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The magnetic properties and hysteresis loops for the hexagonal Ising nanowire (HIN) with a core–shell structure
consisting of mixed spins with the core spin being spin-5/2 and the shell spins being spin-3/2 are studied. The
Blume–Capel model is considered by using the mean-field approximation (MFA) based on the Gibbs–Bogoliubov
inequality for free energy. The impact of different bilinear interaction parameters (𝐽𝑐𝑐 , 𝐽𝑠𝑠 , 𝐽𝑐𝑠 ) between the
core, shell, and core and shell spins, respectively, including the crystal (𝐷𝑐 , 𝐷𝑠 ) and external magnetic fields
(ℎ = ℎ𝑐 = ℎ𝑠 ) at the core and shell sites, are taken into consideration. In order to obtain phase diagrams on
various planes, the thermal changes of the net, core, and shell magnetizations are investigated for various values
of our system parameters. It is discovered that the model exhibits only second-order phase transitions when
ℎ = 0.0 for 𝐷 greater or equal to zero, first- and second-order phase transitions for ℎ ≠ 0.0 and compensation
temperatures for all ℎ.

Key words: mean field theory, Blume–Capel model, hysteresis loops, compensation temperature,
magnetization, mixed-spin system

1. Introduction

It is well known that as the considered spins get higher, the magnetic behaviors of the materials
become richer, displaying various critical phenomena. Furthermore, their mixtures induce extra critical
behaviors, such as the compensation temperature at which net magnetization becomes zero before the
critical temperatures. Therefore, they have been investigated under various circumstances, following a
variety of approaches.

A mixture of high spins with spin-3/2 and spin-5/2 displaying interesting critical features was con-
sidered in some works. The phase diagrams and internal energies of the ferrimagnetic Ising system with
interlayer coupling were studied by the effective field theory (EFT) with correlations [1]. In order to study
the critical behaviors of the Blume–Capel (BC) Ising ferrimagnetic system, the exact recursion relations
were considered on the Bethe lattice with various coordination numbers [2]. The exact recursion rela-
tions were applied to study the magnetic properties of the BC Ising ferromagnetic system on the two-fold
Cayley tree that consists of two sublattices A and B [3]. The magnetic properties of a mixed spin-3/2 and
spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromagnetic system with different anisotropies were
studied by means of mean-field theory (MFT) and the dependence of the phase diagram on single-ion
anisotropy strengths was examined [4]. The dynamic phase transitions and compensation temperatures
were examined within the MFA for the Ising system with a crystal field interaction under a time-varying
magnetic field on a hexagonal lattice by using Glauber type stochastic dynamics [5]. The magnetizations
of a multilayer thin film described by the transverse Ising model were investigated within the framework of
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the EFT with correlations, and the influence of the surface exchange coupling and transverse fields on the
magnetization and phase transition temperatures was discovered [6]. The ferrimagnetic Ising model with
nearest neighbor (NN) interactions was studied in the MFA for both square and simple cubic lattices, and
the equilibrium magnetizations and the compensation temperatures were obtained [7]. The critical and
compensation temperatures of a ferrimagnetic Ising system with mixed spins, 𝑆𝐴

𝑖
= 3/2 and 𝜎𝐵

𝑗
= 5/2,

were analyzed using Monte Carlo (MC) simulations [8]. The magnetic properties of a ferrimagnetic Ising
model with two crystal fields in a longitudinal magnetic field were studied by MC simulations [9]. The
magnetic properties of the Ising ferrimagnetic system in a graphene layer were explored by means of MC
simulations, and the effects of next-nearest neighbors exchange interactions and crystal field anisotropy
on the critical and compensation behavior of the system were investigated [10]. The MC simulation
techniques were carried out to study the magnetic behaviors of a mixed Ising system on a square lattice,
where spin-3/2 alternates with spin-5/2 in two interpenetrating sublattices A and B [11]. The dynamic
magnetic properties of the Ising bilayer system consisting of the mixed (3/2, 5/2) Ising spins with a
crystal field interaction in an oscillating field on a two-layer square lattice were studied using the dynamic
mean-field theory based on the Glauber-type stochastic dynamics [12].

This mixed-spin model was also considered for a more sophisticated system, such as the core–shell
structured nanowires. Experimental research on core–shell magnetic nanowires made by fusing several
magnetic materials was conducted in the recent years [13]. The benefit of these materials is that they
convey multifunctional capabilities due to the integrated properties of multiple materials. Additionally,
due to this mixing, the core–shell structure can exhibit compensating phenomena.

This type of core–shell structured nanowire has also attracted theoretical interest. The dielectric
properties of Ising ferrielectric nanowires with a spin-3/2 core and a spin-5/2 shell structure were system-
atically studied using the MC simulation in the presence of the external longitudinal electric field. The
specific heat, compensation points, susceptibility, and hysteresis behaviors were examined [14]. The MC
simulations based on the metropolis algorithm were performed to study the critical and compensation
temperatures of a core–shell nanowire with mixed spin-3/2 and 5/2, respectively, for an Ising antiferro-
magnetic system, and the influence of nearest neighbor exchange interactions and crystal field anisotropy
on the critical and compensation behaviors of the system was analyzed [15]. The magnetic properties
and hysteresis behavior of a ferrimagnetic cubic Ising nanowire with mixed spin-3/2 and spin-5/2 in
which the atoms are placed alternately by the MC simulation to investigate the effects of the exchange
interactions and crystal field on the magnetic properties and hysteresis behavior of the nanowire [16].
Again, the MC simulation was carried out to investigate the dynamic magnetic behaviors of the ferri-
magnetic mixed spin (3/2, 5/2) Ising-type borophene nanoribbons with core–shell structure. The effects
of the crystal field, exchange couplings and time-dependent oscillating magnetic field on the dynamic
magnetic characteristics were discussed [17]. The phase diagrams and hysteresis loops of a ferrimagnetic
mixed spin (3/2, 5/2) hexagonal Ising nanotube with core–shell structure within the framework of MC
simulation based of the Metropolis algorithm was applied and the effects of the longitudinal crystal field
of the shell sublattice, the exchange couplings were studied on the magnetization behaviors, magnetic
susceptibility curves, phase diagrams, and hysteresis loops [18, 19]. A cylindrical Ising nanotube that
consists of 3/2 core spins surrounded by 5/2 shell spins was introduced and studied with the MFA and
MC simulations in the presence of crystal and external magnetic fields [20].

It should be noted that the MFA by using the Gibbs–Bogoliubov inequality was carried out for the
nanostructure models including spin-1 and spin-1/2 such as for the magnetic properties of an hexagonal
nanosystem with the molecular field-type calculation and MC simulations [21], for the thermodynamic
states of the hexagonal nanotube system obtained from an eighteen-site cluster within an improved
MFA [22] and for a seven-site cluster within an improved MFA [23].

Note also that the MFA is well recognized to provide just a rough depiction of the true situation while
overestimating particle interaction. Efforts to improve the homogeneous the MFA are always increasing.
Since the Gibbs–Bogoliubov inequality states that the free energy of a system is always less than that
computed by a trial function, the chosen trial function prevents the MFA from being overestimated,
resulting in an improvement.

It is clear from the above references that the mixed spin with spin-3/2 and 5/2 nanowire model is only
examined using the MC simulations, to the best of our knowledge. Therefore, in this work, we consider
another method. Thus, the hexagonal Ising nanowire with a core–shell structure consisting of mixed
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spins, with the core being spin-5/2 and the shell spins being spin-3/2 is studied for the BC model using
the MFA based on the Gibbs–Bogoliubov inequality for free energy.

The rest of the work is organized as follows: section 1 presents the model and the method MFA
based on the Gibbs–Bogoliubov inequality for free energy. Section 2 contains all our findings in terms
of thermal variations of magnetizations, phase diagrams, and hysteresis loops. The final section includes
a brief summary, comparisons, and discussions.

2. The model and method

The model under consideration is a mixed spin model with spins 3/2 and 5/2 in a hexagonal nanowire,
as schematically depicted in figure 1. Each hexagon has one core-spin 𝑆 = 5

2 which is enclosed by six
shell-spins 𝑄 = 3

2 . The hexagonal wire is chosen to have 𝑁 = 7 layers and thus consists of a total of
𝑁𝑇 = 7𝑁 spins.

S Q

Figure 1. (Colour online) Schematic representation of spin-5/2 chain with hexagonal spin-3/2 shell. The
red and black circles represent the magnetic atoms of spin 𝑆 = 5/2 in the core and spin 𝑄 = 3/2 on the
surface shell, respectively.

The Hamiltonian of the model may be written as follows:

𝐻 = −𝐽𝑐𝑠
∑︁
⟨𝑖, 𝑗 ⟩

𝑆𝑖𝑄 𝑗 − 𝐽𝑐

∑︁
⟨𝑚,𝑛⟩

𝑆𝑚𝑆𝑛 − 𝐽𝑠

∑︁
⟨𝑖,𝑚⟩

𝑄𝑖𝑄𝑚 − 𝐷𝑐

∑︁
𝑖

(𝑆𝑖)2

− 𝐷𝑠

∑︁
𝑚

(𝑄𝑚)2 − ℎ
∑︁
𝑖

𝑆𝑖 − ℎ
∑︁
𝑚

𝑄𝑚, (2.1)

where 𝑆𝑖 is a spin-5/2 having the values of ±5/2, ±3/2, ±1/2 and 𝑄 𝑗 is spin-3/2 with the values of ±3/2,
±1/2. The first sum runs over all pairs of the NN sites between the 𝑆–𝑄 spins (core–shell interactions),
the second one runs over all core spins of NN hexagons between the 𝑆–𝑆 spins (core–core interactions),
and the third sum contains the interactions of the shell spins between the NN hexagons of 𝑄–𝑄 spins
(shell–shell interactions). Thus, the bilinear exchange interaction parameters 𝐽𝑐𝑠, 𝐽𝑐 and 𝐽𝑠 describe the
couplings between the 𝑆–𝑄, 𝑆–𝑆 and𝑄–𝑄, respectively. 𝐷𝑐 and 𝐷𝑠 are the crystal field parameters active
at the sites of core and shell spins, respectively. ℎ is the external magnetic field taken to be equal at each
lattice sites.
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The approximated free energy of the system can be obtained from a variational principle using the
Gibbs–Bogoliubov inequality given as

𝐺 (𝐻) ⩽ 𝐺 (𝐻0) + ⟨𝐻 − 𝐻0⟩, (2.2)

where 𝐺 (𝐻) is the free energy of the system described by the Hamiltonian given in equation (2.1), i.e.,
the exact free energy. 𝐺 (𝐻0) is the average free energy of the trial Hamiltonian 𝐻0 which depends on
variational parameters and ⟨𝐻 −𝐻0⟩ denotes the thermal average of the value 𝐻 −𝐻0 over the ensemble
defined by 𝐻0.

In the calculations, we have followed the conventional procedure of [24]. The trial Hamiltonian is
assumed to be in the form given as

𝐻0 = −
∑︁
𝑖

(
𝜆𝑐𝑆𝑖 + 𝐷𝑐𝑆

2
𝑖

)
−
∑︁
𝑚

(
𝜆𝑠𝑄𝑚 + 𝐷𝑠𝑄

2
𝑚

)
, (2.3)

where 𝜆𝑐 and 𝜆𝑠 are the two variational parameters related to the molecular field acting on the core and
shells of the hexagonal nanowire.

After some straightforward calculations, the expression for the variational free energy 𝑔 of equa-
tion (2.2) is obtained as

𝑔 = −𝑁

𝛽

{
ln

[
2 exp

(
25𝛽𝐷𝑐

4

)
cosh

(
5
2
𝛽𝜆𝑐

)
+ 2 exp

(
9𝛽𝐷𝑐

4

)
cosh

(
3
2
𝛽𝜆𝑐

)
+ 2 exp

(
𝛽𝐷𝑐

4

)
cosh

(
1
2
𝛽𝜆𝑐

) ]}
− 6𝑁

𝛽

{
ln

[
2 exp

(
9𝛽𝐷𝑠

4

)
cosh

(
3
2
𝛽𝜆𝑠

)
+ 2 exp

(
𝛽𝐷𝑠

4

)
cosh

(
1
2
𝛽𝜆𝑠

) ]}
+ (−2𝐽𝑐𝑀𝑐 − 6𝐽𝑐𝑠𝑀𝑠 − ℎ + 𝜆𝑐)𝑀𝑐

+ (−4𝐽𝑠𝑀𝑠 − 𝐽𝑐𝑠𝑀𝑐 − ℎ + 𝜆𝑠)𝑀𝑠 . (2.4)

The parameters 𝜆𝑐 and 𝜆𝑠 are found by the minimization procedure, i.e., taking the derivatives of
equation (2.4) with respect to 𝜆𝑐 and 𝜆𝑠 and equating zero leads to our desired parameters. Thus, one
obtains

𝜆𝑐 = 2𝐽𝑐𝑀𝑐 + 6𝐽𝑐𝑠𝑀𝑠 + ℎ,

𝜆𝑠 = 4𝐽𝑠𝑀𝑠 + 𝐽𝑐𝑠𝑀𝑐 + ℎ. (2.5)

As the final equations, the magnetizations of the core and shell spins may be obtained by using 𝑀𝑐 =

− 1
𝑁

𝜕𝑔

𝜕𝜆𝑐
and 𝑀𝑠 = − 1

𝑁

𝜕𝑔

𝜕𝜆𝑠
, which are calculated respectively as

𝑀𝑐 =
5 sinh

( 5
2 𝛽𝜆𝑐

)
+ 3e−4𝛽𝐷𝑐 sinh

( 3
2 𝛽𝜆𝑐

)
+ e−6𝛽𝐷𝑐 sinh

( 1
2 𝛽𝜆𝑐

)
2 cosh

( 5
2 𝛽𝜆𝑐

)
+ 2e−4𝛽𝐷𝑐 cosh

( 3
2 𝛽𝜆𝑐

)
+ 2e−6𝛽𝐷𝑐 cosh

( 1
2 𝛽𝜆𝑐

) , (2.6)

and

𝑀𝑠 =
3 sinh

( 3
2 𝛽𝜆𝑠

)
+ e−2𝛽𝐷𝑠 sinh

( 1
2 𝛽𝜆𝑠

)
2 cosh

( 3
2 𝛽𝜆𝑠

)
+ 2e−2𝛽𝐷𝑠 cosh

( 1
2 𝛽𝜆𝑠

) . (2.7)

It should also be mentioned that the average total magnetization per site of an hexagon is given as

|𝑀𝑇 | =
𝑀𝑐 + 6𝑀𝑠

7
, (2.8)

which was investigated in detail by varying our system parameters to calculate the thermal variations and
to obtain the phase diagrams in the next section.
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3. The characteristics of magnetizations and the phase diagrams

In this section, the thermal variations of the core (𝑀𝑐), shell (𝑀𝑠), and total average (𝑀𝑇 ) magneti-
zations are examined when the external magnetic field is turned on and off. Their behaviors enable us to
obtain the possible phase transition temperatures, i.e., the phase diagrams of the model. Additionally, the
magnetic hysteresis loops are also examined.

3.1. Thermal variations of magnetizations and hysteresis loops

As our first illustrations, we have investigated the thermal variations of the core and shell magnetiza-
tions, 𝑀𝑐 and 𝑀𝑠 respectively, with the external magnetic field turned off. It is also assumed that 𝐽𝑐𝑠 < 0.0
corresponds to the AFM interactions between the core and shell spins and, 𝐽𝑐 > 0.0 and 𝐽𝑠 > 0.0 are
for the FM interactions between the shell and between the core spins, respectively. Thus, the core and
shell spins are oriented in an antiparallel fashion, as shown in figure 2(a)–(d). The ground states (GS) of
𝑀𝑐 and 𝑀𝑠 are 5/2 and −3/2 as expected. As the temperature increases, they both decrease to terminate
at the common second-order phase transition temperature, i.e., 𝑇𝑐. In figure 2(b), the values of 𝐽𝑐 = 2.0
and 𝐽𝑠 = 0.75 are larger than the corresponding values in figure 2(a). Thus, the magnetizations persist at
higher temperatures, leading to higher 𝑇𝑐. In figure 2(c) and (d), the values of the crystal field 𝐷𝑐 = 0.0
and 𝐷𝑠 = 0.5 are respectively exchanged, showing that 𝐷𝑐 is more dominant since magnetizations endure
higher temperatures and thus a higher 𝑇𝑐 appears again.
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Figure 2. (Colour online) Thermal variations of the core and shell magnetizations 𝑀𝑐 and 𝑀𝑠 .

Figure 3 illustrates the effects of an external magnetic field on the thermal changes of 𝑀𝑐 and
𝑀𝑠. When ℎ < 0.0, as shown in figure 3(a)–(c), both magnetizations start from their GS values. As
temperature increases, they decrease to present jumps at the first-order phase transition temperatures, 𝑇𝑡 .
While 𝑀𝑠 jumps from negative to positive values, 𝑀𝑐 does the opposite. The jumps get less pronounced
as ℎ becomes less negative. At ℎ = 0.0, as shown in figure 3(d), both magnetizations vanish at the 𝑇𝑐.
Figure 3(e) is obtained for ℎ = 2.0 and does not present any phase transitions. The final characteristic
behavior is displayed in figure 3(f) where 𝑀𝑠 presents a 𝑇𝑡 but 𝑀𝑐 does not show any phase transitions.
Note also that all the figures with ℎ ≠ 0.0 show that magnetizations approach the zero asymptoticaly at
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higher temperatures.
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Figure 3. (Colour online) Thermal variation of the core and shell magnetizations 𝑀𝑐 and 𝑀𝑠 with
𝐽𝑐𝑠 = −1.0, 𝐽𝑐 = 2.0, 𝐽𝑠 = 0.5, 𝐷𝑐 = 𝐷𝑠 = 1.0 for selected values of ℎ.
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Figure 4. The average total magnetization |𝑀𝑇 | versus the temperature.
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Figure 4 is obtained in correspondence with figure 2 for 𝑀𝑇 . According to equation (2.8), 𝑀𝑇 contains
six 𝑀𝑠 and one 𝑀𝑐 for each hexagon which must be kept in mind for understanding the figures. The GS
of |𝑀𝑇 | = | (2.5 − 6 × 1.5)/7| ≃ 0.9285 since 𝐽𝑐𝑠 < 0.0, thus, |𝑀𝑇 | has this value at zero temperature.
The compensation temperature, 𝑇comp, is the temperature that appears before 𝑇𝑐 and the magnetizations
of six shell spins compensate the magnetization of the core spin. It is clear from figure 4(a) and (b) that
as 𝐽𝑠 increases, the 𝑇𝑐 and 𝑇comp appear at higher 𝑇 , since when 𝐽𝑠 > 0.0, the FM phase is supported. The
same can also be expected for 𝐽𝑐 > 0.0. In the last two figures, the values of 𝐷𝑠 and 𝐷𝑐 are exchanged.
It is clear that when 𝐷𝑠 is larger than 𝐷𝑐, the critical temperatures are seen at higher 𝑇 . This may be
caused by the higher number of shell spins than core spins and by the crystal field being positive.
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Figure 5. The average total magnetization |𝑀𝑇 | versus the temperature with 𝐽𝑐𝑠 = −1.0, 𝐽𝑐 = 2.0,
𝐽𝑠 = 0.5, 𝐷𝑐 = 1.0, 𝐷𝑠 = 1.0 for selected values of ℎ.

Similarly, figure 5(a)–(f) is calculated with respect to figure 3(a)–(f) for the given values of ℎ = −0.75,
−0.45, −0.2, 0.0, 2.0 and 2.5. They all start again with the same GS value. The first figure shows one 𝑇𝑡 ,
the second one two 𝑇comp and a 𝑇𝑡 , the third one a 𝑇comp and a 𝑇𝑡 , the fourth one a 𝑇comp and a 𝑇𝑐 (for
ℎ = 0.0), the fifth one only a 𝑇comp and the last one only a 𝑇𝑡 . It is clear that the existence of a 𝑇comp can
be accompanied with the phase transitions of any kind or can exist independently. The places of 𝑇𝑐 and
𝑇𝑡 and the expected positions of 𝑇comp are in agreement with figure 3, as expected.

In order to investigate the effects of the system parameters on the magnetic hysteresis loops, the total
average magnetization curves of the system are plotted as a function of the external magnetic field ℎ

for various temperatures, as shown in figure 6. The first two figures show that 𝑀𝑇 for 𝑇 = 0.5 and 1.5
have two straight portions in the negative and positive ℎ regions with a sharp rise about ℎ = 0.0. For
𝑇 = 0.5, there is only one cycle since the magnetization lines during the rise do not cross each other.
When 𝑇 = 1.5, the lines cross each other during the rise which leads to three loops. For 𝑇 = 5.0, the three
loops become more pronounced, but the straight portions of 𝑀𝑇 disappear and appear gradually rising as
ℎ rises. As 𝑇 increases to 10.0, the middle loop disappears, and only two loops remain for ±ℎ regions. As
𝑇 increases further to 13.0, these two loops disappear but now concentrate as one loop around ℎ = 0.0.
Finally, all the loops disappear when 𝑇 = 20.0.
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Figure 6. The hysteresis loops with 𝐽𝑐𝑠 = −1.0, 𝐽𝑐 = 2.0, 𝐽𝑠 = 0.5, 𝐷𝑐 = 1.0, 𝐷𝑠 = 1.0 for selected
values of 𝑇 .

3.2. The phase diagrams with 𝒉 = 0.0 and 𝒉 ≠ 0.0

Having investigated the thermal changes of magnetizations under various circumstances, we are
now ready to obtain the phase diagrams when ℎ = 0.0 and ℎ ≠ 0.0 cases: Figure 7(a) is obtained for
𝐽𝑐𝑠 = −1.0, 𝐽𝑠 = 0.5 and 𝐷𝑐 = 𝐷𝑠 = 1.0 on the (𝐽𝑐, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |) plane shows that the 𝑇𝑐-line starts at high
temperatures for 𝐽𝑐 = 0.0 and increases as 𝐽𝑐 increases. This is obvious since increasing 𝐽𝑐 values try to
align the spins of the cores in favor of the FM phase. The corresponding 𝑇comp-line starts on the 𝑇𝑐-line
and changes very slowly as 𝐽𝑐 increases. A similar phase diagram is also obtained on the (𝐷𝑐, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |)
plane for 𝐽𝑐𝑠 = −1.0, 𝐽𝑐 = 2.0, 𝐽𝑠 = 0.5 and 𝐷𝑠 = 0.5 as given in figure 3(c). Now, the 𝑇𝑐-line appears
to be straight, and the 𝑇comp starts from the negative 𝐷𝑐 values. Figure 7(b) obtained for 𝐽𝑐𝑠 = −1.0,
𝐽𝑐 = 2.0 and 𝐷𝑐 = 𝐷𝑠 = 1.0 on the (𝐽𝑠, 𝑘𝐵𝑇/|𝐽𝑐 |) plane and figure 7(d) calculated for 𝐽𝑐𝑠 = −1.0,
𝐽𝑐 = 2.0, 𝐽𝑠 = 0.5 and 𝐷𝑐 = 0.5 on the (𝐷𝑠, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |) plane show different characteristic behaviors.
The 𝑇comp-lines start immediately with 𝐽𝑠 = 0.0 in figure 7(b) and with 𝐷𝑠 = 0.0 in figure 7(d) and rise as
𝐽𝑠 and 𝐷𝑠 rise, respectively. Then, they combine with the𝑇𝑐-lines. Note also that the𝑇𝑐-line of figure 7(b)
increases at a constant rate as 𝐽𝑠 increases further, but for figure 7(d), the increase of the 𝑇𝑐-line slows
as 𝐷𝑠 increases further. The increase of the critical lines with increasing 𝐽𝑠 and 𝐷𝑠 in comparison with
their corresponding core spin values is clear since each shell contains six spins.

The final illustration of this work, obtained on the (ℎ, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |) plane for 𝐽𝑐𝑠 = −1.0, 𝐽𝑐 = 2.0,
𝐽𝑠 = 0.5 and 𝐷𝑐 = 𝐷𝑠 = 1.0, is quite interesting. It contains a 𝑇𝑐-line starting at a high 𝑇 for ℎ < 0.0,
then decreasing as ℎ increases, then after making a dip, it starts rising with increasing ℎ and finally
becomes constant. In addition, a 𝑇𝑡 -line starts from the lower temperature for ℎ < 0.0 again, increases
with increasing ℎ, and then terminates at an end point. The 𝑇comp-line is also observed, which presents
a reentrant behavior in the ℎ < 0.0 region, then decreases in temperature with increasing ℎ which then
terminates combining with the second portion of a 𝑇𝑡 -line. Now this 𝑇𝑡 -line decreases as 𝑇 increases. It
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is clear from the inset that these three lines at higher 𝑇 do not combine.
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4. The summary, conclusions and comparisons

In this work, the magnetic properties and hysteresis loops of a HIN with a mixed spin core–shell
structure are examined. To consider the Blume–Capel model, the MFA based on the Gibbs–Bogoliubov
inequality for free energy is utilized. Several bilinear interaction parameters (𝐽𝑐𝑐, 𝐽𝑠𝑠, 𝐽𝑐𝑠) between
the core, shell, and core and shell spins, as well as the crystal (𝐷𝑐, 𝐷𝑠) and external magnetic fields
(ℎ = ℎ𝑐 = ℎ𝑠) at the core and shell locations, are considered. Thermal variations in the net, core, and
shell magnetizations are investigated for various values of our system parameters in order to generate
phase diagrams on the (𝐽𝑐, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |), (𝐷𝑐, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |) and (ℎ, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |) planes. It is found that the
model only exhibits the second-order phase transitions when ℎ = 0.0 for 𝐷 greater or equal to zero,
first- and second-order phase transitions when ℎ ≠ 0.0, and compensation temperatures for all ℎ. The
𝑇comp-line for ℎ ≠ 0.0 presents a reentrant behavior at higher temperatures due to the existence of two
compensation temperatures for the given parameters. The calculated hysteresis behavior only displays
three loops at maximum, as in [14, 18, 20]. Even if there are quantitative differences between this work
and the existing ones, we can mention a few works that present very strong qualitative similarities. Our
first phase diagram given in figure 7(a) is qualitatively similar to the figure 5(a) of [15], figure 7 of [16]
and figure 3(a) and 4(a) of [20]. Our figure 7(b) is also qualitatively similar to figure 5(b) of [15], figure 7
of [18], figure 8 of [19] and figure 3(b) and 4(b) of [20]. Figure 3(c)–(d) and figure 4 (c)-(d) of [20] are
also identical with our figure 7(c)–(d). The phase diagram on the (ℎ, 𝑘𝐵𝑇/|𝐽𝑐𝑠 |) plane was also presented
in figure 2 of [15] for ℎ > 0 which is similar to our figure 8. Our 𝑇𝑐-line is similar, but the 𝑇comp-line
declines as ℎ increases, contrary to [15] where it becomes constant.

References
1. Zhang Q., Wei G., Gu Y., Phys. Status Solidi B, 2005, 242, 924, doi:10.1002/pssb.200402104.
2. Albayrak E., Yigit A., Phys. Lett. A, 2006, 353, 121, doi:10.1016/j.physleta.2005.12.077.
3. Yessoufou R. A., Amoussa S. H., Hontinfinde F., Cent. Eur. J. Phys., 2009, 7, 555, doi:10.2478/s11534-009-

0016-x.
4. Wei G., Hai-Ling M., Commun. Theor. Phys., 2009, 51, 756, doi:10.1088/0253-6102/51/4/32.
5. Deviren B., Keskin M., J. Stat. Phys., 2010, 140, 934, doi:10.1007/s10955-010-0025-6.
6. Ma B., Jiang W., IEEE Trans. Magn., 2011, 47, 3118, doi:10.1109/TMAG.2011.2149506.
7. Mohamad H. K., J. Magn. Magn. Mater., 2011, 323, 61, doi:10.1016/j.jmmm.2010.08.030.
8. De La Espriella Velez N., Ortega Lopez C., Torres Hoyos F., Rev. Mex. Fis., 2013, 59, 95.
9. Reyes J. A., De La Espriella N., Buendìa G. M., Phys. Status Solidi B, 2015, 252, 2268,

doi:10.1002/pssb.201552110.
10. Alzate-Cardona J. D., Sabogal-Suárez D., Restrepo-Parra E., J. Magn. Magn. Mater., 2017, 429, 34,

doi:10.1016/j.jmmm.2017.01.004.
11. De La Espriella N., Madera J. C., Buendìa G. M., J. Magn. Magn. Mater., 2017, 442, 350,

doi:10.1016/j.jmmm.2017.07.015.
12. Keskin M., Ertaş M., Physica A, 2018, 496, 79, doi:10.1016/j.physa.2017.12.034.
13. Ivanov Y. P., Alfadhel A., Alnassar M., Perez J. E., Vazquez M., Chuvilin A., Kosel J., Sci. Rep., 2016, 6, 24189,

doi:10.1038/srep24189.
14. Benhouria Y., Essaoudi I., Ainane A., Ahuja R., Dujardin F., Ferroelectrics, 2017, 507, 58,

doi:10.1080/00150193.2017.1283170.
15. Alzate-Cardona J. D., Barrero-Moreno M. C., Restrepo-Parra E., J. Phys.: Condens. Matter, 2017, 29, 445801,

doi:10.1088/1361-648X/aa8a06.
16. Aharrouch R., El Kihel K., Madani M., Hachem N., Lafhal A., El Bouziani M., Multidiscip. Model. Mater.

Struct., 2020, 16, 1261, doi:10.1108/MMMS-11-2019-0194.
17. Gao Z. Y., Wang W., Sun L., Yang L. M., Ma B. Y., Li P. S., J. Magn. Magn. Mater., 2022, 548, 168967,

doi:10.1016/j.jmmm.2021.168967.
18. Nmaila B., Kadiri A., Arbaoui A., Drissi L. B., Ahl Laamara R., Htoutou K., Chin. J. Phys., 2022, 79, 362–373,

doi:10.1016/j.cjph.2022.07.019.
19. Nmaila B., Htoutou K., Ahllaamara R., Drissi L. B., Indian J. Phys., 2023, 97, 429, doi:10.1007/s12648-022-

02393-1.
20. Karimou M., Oke T. D., Hontinfinde S. I. V., Kple J., Hontinfinde F., Physica B, 2023, 666, 415107,

doi:10.1016/j.physb.2023.415107.

23704-10

https://doi.org/10.1002/pssb.200402104
https://doi.org/10.1016/j.physleta.2005.12.077
https://doi.org/10.2478/s11534-009-0016-x
https://doi.org/10.2478/s11534-009-0016-x
https://doi.org/10.1088/0253-6102/51/4/32
https://doi.org/10.1007/s10955-010-0025-6
https://doi.org/10.1109/TMAG.2011.2149506
https://doi.org/10.1016/j.jmmm.2010.08.030
https://doi.org/10.1002/pssb.201552110
https://doi.org/10.1016/j.jmmm.2017.01.004
https://doi.org/10.1016/j.jmmm.2017.07.015
https://doi.org/10.1016/j.physa.2017.12.034
https://doi.org/10.1038/srep24189
https://doi.org/10.1080/00150193.2017.1283170
https://doi.org/10.1088/1361-648X/aa8a06
https://doi.org/10.1108/MMMS-11-2019-0194
https://doi.org/10.1016/j.jmmm.2021.168967
https://doi.org/10.1016/j.cjph.2022.07.019
https://doi.org/10.1007/s12648-022-02393-1
https://doi.org/10.1007/s12648-022-02393-1
https://doi.org/10.1016/j.physb.2023.415107


Hexagonal core–shell structure nanowire with high spins of spin-3/2 and spin-5/2

21. Mendes R. G. B., Santos J. P., Sá Barreto F. C., Braz. J. Phys., 2021, 51, 1929, doi:10.1007/s13538-021-00982-9.
22. Mendes R. G. B., Sá Barreto F. C., Santos J. P., Physica A, 2018, 505, 1186, doi:10.1016/j.physa.2018.03.094.
23. Mendes R. G. B., Sá Barreto F. C., Santos J. P., Braz. J. Phys., 2018, 48, 137, doi:10.1007/s13538-018-0560-1.
24. Bogoliubov N. N., J. Phys. (USSR), 1947, 11, 23.

Нанодрiт з гексагональною структурою “ядро–оболонка” зi
спiнами спiн-3/2 та спiн-5/2

М. Карiму1,2, Р. А. Єсуфу2,4, Е. Албайрак3
1 Нацiональна школа енергетики та iнженерiї Абомея
2 Iнститут математичних та фiзичних наук, Дангбо, Бенiн
3 Фiзичний факультет, Унiверситет Абомея-Калавi, Бенiн
4 Фiзичний факультет, Унiверситет Ерджiес, 38039, Кайсерi, Туреччина

Дослiджено магнiтнi властивостi та петлi гiстерезису для гексагонального нанодроту Iзiнга зi структурою
“ядро–оболонка”, що складається зi змiшаних спiнiв, коли спiн ядра має дорiвнює 5/2, а спiн оболонки
— 3/2. Модель Блюма-Капеля розглядається у наближеннi середнього поля на основi нерiвностi Гiббса-
Боголюбова для вiльної енергiї. Враховано вплив рiзних параметрiв нелiнiйної взаємодiї (𝐽𝑐𝑐 , 𝐽𝑠𝑠 , 𝐽𝑐𝑠 )
мiж ядром, оболонкою та спiнами ядра i оболонки, вiдповiдно, включаючи кристал (𝐷𝑐 , 𝐷𝑠 ) та зовнiшнi
магнiтнi поля (ℎ = ℎ𝑐 = ℎ𝑠 ) у вузлах ядра i оболонки. Щоб отримати фазовi дiаграми на рiзних площинах,
дослiджуються тепловi змiни намагнiченостi сiтки, ядра та оболонки при рiзних значеннях параметрiв
системи. Виявлено, що модель демонструє лише фазовi переходи другого роду, коли ℎ = 0.0 для 𝐷 є
невiд’ємним, а також знайдено фазовi переходи першого та другого роду для ℎ ≠ 0.0 та компенсацiйнi
температури для всiх ℎ.

Ключовi слова: теорiя середнього поля, модель Блюма–Капеля, петлi гiстерезису, температура
компенсацiї, намагнiченiсть, система зi змiшаними спiнами
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