↓⟩𝑘 = |↑⟩𝑘,1 |↓⟩𝑘,2 , | ↓, ↑⟩𝑘 = |↓⟩𝑘,1 |↑⟩𝑘,2 , (2.4)

whereas |↑⟩𝑘,𝑖 and |↓⟩𝑘,𝑖 denote two eigenvectors of the spin operator �̂�𝑧
𝑘,𝑖

with the respective eigenvalues
𝜎𝑧
𝑘,𝑖

= 1/2 and −1/2. After a straightforward diagonalization of the cell Hamiltonian Ĥ𝑘 , one obtains
the following four eigenvalues:

E𝑘 1,2(𝑆𝑘 , 𝑆𝑘+1) = ±

√︄
(𝐽1 − 𝐽2)2

16
+
[
𝐼1 + 𝐼2

2
(𝑆𝑘 + 𝑆𝑘+1) − ℎ

]2
+ 𝐽3

4
− ℎ

2
(𝑆𝑘 + 𝑆𝑘+1) ,

E𝑘 3,4(𝑆𝑘 , 𝑆𝑘+1) = ±

√︄
(𝐽1 + 𝐽2)2

16
+ (𝐼1 − 𝐼2)2

4
(𝑆𝑘 − 𝑆𝑘+1)2 − 𝐽3

4
− ℎ

2
(𝑆𝑘 + 𝑆𝑘+1) . (2.5)
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Now, one may simply use the eigenvalues (2.5) in order to calculate the Boltzmann’s factor (2.3):

Z𝑘 (𝑆𝑘 , 𝑆𝑘+1) = 2 exp
[
𝛽ℎ

2
(𝑆𝑘 + 𝑆𝑘+1)

]
×

exp
(
𝛽𝐽3
4

)
cosh ©«𝛽

√︄
(𝐽1+𝐽2)2

16
+ (𝐼1−𝐼2)2

4
(𝑆𝑘−𝑆𝑘+1)2ª®¬

+ exp
(
− 𝛽𝐽3

4

)
cosh ©«𝛽

√︄
(𝐽1−𝐽2)2

16
+
[
𝐼1+𝐼2

2
(𝑆𝑘+𝑆𝑘+1) −ℎ

]2ª®¬
 . (2.6)

The Boltzmann’s factor (2.6) can be subsequently replaced through the generalized decoration-
iteration transformation [2–5] similarly to what was done before [24, 27]. Since this Boltzmann’s factor
is essentially a transfer matrix [see, equation (2.2)], we can directly use the transfer-matrix method [6, 7].
For convenience we define the elements 𝑉𝑖 𝑗 of the transfer matrix V as follows:

𝑉𝑖 𝑗 ≡ Z𝑘

(
𝑆𝑘 = 𝑖 − 3

2
, 𝑆𝑘+1 = 𝑗 − 3

2

)
. (2.7)

The calculation of the partition function requires finding the eigenvalues of the transfer matrix

V =

(
𝑉11 𝑉12
𝑉21 𝑉22

)
.

The eigenvalues of this matrix are given by the roots of the quadratic characteristic equation. The
expressions for the two transfer-matrix eigenvalues are as follows:

_𝑖 =
1
2

(
𝑉11 +𝑉22 − (−1)𝑖

√︃
(𝑉11 −𝑉22)2 + 4𝑉2

12

)
, 𝑖 = 1, 2. (2.8)

As a result, the partition function Z given by equation (2.2) is determined by the transfer-matrix
eigenvalues _1 and _2:

Z = Tr V𝑁 = _𝑁
1 + _𝑁

2 . (2.9)

Exact results for other thermodynamic quantities follow quite straightforwardly from the formula (2.9)
for the partition function Z. In the thermodynamic limit 𝑁 → ∞, the free energy per unit cell can be
easily obtained:

𝑔 = − 1
𝛽

lim
𝑁→∞

1
𝑁

lnZ = − 1
𝛽

ln_1,

where _1 is the largest transfer-matrix eigenvalue.
The entropy 𝑠 and the specific heat 𝑐 per unit cell can be subsequently calculated from the formulae

𝑠 = 𝑘B𝛽
2 𝜕𝑔

𝜕𝛽
= 𝑘B

(
ln_1 −

𝛽

_1

𝜕_1
𝜕𝛽

)
,

𝑐 = −𝛽 𝜕𝑠
𝜕𝛽

= 𝑘B𝛽
2

[
1
_1

𝜕2_1

𝜕𝛽2 − 1
_2

1

(
𝜕_1
𝜕𝛽

)2
]
,

whereas the total magnetization 𝑚 and magnetic susceptibility 𝜒 readily follow from the relations

𝑚 = − 𝜕𝑔

𝜕ℎ
=

1
𝛽_1

𝜕_1
𝜕ℎ

,

𝜒 =
𝜕𝑚

𝜕ℎ
=

1
𝛽

[
1
_1

𝜕2_1

𝜕ℎ2 − 1
_2

1

(
𝜕_1
𝜕ℎ

)2
]
.

The derivatives 𝜕_1
𝜕𝛽

, 𝜕2_1
𝜕𝛽2 , 𝜕_1

𝜕ℎ
, 𝜕2_1

𝜕ℎ2 follow straightforwardly from formula (2.8).
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3. Results and discussions

Now, let us proceed to the discussion of the most interesting results obtained for the spin-1/2 Ising-
Heisenberg distorted diamond chain with the antiferromagnetic Ising interactions, 𝐼1 > 0 and 𝐼2 > 0,
and ferromagnetic XXZ Heisenberg interaction: 𝐽3 = 𝐽 < 0, 𝐽1 = 𝐽2 = 𝐽Δ, where Δ determines the
anisotropy of XXZ Heisenberg interaction. Without loss of generality, we may also assume that one of the
two considered Ising couplings is stronger than the other 𝐼1 ⩾ 𝐼2 and introduce the difference between
both Ising coupling constants 𝛿 = 𝐼1 − 𝐼2 ⩾ 0. To reduce the number of free parameters, we define the
following set of dimensionless interaction parameters

𝐽 =
𝐽

𝐼1
, Δ, ℎ̃ =

ℎ

𝐼1
, 𝛿 =

𝛿

𝐼1
.

The parameter 𝛿 restricted to the interval 𝛿 ∈ [0, 1] has a physical sense of the distortion parameter,
because it determines a relative difference between two Ising coupling constants 𝐼1 and 𝐼2.

The ground state of the spin-1/2 Ising-Heisenberg distorted diamond chain can be trivially connected
to the lowest-energy eigenstate of the cell Hamiltonian (2.5). Depending on a mutual competition between
the parameters Δ, 𝐽, 𝛿 and ℎ̃, in total one finds four different ground states: the fully magnetized (FM)
state, the ferrimagnetic (FRI) state, the monomer-dimer (MD1) state, and the quantum antiferromagnetic
(QAF1) state given by the eigenvectors

|FM⟩ =

𝑁∏
𝑘=1

|+⟩𝑘 ⊗ |↑, ↑⟩𝑘 ,

|FRI⟩ =

𝑁∏
𝑘=1

|−⟩𝑘 ⊗ |↑, ↑⟩𝑘 ,

|MD1⟩ =

𝑁∏
𝑘=1

|+⟩𝑘 ⊗
1
√

2

(
| ↑, ↓⟩𝑘 + |↓, ↑⟩𝑘

)
,

|QAF1⟩ =


𝑁∏
𝑘=1

��[−]𝑘〉
𝑘
⊗
(
𝐴[−]𝑘+1 | ↑, ↓⟩𝑘 + 𝐴[−]𝑘 | ↓, ↑⟩𝑘

)
𝑁∏
𝑘=1

��[−]𝑘+1〉
𝑘
⊗
(
𝐴[−]𝑘 | ↑, ↓⟩𝑘 + 𝐴[−]𝑘+1 | ↓, ↑⟩𝑘

) . (3.1)

In the above, the ket vector |±⟩𝑘 determines the state of the nodal Ising spin 𝑆𝑘 = ±1/2, the symbol
[−]𝑘 ∈ {−, +} denotes the sign of the number (−1)𝑘 , the spin states relevant to two Heisenberg spins from
the 𝑘th primitive cell are defined by the notation (2.4), and the probability amplitudes 𝐴± are explicitly
given by the expressions

𝐴± =
1
√

2

√√√√
1 ± 𝛿√︃(

𝐽Δ
)2 + 𝛿2

.

The eigenenergies per unit cell that correspond to the respective ground states (3.1) are given as follows:

ẼFM =
𝐽

4
+ 1 − 𝛿

2
− 3ℎ̃

2
,

ẼFRI =
𝐽

4
− 1 + 𝛿

2
− ℎ̃

2
,

ẼMD1 = − 𝐽

4
+ 1

2
𝐽Δ − ℎ̃

2
,

ẼQAF1 = − 𝐽

4
− 1

2

√︃(
𝐽Δ

)2 + 𝛿2. (3.2)
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The ground-state phase diagram in the 𝛿 − ℎ̃ plane can have four different topologies depending
on the parameters J = |𝐽 | (Δ − 1) and Δ (see, figure 2). It should be noted for further analysis that
the parameter J must agree with the parameter Δ, namely, the value Δ = 1 corresponds to the value
J = 0, the condition Δ < 1 (Δ > 1) corresponds to the condition J < 0 (J > 0). The first type of the
ground-state phase diagram (figure 2a) is found for J ⩽ 2/(1 + Δ). According to this condition, in the
case of 0 ⩽ Δ ⩽ 1, only the first type of the ground-state phase diagram is realized. It includes only two
ground states FM and FRI. The second type of the ground-state phase diagram (figure 2b) is realized for
2/(1 + Δ) < J ⩽ 1 and it involves three ground states: FM, FRI, and QAF1. In the zero field, the FRI
and QAF1 states are separated by the point

𝛿 = 𝛿F·Q1 ≡ 2 − J
2

(
1 + JΔ

2(Δ − 1) + J

)
.

The third type of the ground-state phase diagram (figure 2c) involving all four available ground states FM,
FRI, QAF1, and MD1 can be detected for 1 < J < 2. The FRI and MD1 ground states are separated by
the phase boundary 𝛿 = 𝛿F |M1 ≡ 2 − J . It is easy to show that 𝛿F·Q1 ⩽ 𝛿F |M1. In the regime of fixedly J
the parameter 𝛿F·Q1 is restricted to the interval

(
1 − J 2/4, 2 − J

)
as the exchange anisotropy varies from

Δ → ∞ to Δ → 1. The fourth type of the ground-state phase diagram (figure 2d) emerges for J ⩾ 2 and
it includes three ground states: FM, MD1, and QAF1. The phase boundary between the QAF1 and MD1
states starts from the special point (0, 0), which corresponds to the highly frustrated (FRU1) ground state

|FRU1⟩ =
𝑁∏
𝑘=1

(
|+⟩𝑘 or |−⟩𝑘

)
⊗ 1

√
2

(
| ↑, ↓⟩𝑘 + | ↓, ↑⟩𝑘

)
,

for J > 2. And if J = 2, then the two ground states FRU1 and FRI coexist together at the point (0, 0).
The FRU1 ground state has the residual entropy 𝑠res = 𝑘B ln 2 reflecting the macroscopic degeneracy 2𝑁 ,
which comes from spin degrees of freedom of the nodal Ising spins.

The topologies of the ground-state phase diagram b, c, d (see, figure 2) are identical to the topologies
of the phase diagrams of the ground state of the first, second, and third type of the corresponding
antiferromagnetic chain in [27]. At the same time, the ground states have some differences: in the
MD1 state, the spins on the Heisenberg bond are in the triplet state, and in the corresponding state
of the antiferromagnetic chain, they are in the singlet state [27]. In the QAF1 state, the spins on the
Heisenberg bond are in a symmetric superposition of quasiclassical antiferromagnetic states, and in
the corresponding state of the antiferromagnetic chain, they are in an antisymmetric superposition
of quasiclassical antiferromagnetic states [27]. We see that under the condition 2/(1 + Δ) < J , the
properties of the ground state of our antiferromagnetic-ferromagnetic chain without geometric frustration
are analogous to the properties of the ground state of the corresponding antiferromagnetic chain with
geometric frustration. Based on this, it can be concluded that in this chain, under the condition 2/(1+Δ) <
J , an effective geometric frustration appears. Under the condition J > 1, the topology of the ground-
state phase diagrams in the plane 𝛿− ℎ̃ (phase diagrams c and d in figure 2) defines only the J parameter,
which under this condition has the meaning of the topology parameter. The topology parameter J
determines the type of phase diagram of our chain similarly to the topology parameter |𝐽 | (Δ + 1) in the
corresponding antiferromagnetic chain [27]. This means that under the condition J > 1, the effective
geometric frustration most fully reproduces the manifestations of the usual geometric frustration in
the properties of ground state of the spin-1/2 Ising-Heisenberg distorted diamond chain. The effective
geometric frustration in our antiferromagnetic-ferromagnetic chain arises due to quantum fluctuations.
It happens as follows: if the XX-interaction (quantum fluctuations) is stronger than the ZZ-interaction
on the Heisenberg ferromagnetic XXZ bond, the pair of spins of this bond has the lowest energy in the
quantum state, which is a symmetric superposition of quasi-classical antiferromagnetic states | ↑, ↓⟩ and
| ↓, ↑⟩ according to (2.4).

The general form of the ground-state phase diagram can be obtained in the J − ℎ̃ plane (figure 3).
Under this circumstance, the boundary-phase point between the FRI and QAF1 ground states at zero field
is given by

JF·Q1 =
1

Δ + 1

(
1 + 𝐼2 +

√︃(
1 − 𝐼2

)2 + 4𝐼2Δ2
)
,
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Figure 2. The ground-state phase diagram in the 𝛿 − ℎ̃ plane for a few typical values of the ferromagnetic
Heisenberg coupling constant (𝐽 < 0, Δ), which are consistent with four different topologies depending
on the value of the parameters J and Δ: (a) J ⩽ 2/(1 +Δ); (b) J = 1.0; (c) J = 1.5; (d) J = 2.0. The
symbols ▼ shown in figure 2b and figure 2c allocate limiting Δ → ∞ position of the point, at which the
ground states FRI and QAF1 coexist at zero field.

where 𝐼2 = 𝐼2/𝐼1. It should be noticed that the FRU1 ground state does exist in the relevant ground-state
phase diagram along the line given by ℎ̃ = 0 and J > 2 if the complete symmetry 𝐼2 = 1 is recovered
due to the absence of the QAF1 ground state.

Next, let us examine the thermodynamic characteristics as a function of the temperature, the magnetic
fields, and the distortion parameter. To illustrate all possible scenarios, we have selected the values of the
Heisenberg coupling constants 𝐽 and Δ in regime J = const in order to fall into the parameter region
pertinent to the ground-state phase diagrams shown in figure 2c involving all available ground states.

The behavior of the magnetization depending on the field for different temperatures and on the
temperature for different fields is identical to the behavior of the magnetization of the corresponding
antiferromagnetic chain, which was discussed in detail in [27]. In particular, the field dependence of
magnetization 𝑚/𝑚s at zero temperature, where 𝑚s = 3/2 is the saturation magnetization, can have a
zero plateau 𝑚/𝑚s = 0 corresponding to the QAF1 ground state, an intermediate plateau 𝑚/𝑚s = 1/3
corresponding to the FRI ground state or the MD1 ground state, and the saturation plateau 𝑚/𝑚s = 1
corresponding to the FM ground state. The temperature curve of magnetization in the region of medium
and high temperatures shifts upwards with the strengthening of quantum fluctuations.

The magnetic susceptibility multiplied by the temperature (𝜒𝑘B𝑇) as a function of the temperature
in the zero field also behaves similarly to the corresponding antiferromagnetic chain [27]. In particular,
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Figure 3. The ground-state phase diagram in the J− ℎ̃ plane, general schematic version, which is obtained
at Δ = 5 and 𝐼2 = 0.5. The mathematical formulae for the ground-state phase boundaries are explicitly
quoted along the relevant lines. In addition to this, the phase boundary between the FRI and QAF1 ground
states is ℎ̃ =

√︁
J2Δ2/(Δ − 1)2 + (1 − 𝐼2)2 − J/(Δ − 1) − 1 − 𝐼2, and the phase boundary between the

MD1 and QAF1 ground states is ℎ̃ =
√︁
J2Δ2/(Δ − 1)2 + (1 − 𝐼2)2 − JΔ/(Δ − 1). The dashed lines

correspond to the symmetric case of the Ising interaction 𝐼2 = 1, in which the QAF1 ground state is
absent.

as the temperature tends to zero, the quantity 𝜒𝑘B𝑇 can either exponentially diverge as in quantum
ferrimagnetics [40], if 𝛿 corresponds to the FRI ground state, or exponentially tends to zero, if 𝛿

corresponds to the QAF1 ground state, or takes the value of 1/4, if 𝛿 is at the point of coexistence of the
states FRI and QAF1. The high-temperature dependence of 𝜒𝑘B𝑇 shifts to a higher susceptibility with
the strengthening of quantum fluctuations.

Let us consider the temperature dependence of the zero-field specific heat in the case of a strong
Heisenberg ferromagnetic interaction 𝐽 = −5 and Δ = 1.3 (J = 1.5), which is presented in figure 4
for different values of the distortion parameter 𝛿. In order to understand a variation of the temperature
dependence of the zero-field specific heat when the parameters of the Heisenberg ferromagnetic inter-
action are changed, we also show the results for the case, when the Heisenberg interaction in the same
regime (J = 1.5) is much weaker, namely 𝐽 = −0.5, Δ = 4 (figure 4). As we can see in figure 4, the
heat capacity temperature curve has the main round maximum, which is located in the region of average
temperatures (around 𝑘B𝑇/𝐼1 = 0.4), and can have one or two additional low-temperature peaks. This
profile of the heat capacity temperature curve in the zero field is analogous to the typical profile of the
heat capacity temperature curve in the corresponding antiferromagnetic chain [27]. Note that when the
Heisenberg interaction is strong, then at very small distortions 𝛿 � 0, the heat capacity can have only one
maximum (the main and additional maxima merge) for the entire range of low and medium temperatures
[see the curve for 𝛿 = 0 in figure 4(a)]. An interesting feature of the heat capacity temperature curve in
the case of a strong Heisenberg interaction is an additional broad maximum in the region of very high
temperatures (somewhat above 𝑘B𝑇/𝐼1 = 2), which exists for the entire range of values of the distortion
parameter 𝛿 (figure 4). The height of this maximum slightly decreases due to the growth of the distortion
parameter 𝛿. Analysis of the structure of the energy spectrum of the cell Hamiltonian (2.5) showed that
the strong Heisenberg ferromagnetic interaction significantly distances the group of nearby highest en-
ergies E𝑘 3(±,±) from the rest of the energies. Based on this, we can conclude that the high-temperature
additional maximum is formed by the high-energy excitations of cell spins to the states with the energies
E𝑘 3(±,±). It should be noted that in the temperature dependence of the zero-field specific heat of the
corresponding antiferromagnetic chain, no additional high-temperature maximum was found [27], and
the temperature curve of the heat capacity of the Ising-Hubbard distorted diamond chain in the case of
geometric frustration has a similar additional maximum [41].
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Let us consider more in detail the transformation of the temperature dependent heat capacity under the
influence of the distortion parameter 𝛿, which varies in the range of possible values [0, 1]. If the distortion
parameter increases in the region [0, 𝛿F·Q1), then the main maximum of the heat capacity loses its height
and shifts to higher temperatures, and the additional low-temperature peak shifts to lower temperatures.
When the parameter 𝛿 falls into a certain small neighborhood of the point 𝛿F·Q1, then the additional
low-temperature peak splits into two maxima [see the inset in figure 4(a)]. Upon further convergence of
the parameter 𝛿 with the point 𝛿F·Q1, the left-hand low-temperature peak moves to zero temperature and
disappears at 𝛿 = 𝛿F·Q1. When the parameter 𝛿 is above the point 𝛿F·Q1, the left-hand low-temperature
peak appears again near the zero temperature. As the distortion increases, the left-hand low-temperature
peak moves toward higher temperatures and merges with the right-hand low-temperature maximum [see
inset on the figure 4(b)]. Therefore, the left-hand low-temperature peak is formed by thermal excitations
between the FRI and QAF1 states. And the right-hand low-temperature peak is formed by thermal
excitations between the FRI and MD1 states and between the QAF1 and MD1 states. With further growth
of the 𝛿 parameter, the low-temperature peak moves toward higher temperatures, and the main maximum
increases its height and moves toward lower temperatures. It should also be noted that the growing
distortion in the region (𝛿F·Q1, 1] shifts the heat capacity curve upwards on the temperature segment
near the main maximum, but at higher temperatures, this effect is opposite, that is in the region of high
temperatures, the growing distortion parameter shifts the heat capacity curve down.

In the case of a strong Heisenberg ferromagnetic interaction given by the parameters 𝐽 = −5 and
Δ = 1.3, we discovered another splitting of the low-temperature peak of the zero-field specific heat [see
figure 4(b)], which occurs when the parameter 𝛿 changes in the range of values (0.6, 0.84), which is
far from the point 𝛿F·Q1. After the splitting of the low-temperature peak, as the distortion increases, the
right-hand low-temperature maximum approaches the main maximum and merges with it at 𝛿 = 0.84. By
analyzing the dependence of the energies of the QAF1, FRI, and MD1 states on the distortion parameter
and Heisenberg interaction parameters, it can be established that the left-hand low-temperature peak is
formed by thermal excitations between the QAF1 and MD1 states, and the right-hand low-temperature
maximum is formed by thermal excitations between the QAF1 and FRI states and between the MD1 and
FRI states. It should be noted that this splitting of the low-temperature peak of the heat capacity occurs
with a strong Heisenberg interaction, which ensures the necessary proximity of the energies of the QAF1
and MD1 states, and a rather strong distortion, which ensures the necessary distance between the energy
of the FRI state and the energy of the ground state QAF1. A weak Heisenberg interaction, for example
𝐽 = −0.5, Δ = 4 (J = 1.5), does not give such a splitting of the low-temperature maximum [figure 4(b)].

Last but not least, let us examine the temperature variations of the specific heat in the presence
of non-zero external magnetic field. In particular, we study the effect of a weak magnetic field on the
temperature dependence of the heat capacity for a distortion very close to the point 𝛿F·Q1, at which the
temperature curve of the zero-field heat capacity has four maxima. For this purpose, we consider the
effect of a weak magnetic field on the temperature dependence of heat capacity in two cases: in the
first case we start from the point (0, 𝛿F·Q1+0.001) in the region of the ground state QAF1 [figure 2(c)],
and in the second case we start from the point (0, 𝛿F·Q1−0.001) in the region of the FRI ground state
[figure 2(c)]. In the first case (see figure 5), the additional low-temperature heat capacity maximum,
which is formed by thermal excitations between the FRI and QAF1 states, splits when the magnetic
field increases [figure 5(a)] and the temperature dependence of the heat capacity has five maxima. After
splitting, the left-hand peak shifts to lower temperatures and disappears when the value of the magnetic
field corresponds to the point on the line of coexistence of the QAF1 and FRI states [figure 2(c)]. As soon
as the point ( ℎ̃, 𝛿F·Q1+0.001) moves into the FRI state region [figure 2(c)], an additional peak occurs
near zero temperature [figure 5(b)]. With further strengthening of the magnetic field, this peak shifts
toward higher temperatures and merges with the neighboring maximum [figure 5(b)]. The maximum
formed as a result of the merger continues to shift toward higher temperatures as the magnetic field
increases and merges with the neighboring maximum at ℎ̃ ⩾ 0.004 [figure 5(b)]. In the second case
(figure 6), the additional low-temperature heat capacity maximum does not split in a weak magnetic field.
It only deforms and shifts towards higher temperatures when the magnetic field increases. At the value
of the magnetic field ℎ̃ = 0.002, the additional low-temperature heat capacity maximum merges with the
neighboring maximum (figure 6). In order to understand the mechanism of influence of a weak magnetic
field on the temperature dependence of heat capacity in the case when the distortion is very close to the
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Figure 4. The temperature dependencies of the zero-field specific heat for the ferromagnetic Heisenberg
interaction 𝐽 = −5, Δ = 1.3 (J = 1.5) and several values of the distortion parameter 𝛿: (a) 𝛿 ⩽ 𝛿F·Q1 =

27/56 ≈ 0.4821; (b) 𝛿 ⩾ 𝛿F·Q1. The dotted lines correspond to another particular case 𝐽 = −0.5, Δ = 4
(J = 1.5), which serve in evidence of the role of quantum fluctuations in the J -constant regime. The
insets show, in an enlargened scale, two low-temperature peaks emerging close to the phase boundary
between the FRI and QAF1 ground states.

point 𝛿F·Q1, consider the influence of a weak magnetic field on the energy of the FRI state (the energy of
the QAF1 state does not depend on the magnetic field). In a zero magnetic field, the ferrimagnetic state

FRI has the same energy as the ferrimagnetic state |FRI1⟩ =
𝑁∏
𝑘=1

|+⟩𝑘 ⊗ | ↓, ↓⟩𝑘 , and in a weak magnetic

field, the energies of the FRI and FRI1 states are different. As a result of splitting, the energy of the
ferrimagnetic states FRI and FRI1 by a very weak magnetic field, the low-temperature maximum, which
in a zero magnetic field is formed by thermal excitations between the states FRI and QAF1, can split
under certain conditions. In the first case (figure 5), the low-temperature maximum splits since a very
weak magnetic field changes the QAF1 ground state to the FRI ground state [figure 2(c)]. In the second
case (figure 6), the low-temperature maximum does not split, because a very weak magnetic field does
not change the FRI ground state [figure 2(c)].
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Figure 5.The semi-logarithmic plot of temperature dependencies of the specific heat for the ferromagnetic
Heisenberg interaction 𝐽 = −5, Δ = 1.3 (J = 1.5), the distortion parameter 𝛿 = 𝛿F·Q1 + 0.001 ≈ 0.4831,
and some selected values of the magnetic field ℎ̃ within the interval [0, 0.004]: (a) ℎ̃ ∈ [0, 0.00107] and
(b) ℎ̃ ∈ [0.00107, 0.004].
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Figure 6.The semi-logarithmic plot of temperature dependencies of the specific heat for the ferromagnetic
Heisenberg interaction 𝐽 = −5, Δ = 1.3 (J = 1.5), the distortion parameter 𝛿 = 𝛿F·Q1 − 0.001 ≈ 0.4811,
and some selected values of the magnetic field ℎ̃ within interval [0, 0.002].

4. Conclusions

We have rigorously examined the ground state and thermodynamics of the spin-1/2 Ising-Heisenberg
distorted diamond chain within the transfer-matrix method. Our attention was focused on how the distor-
tion and ferromagnetic XXZ Heisenberg interaction affects the magnetization process and specific heat
of the spin-1/2 Ising-Heisenberg distorted diamond chain with the antiferromagnetic Ising interactions
and the ferromagnetic XXZ Heisenberg interaction. In this case, there is no geometric spin frustration
in the given chain. We show that quantum fluctuations on a Heisenberg ferromagnetic bond create an
effective geometrical spin frustration when a pair of spins of this bond is in an energetically favor-
able quantum antiferromagnetic state. Then, the ground state and thermodynamic characteristics of our
antiferromagnetic-ferromagnetic chain have the features similar to the corresponding antiferromagnetic
chain with geometric spin frustration [27].
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The ground-state phase diagram of the spin-1/2 Ising-Heisenberg distorted diamond chain with the
antiferromagnetic Ising interactions and ferromagnetic Heisenberg interaction totally consists of four
different ground states: the fully magnetized state FM, the ferrimagnetic state FRI, the monomer-dimer
state MD1, and the quantum antiferromagnetic state QAF1. The quantum ground states MD1 and
QAF1 emerging for the ferromagnetic Heisenberg interaction differ from the analogous quantum ground
states emerging for the antiferromagnetic Heisenberg interaction just by antisymmetric and symmetric
quantum superposition of two antiferromagnetic states of the Heisenberg spin pairs, respectively. The
ground-state phase diagram in the distortion parameter — magnetic field plane can have four different
topologies depending on the ferromagnetic Heisenberg coupling parameters. The second, third and fourth
topologies of this ground-state phase diagram, which are realized under the condition 2/(1+Δ) < J , are
the same as the three topologies of the ground-state phase diagram of the antiferromagnetic chain [27].
The third and fourth topologies of the ground-state phase diagram, which are realized under the condition
1 < J , are defined by the topology parameter J , which is analogous to the topology parameter in the
antiferromagnetic chain [27]. Therefore, under the condition 2/(1 + Δ) < J , an effective geometric
frustration occurs in our antiferromagnetic-ferromagnetic chain, which is most fully manifested in the
properties of the ground state under the condition 1 < J .

The effective geometrical spin frustration affects the magnetization, magnetic susceptibility, and heat
capacity of an antiferromagnetic-ferromagnetic chain similarly to the geometrical spin frustration in an
antiferromagnetic chain [27]. In particular, the magnetization curve of the spin-1/2 Ising-Heisenberg
distorted diamond chain may involve at most two different intermediate plateaus at zero and 1/3 of
the saturation magnetization. The distortion parameter is responsible for a rich variety of temperature
dependencies of the specific heat, which may display one or two low-temperature peaks in addition
to the main round maximum observable at medium temperatures. The strong Heisenberg interaction is
responsible for an additional broad maximum in the temperature dependence of heat capacity in the region
of very high temperatures. The combination of strong Heisenberg interaction and significant distortion
can split the peak in the low-temperature heat capacity. If the distortion parameter is quite close to the
right of the point 𝛿F·Q1, then a very weak magnetic field can split the low-temperature maximum of the
heat capacity and then the temperature dependence of the heat capacity has five maxima. The physical
origin of all observed low-temperature and hight-temperature peaks of the specific-heat has been clarified
on the grounds of relevant thermal excitations.

It is worthwhile to remark that the investigated spin system reduces to the spin-1/2 Ising-Heisenberg
doubly decorated chain in the particular case 𝐼2 = 0 (𝛿 = 1) and the symmetric spin-1/2 Ising-Heisenberg
diamond chain in the other particular case 𝐼1 = 𝐼2 (𝛿 = 0).
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B. M. Lisnyi

Спiн-1/2 ромбiчноподiбний ланцюжок Iзiнга-Гайзенберга з
антиферомагнiтними взаємодiями Iзiнга i феромагнiтною
взаємодiєю Гайзенберга

Б. М. Лiсний
Iнститут фiзики конденсованих систем Нацiональної академiї наук України, вул. Свєнцiцького, 1, 79011,
Львiв, Україна

Точно розв’язуваний спiн-1/2 ромбiчноподiбний ланцюжок Iзiнга-Гайзенберга у зовнiшньому магнiтному
полi дослiджено у випадку антиферомагнiтної взаємодiї Iзiнга i феромагнiтної XXZ взаємодiї Гайзенберга.
Детально вивчено вплив квантових флуктуацiй i дисторсiї (асиметрiї) на основний стан, магнiтнi та тепло-
вi властивостi моделi. Зокрема, встановлено, що крива намагнiчування при нульовiй температурi може
мати промiжнi плато при нульовiй намагнiченостi та при 1/3 намагнiченостi насичення. Показано, що
температурна залежнiсть питомої теплоємностi може мати чотири максимуми при нульовому магнiтно-
му полi та п’ять максимумiв при слабкому магнiтному полi. Фiзичне походження всiх спостережуваних
додаткових пiкiв питомої теплоємностi було з’ясовано на основi домiнуючих теплових збуджень. Ми по-
казали, що квантовi флуктуацiї породжують ефективну геометричну фрустрацiю в цьому ланцюжку.

Ключовi слова: ромбiчноподiбний ланцюжок Iзiнга-Гайзенберга, основний стан, фазова дiаграма,
питома теплоємнiсть
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