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The present work is a continuation of our previous paper [Condens. Matter Phys., 2020, 23, 33602: 1–17]. It is
devoted to the modelling of the interplay of equilibrium and non-equilibrium phase transitions. The modelling
of equilibrium phase transition is based on the modified Cahn–Hilliard equation. The non-equilibrium phase
transition is modeled by the Second Schlögl reaction system. We consider the advancing front, which combines
these both transitions. Different from the first article, we consider here the memory effects, i.e., the effects of
non-Fickian diffusion. The traveling wave solution is obtained, and its dependence on the model parameters is
studied in detail. The relative importance of memory effects for different process regimes is estimated.
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1. Introduction

The present work is a continuation of our paper [1]. It was devoted to the modelling of the interplay of
equilibrium and non-equilibrium phase transitions. We considered the advancing fronts which “combine”,
in some sense, these both transitions. The equilibrium phase transition was modeled on the basis of
convective-viscous Cahn–Hilliard equation [2, 3]. The non-equilibrium phase transition was modeled by
canonical Schlögl chemical reaction systems [4]. The insight into the history and existing modifications of
the Cahn–Hilliard equation was given in [1] and will not be repeated here. We also refer to the pioneering
papers and excellent reviews [5–8]. Below, in the introduction, we first give only a brief explanation of
some basic assumptions and a description of the models, introduced in [1]; then we outline the specificities
of the present work.

As it was mentioned in [1], the basic underlying idea of Cahn–Hilliard model is that for an inho-
mogeneous system, e.g., system undergoing a phase transition, the thermodynamic potential (e.g., free
energy) should depend not only on the order parameter 𝑋 , but also on its gradient. For an inhomogeneous
system, the local chemical potential 𝜇, defined as variational derivative of the thermodynamic potential
functional, is as follows:

𝜇 = −𝜀2Δ𝑋 + 𝑓 (𝑋). (1.1)

Herein our notations differ from notations in [1]. 𝜀 is usually assumed to be proportional to the capillarity
length, and 𝑓 (𝑋) = dΦ (𝑋)/d𝑋 , whereΦ (𝑋) is a homogeneous part of the thermodynamic potential. As
in [1], in the present communication we take 𝑓 (𝑋) in the form of the cubic polynomial (corresponding
to the fourth-order polynomial for a homogeneous part of thermodynamic potential):

𝑓 (𝑋) = 𝑞𝑋3 − 𝛿𝑋2 − 𝑠𝑋. (1.2)
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In this phenomenological model, we always consider the isothermal situation. So we do not show the
temperature dependence of the coefficients in (1.2) explicitly. However, if we want to model the approach
to a critical state, for such a model the approach to critical temperature will be manifested by merging
the stationary states together [1], i.e., by two non-zero roots of the right-hand side of (1.2) approaching
the third zero root.

The diffusional flux 𝐽 is proportional to the gradient of chemical potential ∇𝜇; the proportionality
coefficient is called mobility 𝑀 [9]:

𝐽 = −𝑀∇𝜇. (1.3)

Substitution of (1.3) into the continuity equation

𝜕𝑋

𝜕𝑡′
= −∇𝐽 (1.4)

yields, with expression (1.1) for the chemical potential, instead of the usual second order diffusion
equation, a fourth-order PDE for the order parameter 𝑋:

𝜕𝑋

𝜕𝑡′
= ∇ [𝑀∇𝜇] . (1.5)

In the presence of the external field, the convective term is added to equation (1.5), and to account for
dissipation the viscous term is added to the chemical potential 𝜇 [2, 3, 10–13]:

𝜕𝑋

𝜕𝑡′
− �̄�𝑋

𝜕𝑋

𝜕𝑥′
=

𝜕

𝜕𝑥′

[
𝑀

𝜕

𝜕𝑥′

(
𝜇 + 𝜂

𝜕𝑋

𝜕𝑡′

)]
. (1.6)

Here, �̄� is proportional to the field and 𝜂 is viscosity; we consider the one-dimensional problem herein.
Among numerous modifications of the Cahn–Hilliard (CH) equation we are interested here in the

models, where the nonlinear sink/source terms, e.g., due to a chemical reaction, are inserted into the
right-hand sides of (1.4) (and, correspondingly of (1.5) as well):

𝜕𝑋

𝜕𝑡′
= ∇ [𝑀∇𝜇] + 𝑅 (𝑋) . (1.7)

For the classic CH equation such a study was pioneered by Huberman [14], Cohen and Murray [15]; see
also [16–21].

General observation is that the presence of chemical reaction can visibly influence the equilibrium
phase transition, e.g., freeze the spinodal decomposition or coarsening, stabilizing some stationary
inhomogeneous state. On the other hand, the canonical models for non-equilibrium phase transitions in
chemical reaction systems were introduced by Schlögl [4]; here, the different “phases” correspond to
different stationary states of the system. Schlögl considered two reaction systems, the so-called “First
Schlögl Reaction” and the “Second Schlögl Reaction”. The first reaction exhibits a non-equilibrium
phase transition of the second order, the second one exhibits a phase transition of the first order (for the
details see [4]). If the system simultaneously undergoes an equilibrium phase transition accompanied
by a phase separation, it could be of considerable interest to study the interaction of an equilibrium and
non-equilibrium phase transitions. We also call such a process “a combined transition” for brevity.

In [1] we considered the convective-viscous Cahn–Hilliard equation (1.6), see [2, 3], complemented
by source/sink term 𝑅 (𝑋). We considered 𝑅 (𝑋) corresponding both to first and second Schlögl reac-
tions. We called these modifications Cahn–Hilliard–Huberman–Cohen–Murray (CHHCM) and Cahn–
Hilliard–Schlögl (CHS) equations, respectively. We obtained exact travelling-wave solutions for these
modifications. For convective-viscous equation with the first Schlögl reaction, the conditions of simul-
taneous equilibrium and non-equilibrium phase transitions are very restrictive and rigid. Even more, the
equation for the travelling wave becomes degenerate in the absence of an applied field, splitting into
second and first order equations. Thus, the constant-velocity combined-transition-front model is not very
instructive in this case. On the other hand, for the CHS, the effect of the non-equilibrium transition,
i.e., of the reactive system, is much stronger. The transition front may be stopped, or even reversed both
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by changing the stationary states of the reaction system and by the field. Thus, exploring the “memory
effects”, see below, in the present work we consider the convective-viscous CHS only.

The description of the “Second Schlögl Reaction” is given in [1], equations (1.10), (1.11). For the
second Schlögl reaction in the absence of diffusion, the evolution of 𝑋 is described by

d𝑋
d𝑡′

= −𝑘 ′12𝑋
3 + 𝑘12𝐴𝑋

2 − 𝑘22𝐵𝑋 + 𝑘 ′22𝐶. (1.8)

We denote the concentrations with the same letters as species; the concentrations of species 𝐴, 𝐵 and 𝐶

(which are called the “reservoir reagents”) are assumed to be constant and only concentration of 𝑋 can
vary with time and space. We denote the rate constants by 𝑘𝑖 𝑗 , 𝑘 ′𝑖 𝑗 for the forward and reverse reactions,
respectively; to resemble with notations in [1], we keep the second lower index “2” for the second Schlögl
reaction. In [1] we considered convective viscous CH equation with 𝑅(𝑋) equal to the right-hand-side
of (1.8).

However, in all models described above, the diffusional flux was assumed to be proportional to
the gradient of the chemical potential. This “modified” Fick’s law (the original Fick’s law presumes
proportionality to the gradient of concentration) was often criticized for the infinite speed of the spread
of a diffusing substance. The most popular alternative is the Maxwell-Cattaneo approach, see [22] for a
comprehensive discussion; here, we give only the one-dimensional formulae, in accord with the spirit
of the present paper. In Maxwell-Cattaneo approach, the mass-conservation, or continuity not changed.
However, instead of (1.3) the following relation is proposed:

𝜏′
𝜕𝐽

𝜕𝑡′
+ 𝐽 = −𝑀 𝜕𝜇

𝜕𝑥′
. (1.9)

Direct integration of the latter expression for the flux yields

𝐽 = −
𝑡 ′∫

0

(
𝑀

𝜏′
𝜕𝜇

𝜕𝑥′

)
exp

(
𝑡′′ − 𝑡′

𝜏′

)
d𝑡′′. (1.10)

Thus, this approach is also called “diffusion with memory effects”. Correspondingly, 𝜏′ is considered to
be a characteristic time of the memory. On the other hand, eliminating 𝐽 from (1.9) yields the “hyperbolic
modification” of the diffusion equation with a source

𝜕𝑋

𝜕𝑡′
+ 𝜏′

𝜕

𝜕𝑡′

[
𝜕𝑋

𝜕𝑡′
− 𝑅 (𝑋)

]
=

𝜕

𝜕𝑥′

[
𝑀

𝜕𝜇

𝜕𝑥′

]
+ 𝑅 (𝑋) . (1.11)

Similarly, a hyperbolic modification of the convective-viscous Cahn–Hilliard equation (1.6) with source/sink
term takes the form

𝜕𝑋

𝜕𝑡′
− �̄�𝑋

𝜕𝑋

𝜕𝑥′
+ 𝜏′

𝜕

𝜕𝑡′

[
𝜕𝑋

𝜕𝑡′
− 𝑅 (𝑋)

]
=

𝜕

𝜕𝑥′

[
𝑀

𝜕

𝜕𝑥′

(
𝜇 + 𝜂

𝜕𝑋

𝜕𝑡′

)]
+ 𝑅 (𝑋) . (1.12)

The hyperbolic modification of the classical Cahn–Hilliard equation was proposed in [23] to model a
rapid spinodal decomposition in a binary alloy. However, from purely mathematical point of view — as a
singular perturbation of the classic Cahn–Hilliard equation — it was considered even earlier [24]. These
papers were followed by many others, both of physical and mathematical nature [25–29]. For hyperbolic
convective-viscous Cahn–Hilliard equation without source/sink term, i.e., (1.12) with 𝑅(𝑋) = 0, the
exact travelling-wave solution was given in [3].

This paper is organized as follows: in the next section we give an exact travelling wave solution for the
convective-viscous CHS equation complemented by memory effects. In section 3 we study the parametric
dependence of this solution. In section 4 we discuss our results.

2. Convective viscous Cahn–Hilliard–Schlögl equation with memory ef-
fects

In the present section we first give exact travelling-wave solutions for convective viscous Cahn–
Hilliard equation [2, 3] supplemented by memory effects and third order reaction terms. Thus, we first
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take into account the influence of both external field and dissipation; then we drop the convective and
viscous terms setting �̄� = 0, 𝜂 = 0, thereby reducing the equation to hyperbolic Cahn–Hilliard–Schlögl
equation.

To make the model and calculations somewhat more transparent we assume the reaction to be
irreversible, i.e., 𝑘 ′22 = 0 in (1.8). Substituting the right-hand side of (1.8) into (1.12) for 𝑅 (𝑋), we write
down the convective viscous CHS equation with the memory effect, first in terms of the initial variable 𝑋

(concentration):

𝜕𝑋

𝜕𝑡′
− �̄�𝑋

𝜕𝑋

𝜕𝑥′
+ 𝜏′

𝜕

𝜕𝑡′

[
𝜕𝑋

𝜕𝑡′
−

(
−𝑘 ′12𝑋

3 + 𝑘12𝐴𝑋
2 − 𝑘22𝐵𝑋

)]
= 𝑀

𝜕2

𝜕𝑥′2

(
𝜇 + 𝜂

𝜕𝑋

𝜕𝑡′

)
− 𝑘 ′12𝑋

3 + 𝑘12𝐴𝑋
2 − 𝑘22𝐵𝑋, (2.1)

𝜇 = −𝜀2 𝜕
2𝑋

𝜕𝑥′2
+ 𝑞𝑋3 − 𝛿𝑋2 − 𝑠𝑋. (2.2)

Writing down equations (2.1)–(2.2) we implicitly assume that in the system 𝐴−𝐵−𝐶−𝑋 the components 𝐴
and 𝐵 are in large excess and are not essentially exhausted during the chemical reaction; we also
presumed 𝑀 to be a constant. Renormalizing 𝑋 , 𝑥′ and 𝑡′, we introduce

𝑋 = 𝑢𝑋0; 𝑥′ = 𝑥𝐿; 𝑡′ = 𝑡𝑇 . (2.3)

Here, 𝑋0 = 1/√𝑞, 𝑇 = 1/𝑘 ′12𝑋
2
0 = 𝑞/𝑘 ′12 and 𝐿 =

√
𝑀𝑇 =

√︃
𝑀/𝑘 ′12𝑋

2
0 =

√︁
𝑀𝑞/𝑘 ′12. Denoting 𝛼 =

�̄�(𝑋0𝑇/𝐿) = �̄�(1/
√︁
𝑘 ′12𝑀); 𝜀2 = 𝜀2/𝐿2; 𝜂 = 𝜂/𝑇 ; 𝛿 = 𝑋0𝛿 = 𝛿/√𝑞; Θ = 𝑘12𝐴/𝑘 ′12𝑋0, Ω = 𝑘22𝐵/𝑘 ′12𝑋

2
0

and 𝜏 = 𝜏′/𝑇 , we write down equation (2.1) in non-dimensional form

𝜕𝑢

𝜕𝑡
− 𝛼𝑢

𝜕𝑢

𝜕𝑥
+ 𝜏

𝜕

𝜕𝑡

[
𝜕𝑢

𝜕𝑡
+ 𝑢

(
𝑢2 − Θ𝑢 +Ω

)]
=

𝜕2

𝜕𝑥2

(
−𝜀2 𝜕

2𝑢

𝜕𝑥2 + 𝑢3 − 𝛿𝑢2 − 𝑠𝑢 + 𝜂
𝜕𝑢

𝜕𝑡

)
− 𝑢

(
𝑢2 − Θ𝑢 +Ω

)
. (2.4)

Below we assume that the quadratic equation

𝑢2 − Θ𝑢 +Ω = 0 (2.5)

always has real roots 𝑢1, 𝑢2, 0 < 𝑢1 ⩽ 𝑢2, corresponding to stationary states of the reactions system.
I.e., Θ2 − 4Ω ⩾ 0 which means, in terms of the parameters of the reaction system, (𝑘12𝐴)2 ⩾ 4𝑘 ′12𝑘22𝐵.
This is simply the necessary condition of the multiplicity of stationary states in Schlögl reaction model,
see equations (1.10), (1.11) of [1], and equation (1.8), i.e., the existence of a non-equilibrium phase
transition.

Looking for the traveling wave solutions of (2.4), we introduce the travelling wave coordinate 𝑧 = 𝑥−𝑣𝑡.
This yields

d
d𝑧

[
𝑣𝑢 + 𝛼

𝑢2

2
+ 𝑣𝜏𝑢 (𝑢 − 𝑢1) (𝑢 − 𝑢2)

+ d
d𝑧

(
−𝑣2𝜏𝑢 − 𝜀2 d2𝑢

d𝑧2 + 𝑢3 − 𝛿𝑢2 − 𝑠𝑢 − 𝑣𝜂
d𝑢
d𝑧

)]
= 𝑢 (𝑢 − 𝑢1) (𝑢 − 𝑢2). (2.6)

We look for the solution, which connects the stable stationary state of the reaction system 𝑢 = 𝑢2 at
𝑧 = −∞ with the stable stationary state 𝑢 = 0 at 𝑧 = +∞. Thus, the proper Ansatz for the anti-kink
solution (as usually we call “kinks” the solutions with d𝑢/d𝑧 > 0, and “anti-kinks” — the solutions with
d𝑢/d𝑧 < 0) having this property will be

1
𝜅

d𝑢
d𝑧

= 𝑢 (𝑢 − 𝑢2) , (2.7)
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where 𝜅 is presently unknown positive constant. Assuming that the solutions of (2.7) are simultaneous
solutions of equation (2.6), we can rewrite (2.6) as follows:

d
d𝑧

[
𝑣𝑢 + 𝛼

𝑢2

2
−

(
1

2𝜅
𝑢2 − 𝑢1

𝜅
𝑢

)
+ d

d𝑧

(
𝑣𝜏

2𝜅
𝑢2 − 𝑢1𝑣𝜏

𝜅
𝑢 − 𝜀2 d2𝑢

d𝑧2 + 𝑢3 − 𝛿𝑢2 −
(
𝑣2𝜏 + 𝑠

)
𝑢 − 𝑣𝜂

d𝑢
d𝑧

)]
= 0. (2.8)

Integrating once, we get(
𝑣 + 𝑢1

𝜅

)
𝑢 +

(
𝛼 − 1

𝜅

)
𝑢2

2

+ d
d𝑧

[
−𝜀2 d2𝑢

d𝑧2 + 𝑢3 +
( 𝑣𝜏
2𝜅

− 𝛿 − 𝑣𝜂𝜅

)
𝑢2 −

(
𝑣2𝜏 + 𝑠 + 𝑢1𝑣𝜏

𝜅
− 𝑣𝜂𝜅𝑢2

)
𝑢

]
= 𝐶1, (2.9)

where 𝐶1 is an arbitrary constant. The expression for the second derivative of 𝑢 is given by

d2𝑢

d𝑧2 = 𝜅2
(
2𝑢3 − 3𝑢2𝑢

2 + 𝑢2
2𝑢

)
. (2.10)

Regarding the Ansatz (2.7), for the equation (2.9) to be satisfied, the expression under the derivative should
be linear in 𝑢. I.e., for (2.7), to get a solution of (2.6), two following equations should be identically
satisfied for arbitrary 𝑢: (

𝑣 + 𝑢1
𝜅

− 𝛽𝜅𝑢2

)
𝑢 +

(
𝛼 − 1

𝜅
+ 2𝛽𝜅

)
𝑢2

2
= 𝐶1, (2.11)

(
1 − 2𝜀2𝜅2

)
𝑢3 +

(
3𝜀2𝜅2𝑢2 +

𝑣𝜏

2𝜅
− 𝛿 − 𝑣𝜂𝜅

)
𝑢2

−
(
𝜀2𝜅2𝑢2

2 + 𝑣2𝜏 + 𝑠 + 𝑢1𝑣𝜏

𝜅
− 𝑣𝜂𝜅𝑢2 + 𝛽

)
𝑢 = 𝐶2, (2.12)

where 𝛽 is an unknown constant. Equating to zero coefficients at each power of 𝑢, including 𝐶1, 𝐶2 as
zero power coefficients, we finally obtain five constraints on the parameters:

2𝜀2𝜅2 = 1, (2.13)

𝛼 − 1
𝜅
+ 2𝛽𝜅 = 0, (2.14)

3𝜀2𝜅2𝑢2 +
𝑣𝜏

2𝜅
− 𝛿 − 𝑣𝜂𝜅 = 0, (2.15)

𝑣 + 𝑢1
𝜅

− 𝛽𝜅𝑢2 = 0, (2.16)

𝜀2𝜅2𝑢2
2 + 𝑣2𝜏 + 𝑠 + 𝑢1𝑣𝜏

𝜅
− 𝑣𝜂𝜅𝑢2 + 𝛽 = 0. (2.17)

If the constraints (2.13)–(2.17) are fulfilled, the solution of (2.7) is simultaneously solution of (2.1).
Integrating (2.7) and taking 𝑧 = 0 for maximal steepness point, we get

𝑢 =
𝑢2
2

{
1 − tanh

[
𝑢2

2
√

2𝜀
(𝑥 − 𝑣𝑡)

]}
. (2.18)

The functional form of a solution is rather simple; however, the dependence of the parameters of solution
on the system parameters is quite complicated, see [1]. In the next section we, following the lines of [1],
consider the changes introduced by the memory.

13601-5



P. O. Mchedlov-Petrosyan, L. N. Davydov

3. The parametric dependence of solution

Similarly to [1] there are five constraints, and only three unknowns 𝜅, 𝑣 and 𝛽. I.e., for the constant
velocity transition front to exist, two additional constraints on the values of the stationary states of the
reaction system and on the values of the equilibrium states for the phase transition should be imposed. We
assume, as in [1], that the parameters related to the reaction system are “basic”. Evidently, (2.13)–(2.14)
and (2.16), and correspondently 𝜅, 𝑣, 𝛽 coincide with the given in Part I [1] (we remind that notations are
different):

𝜅2 =
1

2𝜀2 , (3.1)

𝛽 =
1

2𝜅2 − 𝛼

2𝜅
, (3.2)

𝑣 =
1
𝜅

(𝑢2
2

− 𝑢1

)
− 𝛼𝑢2

2
. (3.3)

Naturally, for 𝜏 = 0, the equations (2.15), (2.17) coincide with the corresponding equations of Part I [1]
too. We denote the values, corresponding to 𝜏 = 0 as 𝛿0 and 𝑠0:

𝛿0 =
3
2
𝑢2 −

[(𝑢2
2

− 𝑢1

)
− 𝜅

𝛼𝑢2
2

]
𝜂, (3.4)

𝑠0 = 𝜂𝑢2

(𝑢2
2

− 𝑢1

)
− 1

2

(
𝑢2

2 +
1
𝜅2

)
+ 𝛼

2

(
1
𝜅
− 𝜂𝜅𝑢2

2

)
. (3.5)

We look for solutions of (2.15), (2.17) in the form

𝛿 = 𝛿0 + 𝜏𝛿1, 𝑠 = 𝑠0 + 𝜏𝑠1. (3.6)

This yields

𝛿1 =
𝑣

2𝜅
, (3.7)

𝑠1 = −𝑣2 − 𝑢1𝑣

𝜅
= −𝑣

(
𝑣 + 𝑢1

𝜅

)
. (3.8)

Naturally, the corrections due to the memory are proportional to the velocity of the front; there should
be no corrections for a static front.

The constraints (2.15) and (2.17) impose some limitations on the parameters 𝛿 and 𝑠 of the equilibrium
phase transition, see (1.2), i.e., on the roots �̃�1, �̃�2, �̃�3 of the cubic equation

�̃�

(
�̃�2 − 𝛿�̃� − 𝑠

)
= 0. (3.9)

These roots are positions of the extrema of the homogeneous part of the thermodynamic potential Φ (𝑢);
we denote the roots, corresponding to stable minima �̃�2, �̃�3, and �̃�1 — corresponding to an unstable
maximum. The root �̃�3 = 0 coincides with one of the stationary states of the reaction system. The
expressions for two remaining roots �̃�1 and �̃�2 yield the constraints imposed on the stationary values for
the equilibrium transformation:

�̃�2,1 =
1
2

[
(𝛿0 + 𝜏𝛿1) ±

√︃
(𝛿0 + 𝜏𝛿1)2 + 4 (𝑠0 + 𝜏𝑠1)

]
. (3.10)

We are mainly interested in what extent the actual final concentration 𝑢2 after the transition deviates from
the equilibrium value �̃�2. Usually 𝜏 is assumed to be a small parameter; expanding (3.10) and keeping
only linear in 𝜏 terms, we have got

�̃�2 =
1
2

𝛿0 +
√︃
𝛿2

0 + 4𝑠0 +
©­­«𝛿1 +

𝛿0𝛿1 + 2𝑠1√︃
𝛿2

0 + 4𝑠0

ª®®¬ 𝜏
 . (3.11)
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Then, the deviation of the equilibrium value from the actual one after the transition is

�̃�2 − 𝑢2 =
1
2


(
𝛿0 +

√︃
𝛿2

0 + 4𝑠0 − 2𝑢2

)
+

©­­«𝛿1 +
𝛿0𝛿1 + 2𝑠1√︃
𝛿2

0 + 4𝑠0

ª®®¬ 𝜏
 . (3.12)

The 𝜏-independent term was calculated and discussed in [1]; here, we are interested in the relative
importance of the memory effect

�̃�2 − 𝑢2 =
1
2

(
𝛿0 +

√︃
𝛿2

0 + 4𝑠0 − 2𝑢2

)
×

1 +
(
𝛿0 +

√︃
𝛿2

0 + 4𝑠0 − 2𝑢2

)−1 ©­­«𝛿1 +
𝛿0𝛿1 + 2𝑠1√︃
𝛿2

0 + 4𝑠0

ª®®¬ 𝜏
 . (3.13)

Thus, we define

𝐹 =

(
𝛿0 +

√︃
𝛿2

0 + 4𝑠0 − 2𝑢2

)−1 ©­­«𝛿1 +
𝛿0𝛿1 + 2𝑠1√︃
𝛿2

0 + 4𝑠0

ª®®¬ . (3.14)

We study the behavior of 𝐹 as a function of the system parameters. Following [1], we consider several
special cases. First we consider CHS, i.e., (2.4), where the applied field and dissipation are absent,
𝛼 = 0; 𝜂 = 0. Then, for 𝜏 = 0 we have

(�̃�2 − 𝑢2) |𝜏=0 =
1
2

(
𝛿0 +

√︃
𝛿2

0 + 4𝑠0 − 2𝑢2

)
=

1
2

(
3
2
𝑢2 +

1
2
𝑢2

√︄
1 − 8

𝑢2
2𝜅

2
− 2𝑢2

)
=
𝑢2
4

(√︄
1 − 8

𝑢2
2𝜅

2
− 1

)
. (3.15)

From (3.15) an evident limitation arises (see [1]): 8/𝑢2
2𝜅

2 < 1; or 𝜀 < 𝑢2/4. It is, however, not a severe
limitation, it is usually assumed 𝜀 ≪ 1. Calculating 𝐹 given by (3.14), we get

𝐹 = 𝜀2
1 − 2𝑢1

𝑢2√︂
1 − 16 𝜀2

𝑢2
2

. (3.16)

I.e., the correction due to the memory has always the same sign as velocity (for positive 𝜅); its relative
importance increases with velocity and 𝜀 (increasing 𝜀 means decreasing steepness of the front).

Now, let us consider the convective CHS equation: the field is non-zero, 𝛼 ≠ 0; but the viscosity is
still zero, 𝜂 = 0. It is worth noting that there is an upper limit on 𝛼 in this case, corresponding to 𝑠0 = 0:

𝛼𝑙 = 𝜅𝑢2
2

(
1 + 1

𝜅2𝑢2
2

)
. (3.17)

If 𝛼 → 𝛼𝑙 , the �̃�1 root of (3.9) (unstable maximum of the potential) approaches zero (stable minimum);
it means merging of stable and unstable states in the thermodynamic potential. Thus, the combined
transition front is impossible for 𝛼 > 𝛼𝑙 .

According to (3.14)

𝐹 =

(
1 − 2𝑢1

𝑢2

)
− 𝛼𝜅

2𝜅2
[√︂

1 + 8
(

𝛼

𝜅𝑢2
2
− 1

𝜅2𝑢2
2

)
− 1

]

1 + 4𝛼𝜅 − 1√︂

1 + 8
(

𝛼

𝜅𝑢2
2
− 1

𝜅2𝑢2
2

)

. (3.18)
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Figure 1. (Colour online) Dependence of 𝐹 on parameters 𝜆 = 𝛼𝜅 and 𝜌 = 𝑢1/𝑢2 according to (3.18).
The values of 𝜅 and 𝑢2 are taken by way of example as 𝜅 = 10 and 𝑢2 = 1.

Numeric example for (3.18) is given in figure 1. The equation (3.18) could be simplified further. First,
𝛼 ≫ 1

𝜅
∼ 𝜀 ≪ 1. Then, according to (3.17) always 𝛼 < 𝛼𝑙; so we can presume that 𝛼 is not too close

to its upper limit (which corresponds to extremely asymmetric potential), 𝛼 ≪ 𝛼𝑙 , and 8(𝛼/𝜅𝑢2
2) =

8
√

2(𝛼𝜀/𝑢2
2) ≪ 1. Thus, equation (3.18) is approximately

𝐹 ≃ 2
𝜅2

[
𝛼𝜅 −

(
1 − 2

𝑢1
𝑢2

)] (
𝛼𝜅 −

𝜅2𝑢2
2 + 1
4

)
. (3.19)

According to the latter expression, the relative correction due to the memory seems to be non-
monotonous, has a minimum, and changes the sign at 𝛼𝜅 = 𝑦1, 𝑦2:

𝑦1 =

(
1 − 2

𝑢1
𝑢2

)
; 𝑦2 =

𝜅2𝑢2
2 + 1
4

. (3.20)

Per definition −1 < 1 − 2𝑢1
𝑢2

< 1; so 𝛼𝜅 can transverse 𝑦1; it also means the change of the velocity sign.
However, according to our assumption, 𝛼/𝜅𝑢2

2 ≪ 1; i.e. 𝛼𝜅 ≪ 1
2 (𝑦1 + 𝑦2) ≃ 1

8 𝜅
2𝑢2

2. That is, when 𝛼𝜅

increases, the relative correction due to the memory will be positive and will have a decreasing absolute
value for 𝛼𝜅 < 𝑦1, and will be negative with an increasing absolute value for 𝑦1 < 𝛼𝜅. I.e., the dependence
is monotonous in the proper domain, see figure 1, where 𝛼𝜅 will not reach the position of minimum
of (3.19).

Now, let us consider the viscous CHS equation: the field is zero, 𝛼 = 0 but the viscosity is non-zero,
𝜂 ≠ 0. Then, from (3.4)–(3.5)

𝛿0 =
3
2
𝑢2 −

(𝑢2
2

− 𝑢1

)
𝜂, (3.21)

𝑠0 = 𝜂𝑢2

(𝑢2
2

− 𝑢1

)
− 1

2

(
𝑢2

2 +
1
𝜅2

)
. (3.22)

Similar to the case 𝛼 ≠ 0, there is an upper limit on 𝜂 in this case, corresponding to 𝑠0 = 0:

𝜂𝑙 =
𝑢2 + 1

𝜅2𝑢2

𝑢2 − 2𝑢1
. (3.23)

If 𝜂 → 𝜂𝑙 , the �̃�1 root of (3.9) approaches zero; it means again the merging of stable and unstable states
in the thermodynamic potential. Thus, the combined transition front is impossible for 𝜂 > 𝜂𝑙 .
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Using (3.21) and (3.22), we get

𝛿2
0 + 4𝑠0 =

(𝑢2
2

+ 𝑣𝜅𝜂

)2
− 2

𝜅2 . (3.24)

Velocity (3.3) is not dependent on 𝜂, so the expressions (3.7) and (3.8) for 𝛿1 and 𝑠1 are the same as in
the case 𝛼 = 0; 𝜂 = 0. Then,

𝛿0𝛿1 + 2𝑠1 = −
(

1
2
𝑢2 + 𝑣𝜅𝜂

)
𝑣

2𝜅
. (3.25)

Substitution of the expressions (3.24) and (3.25) into (3.14) yields

𝐹 =
1

2𝜅
𝑣√︃( 𝑢2

2 + 𝑣𝜅𝜂
)2 − 2

𝜅2

. (3.26)

I.e., for positive 𝑣 the effect of the memory decreases monotonously with an increasing viscosity.

4. Discussion

In the present work we studied the effect of the memory on the model, introduced in [1]. It is a
model of interplay of equilibrium and non-equilibrium phase transitions. Such an interplay was analyzed
by considering the advancing front which “combines”, in some sense, these both transitions. While
the equilibrium phase transition was described by the modified [2, 3] Cahn–Hilliard equation, the non-
equilibrium phase transition was presented by the canonical chemical models introduced by Schlögl [4].

In [1] we considered the convective-viscous Cahn–Hilliard equation with additional nonlinear terms,
corresponding both to the first and second Schlögl reactions; there are quadratic and cubic nonlinearities,
respectively. We obtained the exact travelling waves solutions for these equations.

The main idea was: for combined transition, i.e., for equilibrium and non-equilibrium transitions in
order to proceed simultaneously, some constraints should be imposed on the parameters, linking the
parameters of the “Cahn–Hilliard part” to the parameters of the chemical system. It was shown that the
equilibrium stationary states of the thermodynamic potential in the “Cahn–Hilliard part” are necessarily
connected to the stationary states of the chemical system. Generally they do not coincide; however,
the actual stationary concentration after transition is that of the chemical system. Indeed, otherwise the
equations could not be satisfied (the derivative terms disappear at ±∞). On the other hand, this means
that with respect to the values of the equilibrium stationary states of the thermodynamic potential, the
system will be over-, or undersaturated [1]. I.e., the complete equilibration will be prevented.

As in [1], to make the model formulation possibly transparent, we assumed the last reaction of the
system to be irreversible; indeed, by changing the kinetic parameter and/or diminishing the concentra-
tion 𝐶, this reaction could always be shifted close to irreversible. On the other hand, for the reversible
reaction, the equilibrium concentration before transition will also deviate from the actual one; this will
demand a special preparation of the system and make the model quite artificial.

In [1] the description of the mass transfer was based on the “generalized Fick’s law” (1.3); in the
present paper we introduce the memory effect, i.e., we use Maxwell-Cattaneo approach (1.9) [23]. The
most important result of the present work is that despite the introduction of the memory effects, the CHS
equation still possesses an exact travelling wave solution. This is nontrivial: many well known diffusive
model equations, e.g., Newell-Whitehead equation, Nagumo equation, Zeldovich equation etc., see [30],
lose this property, when the memory effects are introduced, see [31].

The exact travelling wave solution is a “tool”, which exhibits clearly the effect of the memory. The
exact solution (2.18) has the same form, as in [1]. Even more, the expressions for the parameters of
solution are exactly the same. I.e., while for the non-stationary processes the memory effect can change
the rates and the form of the wave, see, e.g., [23], for the constant velocity transition, the velocity and
steepness of the wave are the same. However, the compatibility conditions (2.15), (2.17) are changed.
This changes correspondingly the possible over/undersaturation after the transition. The additional terms
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are proportional to the non-dimensional characteristic time 𝜏. In dimensional parameters, the expression
for 𝜏 is

𝜏 =
𝜏′

𝑇
=
𝜏′𝑘 ′12
𝑞

. (4.1)

Here, 𝜏 is the ratio of the initial characteristic time in Maxwell-Cattaneo equation to the characteristic
time of the chemical reaction; it is usually considered to be a small parameter, 𝜏 ≪ 1. Thus, considering
the expressions for the stationary states of thermodynamic potential (3.10), we can always expand them
in 𝜏 and keep the linear terms only, see (3.11). We are interested in the changes, due to memory, of the
deviations of the actual stationary concentration after transition from its equilibrium value. To measure
these relative changes, we introduced the function 𝐹, see (3.14). Of course, the relative change is 𝜏𝐹, but
we will drop 𝜏 herein.

Proceeding along the same lines as in [1], we considered three special cases. First we considered
the CHS case when the applied field and the dissipation are absent, 𝛼 = 0; 𝜂 = 0, i.e., the classic CH
equation complemented by the cubic nonlinearity. The single limitation in this case is 4𝜀 < 𝑢2, or

1
4
𝑢2 >

𝜀

𝐿
=

𝜀
√
𝑀𝑇

≪ 1. (4.2)

Here, 𝜀 is of the order of capillarity length; 𝐿 is the diffusion distance for the characteristic time of the
chemical reaction; so this limitation is not restrictive. From (3.16) it is evident, that the relative value of
memory correction is zero for zero velocity of the front and is maximal for 𝑢1 = 0, that is when unstable
state of the chemical system merges with the stable state 𝑢 = 0. It is also increasing with 𝜀; increasing 𝜀

means decreasing steepness of the front. Indeed, for the fast moving shallow front, the relaxation to
equilibrium is delayed, and the integrated over 𝜏 influence of the “history” increases.

If 𝛼 ≠ 0; 𝜂 = 0, there is an upper limit on 𝛼, see (3.17), neglecting a small addition

𝛼𝑙 ≃ 𝜅𝑢2
2 = 𝑢2

2
1

√
2𝜀

= 𝑢2
2

𝐿
√

2𝜀
. (4.3)

Thus, 𝛼𝑙 is rather large; but if 𝛼 → 𝛼𝑙 , the �̃�1 root of (3.9) approaches zero; it means merging of stable
and unstable states in the thermodynamic potential. Thus, the combined transition front is impossible
for 𝛼 > 𝛼𝑙 . The approximate expression (3.19) for 𝐹, as well as numerical example in figure 1, show
that with growing 𝛼𝜅 the relative correction is positive and decreases for positive velocity, it is zero for
zero velocity and it is negative with increasing absolute value for negative velocity. Thus, the memory
effect became more pronounced, when the field forces the “retreat” of the front, acting against the normal
direction determined by the chemical system. This again leads to a delayed relaxation.

Considering the viscous CHS equation, we have 𝜂 ≠ 0; 𝛼 = 0. Similar to the case 𝛼 ≠ 0 , there is an
upper limit on 𝜂 in this case, (3.23), corresponding to the merging of unstable �̃�1 and stable �̃� = 0 states
of the thermodynamic potential. Neglecting small correction, this limit is as follows:

𝜂𝑙 ≃
𝑢2

𝑢2 − 2𝑢1
. (4.4)

For the velocity approaching zero 𝜂𝑙 → ∞, although the exact expression (3.26) gives zero correction. For
positive velocity, the correction decreases monotonously with increasing viscosity. For negative velocity,
there is an additional limitation: if 𝜂 → 𝜂𝑚,

𝜂𝑚 =
𝜅𝑢2 − 2

√
2

2𝜅𝑢1 − 𝜅𝑢2
, (4.5)

the unstable state �̃�1 of the potential merges with stable state �̃�2, see (3.9), and the model becomes
physically senseless. However, for 𝜂 < 𝜂𝑚, the absolute value of the correction increases with viscosity 𝜂,
and for 𝜂 > 𝜂𝑚, it decreases.

Summing up, for positive velocity of the transition front, when the state with larger concentration
advances, both the applied field and viscosity generally diminish the memory corrections. For negative
velocity, the consistency of the model imposes stronger limitations on the allowed intervals of the
parameters; the delayed relaxation makes the memory effects more pronounced. I.e., if the diffusion in
the given system demonstrates the memory effects, changing the transition velocity, and the applied field
yields an additional instrument to achieve the necessary over/undersaturation after transition.
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Модель Кана–Хiльярда з реакцiями Шльогля: взаємодiя
рiвноважного i нерiвноважного фазових переходiв.
II. Ефекти пам’ятi

П. О. Мчедлов-Петросян, Л. М. Давидов
Нацiональний науковий центр “Харкiвський фiзико-технiчний iнститут”, Харкiв, 61108, вул. Академiчна, 1

Ця робота є продовженням нашої роботи [Condens. Matter Phys., 2020, 23, 33602: 1–17]. Вона присвячена
моделюванню взаємодiї рiвноважних i нерiвноважних фазових переходiв. Моделювання рiвноважного
фазового переходу базується на модифiкованому рiвняннi Кана–Хiльярда. Нерiвноважний фазовий пере-
хiд моделюється другою системою хiмiчних реакцiй Шльогля. Розглядається наступаючий фронт, який
поєднує цi обидва переходи. На вiдмiну вiд першої статтi, тут ми розглядаємо ефекти пам’ятi, тобто ефекти
нефiккiвської дифузiї. Отримано розв’язок бiжучої хвилi, детально дослiджено його залежнiсть вiд пара-
метрiв моделi. Оцiнено вiдносну важливiсть ефектiв пам’ятi для рiзних режимiв процесу.

Ключовi слова: фазовий перехiд, нерiвноважний фазовий перехiд, рiвняння Кана–Хiльярда, реакцiї
Шльогля, ефект пам’ятi, бiжуча хвиля
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