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This is part of an unpublished work in collaboration with Ralph Kenna. It was probably not mature enough at the
time it was submittedmore than ten years ago and it was rejected by the editors, but some of the ideas had later
been published partially in subsequent works. I believe that this “draft” reveals a lot about Ralph’s enthusiasm
and audacity and deserves to be published now, maybe as a part of his legacy.
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My friend Ralph Kenna

I am writing these words a few days after Ralph Kenna has passed away. Ralph was much more than a
collaborator, he was my friend. We have had a long, fruitful, friendly, enriching scientific collaboration.
His enthusiasm led him to produce new, original, and often revolutionary ideas. This is one of the
elements of Ralph’s personality. This truly sealed our friendship, together with our conception of Physics
and the views of the world that we shared, through strong social and political commitment.

Our collaboration has left many ideas
unresolved, drafts unpublished, some probably
too daring and based on speculations that were
too poorly supported. Still, I would like to
submit to the editors of this journal one of these
texts which dates from 2012, with Jean-Charles
Walter as a third co-author. The paper was
rejected, but I think that it is worth publishing
as part of Ralph’s legacy, along with some of
the critical comments made at the time by the
referees, that led to its rejection.

Photo, courtesy of Thierry Platini.
This is not to circumvent the work of the referees. The article included a hypothesis that was probably

insufficiently supported, at least not enough to convince the referees, but it reflected much of the audacity
of which Ralph was capable. Ralph has always been unwavering in his support for Ukraine, in particular
since the Russian invasion. The publication of one of his bold scientific texts by a Ukrainian journal
could be seen as a mutual, unfortunately, posthumous support.

The unpublished paper

I am writing these lines as if it were Ralph’s work alone. This allows me to pay tribute to the fact
that I considered him the driving force behind our collaboration. We were very complementary in our

This work is licensed under a Creative Commons Attribution 4.0 International License. Further distribution
of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
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way of working, I believe. I sometimes held him back in speculations, and if I allowed myself a wink,
even when he mixed Star Trek with our work! The cover letter had been written by Ralph. His style
can be recognized as his enthusiasm, using words like “fundamental issues of statistical physics in high
dimensions”, “Our new theory incorporates or subsumes existing theories” or “shift in the paradigm”:

The material in our paper connects with fundamental issues of statistical physics in high
dimensions. We identify subtle, hidden flaws — even at the level of mean-field theory —
which we believe have profound consequences. Because of the subtle nature of the issues
we address, we offer here a very brief contextualization. (. . . ) The statistical mechanics
of condensed-matter, high-dimensional physics have been puzzling for a long time. It has
been summed up by Kurt Binder et al. as “a rather disappointing state of affairs” — “the
existing theories are not so good”. In addition, systems with free boundary conditions have
been described by Peter Young et al. as particularly “poorly understood”. Since they are
experimentally accessible, the understanding of such systems impacts our understanding of
finite-size materials with surfaces, comprising particles with long-range interactions. Our
new theory incorporates or subsumes the existing theories and is compatible with a vast
amount of analytical and numerical evidence. However, our theory goes beyond this and
introduces a powerful new principle that predicts and explains important features missed by
current theories. For free boundaries, we show why 40 years of literature on the subject is
based on an incorrect assumption.

We believe there is no current empirical or analytic evidence pointing against our new
theory and it represents a shift in the paradigm of finite-size scaling and Landau mean-field
theory in high dimensions. For these reasons, we would be grateful if you would consider
the paper.

𝑄-information-entropic foundations of scaling in
high dimensions and emergence of four
dimensionality
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The emergence of a length scale that exceeds the linear extent of a finite-size, high-dimensional, pseudocritical
system, and originates in the dangerous-irrelevant-variable mechanism of the renormalization group, is
accompanied by a separation of associated dimensions. Here, we show that this phenomenon manifests
a negative anomalous dimension associated with the correlation function alongside the effective, vanishing
(Gaussian) one and allows universal extension of hyperscaling to high-dimensions as well as a second,
fundamental fluctuation-response relation. We offer an information-entropic explanation for this phenomenon
including for logarithmic corrections at the critical dimension. This mechanism offers a way to manifest
short-range, high-dimensional Euclidean quantum-field systems as a four-dimensional without dimensional
compactification or sub-manifold restrictions.

Key words: phase transition, critical exponents, upper critical dimension, hyperscaling relation, dangerous
irrelevant variable

It is well known that standard finite-size scaling (FSS) is valid below the upper critical dimension
𝑑 = 𝑑𝑐 when hyperscaling holds and where the correlation length is comparable to the linear extent of a
system exhibiting a continuous phase transition [1]. Above 𝑑𝑐, standard hyperscaling breaks down, and
the bulk critical behaviour there is described by mean-field exponents [2]. FSS was analyzed for 𝑑 ⩽ 𝑑𝑐,
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Euclidean 𝜙4 theory and the Ising model with periodic boundary conditions (PBC) [3–22] following
large-𝑛 analytical studies by Brézin [2]. The breakdown of standard FSS and hyperscaling is attributed to
Fisher’s dangerous irrelevant variables [23] in the renormalization-group (RG) framework [3–6, 10, 11].
To repair FSS above 𝑑𝑐, Binder introduced another length scale that emerges from the RG treatment,
dubbed the thermodynamic length [3, 8, 16]. Below 𝑑𝑐, it coincides with the correlation length, while
above 𝑑𝑐, it scales as a power of the system size. Extensive comparisons with numerical simulations
have been performed and FSS above the upper critical dimension with PBCs is now considered to be
well understood [12–15, 24, 25]. It is therefore perhaps surprising that, although the role of dangerous
irrelevant variables in the breakdown of hyperscaling in high dimensions is well developed [3–22],
FSS above the upper critical dimension was summarized by Binder et al. as “a rather disappointing
state of affairs — although for the 𝜙4 theory in 𝑑 = 5 dimensions, all exponents are known, including
those of the corrections to scaling, and in principle very complete analytical calculations are possible,
the existing theories clearly are not so good” [17, 25]. In contrast to the PBC case, there have been
relatively few studies of high-dimensional systems with free boundary conditions (FBC) [7, 22], which
are complicated by additional scaling fields associated with boundaries in the RG picture [24, 26]. The
situation with FBCs was recently described in reference [21] as “poorly understood”. Here, we present
an alternative, corroborative theory and show that high-dimensional Ginzburg–Landau–Wilson physics
is less “trivial” than hitherto realized. Although delivering some correct scaling and FSS behaviour
above 𝑑𝑐, it is indeed lacking in several respects, most seriously for FBCs at the pseudocritical point. A
comprehensive picture emerges by simply separating notions of underlying space and emergent space.
The corresponding two notions of the correlation function, one of which has a stretched exponential form,
are then associated with two separate anomalous dimensions and two associated fluctuation-response
relations, only one of which is captured by mean-field theory. At the critical dimension, there are
analogous pairs of logarithmic terms and scaling relations [27, 28]. We demonstrate that existing analytic
and numerical-based understandings of FBCs at pseudocriticality are unfounded and propose to postulate
that FSS there is more similar to the PBC case than hitherto realized. Hyperscaling may then be extended
beyond the upper critical dimension universally. After presenting numerical evidence supportive of our
claims, we then propose an information-entropic foundation1 which lays behind, and greatly simplifies
the dangerous-irrelevant-variables picture and delivers a new prediction for logarithmic corrections at
𝑑 = 𝑑𝑐.

With the reduced temperature 𝑡 denoting the distance from the critical point, the standard, leading,
critical scaling forms for the specific heat, spontaneous magnetization, susceptibility and correlation
length are 𝑐∞(𝑡) ∼ |𝑡 |−𝛼, 𝑚∞(𝑡) ∼ |𝑡 |𝛽 , 𝜒∞(𝑡) ∼ |𝑡 |−𝛾 and 𝜉∞(𝑡) ∼ |𝑡 |−𝜈 , respectively. Here, the subscript
indicates the linear extent of the system. At 𝑡 = 0, the magnetization in field scales as 𝑚∞(ℎ) ∼ |ℎ |1/𝛿 .
For sufficiently large distances 𝑟, and for 𝑑 < 𝑑𝑐, the correlation function decays exponentially away
from criticality 𝐺 (𝑟) ∼ 𝑟−𝑝 exp(−𝑟/𝜉) while at the critical point itself it reduces to a simple power law,
𝐺 (𝑟) ∼ 𝑟−(𝑑−2+𝜂) . Mean field theory predicts 𝑝 = (𝑑 − 1)/2 outside the critical point and 𝜂 = 0 at
criticality. The six standard critical exponents 𝛼, 𝛽, 𝛾, 𝛿, 𝜈 and 𝜂 are related through the scaling relations.
Of these, the hyperscaling relation

𝜈𝑑 = 2 − 𝛼 for 𝑑 ⩽ 𝑑𝑐, (1.1)

is conspicuous in that it involves the dimensionality 𝑑 and fails above the upper critical dimension, which
is 𝑑𝑐 = 4 for the Ising model. There, Landau’s mean field exponents are 𝛼 = 0, 𝛽 = 1/2, 𝛾 = 1, 𝛿 = 3,
𝜈 = 1/2, 𝜂 = 0. Below 𝑑𝑐 dimensions, it is well known that the finite-size counterpart of the correlation
length 𝜉 scales with the system extent 𝜉𝐿 ∼ 𝐿 and FSS is obtained by fixing the ratio 𝜉𝐿/𝜉∞(𝑡) [1]. Above
𝑑 = 𝑑𝑐, one has instead that FSS is governed by2

𝜉𝑃𝐿
∼ 𝐿𝑞 , where 𝑞 = 𝑑/𝑑𝑐, (1.2)

which arises through dangerous irrelevant variables, at least for PBC’s [2–17]. The quantity 𝜉𝑃𝐿
has

been dubbed characteristic length in reference [24] and has been related to the correlation length [2, 21],
1[Footnotes are BB comments as of 2023.] This is probably the most audacious claim in the paper.
2After a suggestion of M.E. Fisher, the exponent 𝑞 was later denoted in our subsequent papers as the archaic Greek letter ϙ, see

e.g. [46, 47]. I adhere to this notation in the rest of this text and use ϙ instead of 𝑞. The first 34 references are those of the original
paper, those starting from [46] are additional references available at the end of this article.
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thermodynamic length [3, 8] or coherence length [24]. The emergence of the power-law relationship (1.2)
may be understood heuristically by demanding that the volume associated with 𝜉𝑃𝐿

(measured in units
of 𝑥0 in 𝑑𝑐 dimensions, say) should correspond to the actual volume of the system (measured in units of
𝑧0 in 𝑑 dimensions), (

𝜉𝑃𝐿

𝑥0

)𝑑𝑐
=

(
𝐿

𝑧0

)𝑑
. (1.3)

The replacement 𝜉∞(𝑡) ∼ 𝜉𝑃𝐿
yields |𝑡 | ∼ 𝐿−ϙ/𝜈 , so that the susceptibility scales as

𝜒𝐿 ∼ 𝐿
𝛾ϙ

𝜈 = 𝐿2ϙ. (1.4)

Equation (1.3) does not, however, capture the logarithms present in 𝑑𝑐 dimensions and these are addressed
below. Evidence from a variety of studies supports equation (1.4) for PBC’s [2–5, 7–22], but the prevailing
picture is that ϙ = 1 for FBC’s [7, 22, 30, 31].

That ϙ is indeed 𝑑/𝑑𝑐 can be seen from the Lee-Yang zeros of the partition function, which offer
another way to characterize phase transitions [32, 33]. The standard scaling behaviour for the edge
of their distribution is ℎedge(𝑡) ∼ 𝑡Δ where Δ = 𝛽𝛿 is the gap exponent. The FSS for the 𝑗 th zero is
ℎ 𝑗 (𝐿) ∼ ( 𝑗/𝐿𝑑)Δϙ/𝜈𝑑 [34]. Following reference [28, 29], we write the finite-size susceptibility in terms
of the Lee-Yang zeros as 𝜒𝐿 ∼ 𝐿−𝑑 ∑𝐿𝑑

𝑗=1 ℎ
−2
𝑗
(𝐿) which, at pseudo-criticality gives

𝜒𝐿 ∼ 𝐿
2Δϙ
𝜈

−𝑑
𝐿𝑑∑︁
𝑗=1

𝑗−
2Δϙ
𝜈𝑑 (𝐿). (1.5)

Together with the standard, static scaling relations 2𝛽+𝛾 = 2−𝛼 and 𝛽(𝛿−1) = 𝛾, matching equation (1.4)
to equation (1.5) gives the requirement that

𝜈𝑑

ϙ
= 2 − 𝛼. (1.6)

This recovers the standard hyperscaling relation (1.1) below 𝑑𝑐 dimensions provided ϙ = 1 there, as is
well established. However, if ϙ = 1 persisted above 𝑑𝑐 = 4 (in the Ising case), equation (1.5) would
deliver a spurious leading logarithm in the 𝑑 = 6 case, irrespective of boundary conditions. Since
there is, in fact, no such logarithmic correction to the leading scaling behaviour [2, 27–29, 35, 36], this
indicates that ϙ cannot be 1 even for FBCs. The incorporation of ϙ into equation (1.6) essentially extends
hyperscaling (1.1) beyond the upper critical dimension.

Having separated the notions of emergent length, volume, and dimensionality from those of the
original system in equation (1.3), it is sensible to distinguish the associated spaces. We refer to the original
𝑑-dimensional system as 𝑄-space, the 𝑄-lattice or the 𝑄-continuum and emergent, 𝑑𝑐-dimensional one
as 𝑃-space, hence the notation 𝜉𝑃𝐿

.
Fisher’s fluctuation-response relation is associated with the correlation function 𝐺 (𝑟), which is also

dimension dependent and needs reexamination to account for whether the distance is measured in the
𝑑-dimensional 𝑄-space or the emergent 𝑑𝑐-dimensional 𝑃-space. When these are not distinguished
(below the upper critical dimension), the standard derivation is to integrate 𝐺 over space giving

𝜒 ∼
𝜉∫

0

𝐺 (𝑟)𝑟𝑑−1d𝑟 ∼ 𝜉2−𝜂 , (1.7)

leading to 𝜈(2 − 𝜂) = 𝛾.
Replacing 𝐺 (𝑟) by unity in equation (1.7) gives the volume of space to be

∫ 𝜉𝐿

0 d𝑟 𝑟𝑑−1 = 𝜉𝑑
𝐿
. This is

correct below the upper critical dimension where 𝜉𝐿 ∼ 𝐿. Above 𝑑 = 𝑑𝑐, however, bounding the integral
by 𝜉𝑃𝐿

would erroneously give the volume of space to be 𝜉𝑑
𝑃𝐿

∼ 𝐿𝑑2/𝑑𝑐 . The problem is due to the
failure to separate the notions of distance in 𝑃-space and 𝑄-space. If the integral is bound by 𝜉𝑃𝐿

, one
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must integrate over the 𝑑𝑐 dimensions of 𝑃-space. Alternatively, if the integral is 𝑑-dimensional, it must
be bound by 𝜉𝑄𝐿

≡ (𝜉𝑃𝐿
)1/ϙ ∼ 𝐿. With 𝑥 referring to 𝑃-space distance, the former approach gives

𝜒𝐿 ∼
𝜉𝑃𝐿∫
0

𝐺𝑃 (𝑥)𝑥𝑑𝑐−1d𝑥 ∼ 𝜉
2−𝜂𝑃

𝑃𝐿
, (1.8)

where 𝐺𝑃 (𝑥) is the 𝑃-space correlation function

𝐺𝑃 (𝑥) ∼
e−𝑥/𝜉𝑃𝐿

𝑥 (𝑑𝑐−1)/2 (1.9)

away from criticality and

𝐺𝑃 (𝑥) ∼
1

𝑥𝑑𝑐−2+𝜂𝑃
(1.10)

at it. This identifies the usual Fisher law
𝜂𝑃 = 2 − 𝛾

𝜈
(1.11)

as a 𝑃-space relation. With 𝛾/𝜈 = 2, we see that the mean field theory only captures the anomalous
dimension of emergent 𝑃-space: 𝜂𝑃 = 0. The 𝑃-distance 𝑥 is related to displacement 𝑧 in 𝑄-space via
𝑥 ∼ 𝑧ϙ. In terms of this underlying scale, the counterparts of equations (1.9) and (1.10) are

𝐺𝑄 (𝑧) ∼ e−(𝑧/𝜉𝑄𝐿
)ϙ

𝑧 (𝑑−1)/2 and 𝐺𝑄 (𝑧) ∼ 1
𝑧𝑑−2ϙ , (1.12)

respectively. Integrating this function over the 𝑑 dimensions of 𝑄-space yields the correct FSS
formula (1.4). We identify the anomalous dimension in fundamental 𝑄-space as

𝜂𝑄 = 2(1 − ϙ) = 2 − ϙ𝛾
𝜈
, (1.13)

which is the fluctuation-response relation there.
Since 𝛼 and 𝜈 in the extended version of hyperscaling (1.6) are universal, ϙ may be expected to be a

new critical exponent. However, conventional wisdom has it that ϙ = 1 for FBC’s in particular, and that
𝜒𝐿 cannot diverge more rapidly than 𝐿𝛾/𝜈 = 𝐿2 above 𝑑𝑐 [4, 7, 10, 11, 21, 30]. In this sense, convention
holds that FSS is not quite universal after all. Indeed, the failure to properly separate 𝜉𝑃𝐿

from 𝜉𝑄𝐿
∼ 𝐿

in equation (1.7), and in conventional FSS, would instead lead to the Gaussian form 𝜒𝐿 ∼ 𝐿2.
To test for universality, we simulated the Ising model in 5D using lattices with both PBCs and FBCs.

In figure 1(a), the FSS of the susceptibility peak is plotted against 𝐿 in 5D and the form (1.4) is verified,
in agreement with references [2–5, 8–22, 24, 25] in the PBC case.

For FBCs, the proportion of sites in the bulk of a size-𝐿 lattice is (1 − 2/𝐿)𝑑 , the remaining ones
being in lower-dimensional manifolds. Thus, the 𝐿 = 4 to 𝐿 = 20, 5D lattices of the recent numerical
work [22] have only between 3% and 59% of sites in the bulk and do not represent five-dimensionality.
The resulting conclusion is that 𝜒𝐿 ∼ 𝐿2 is therefore not a 5D one. On the theoretical side, it is reported
in reference [7] that equation (1.4) “cannot hold for free boundary conditions because it lies above a
strict upper bound” (namely 𝐿𝛾/𝜈 = 𝐿2) established in reference [30] (see also reference [31]). However,
that upper bound was determined at 𝑇𝑐, not at 𝑇𝐿 , and using the fluctuation-response relation (1.11)
instead of (1.13). Moreover, the Fourier analysis of reference [7], which yielded the same conclusions,
neglects the quartic part of the Ginzburg–Landau-Wilson 𝜙4 action because of an expectation that the
Gaussian result should “apply as an exact leading order result in more than four dimensions”. It was
shown in references [12–14] that for PBC, the anomalous FSS behaviour (1.4) is obtained from precisely
this term. These observations, together with the conclusion that ϙ = 1 delivers leading logarithms in
𝑑 = 6 from equation (1.5), indicate that the FSS paradigm from numerical and analytical conclusions
in over 40 years of literature on the susceptibility of FBC lattices above 𝑑𝑐 is unsupported, at least at
pseudocriticality [7, 22, 30, 31].
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Figure 1. (Colour online) (a) The susceptibility peak for 5D lattices with PBCs gives an effective exponent
of 5/2 as predicted by 𝑄-theory, rather than the Gaussian value 2. A similar plot for FBCs delivers the
same result once boundary sites are removed. (b) The second-moment correlation-length peak, Lee-Yang
edge, pseudocritical point and correlation function on 5D PBC lattices support the 𝑄-theory predictions
𝜉𝐿 ∼ 𝐿ϙ, ℎ1 ∼ 𝐿−ϙΔ/𝜈 , ℎ𝑐 ∼ 𝐿−3ϙ, 𝑡𝐿 ∼ 𝐿−ϙ/𝜈 and 𝐺 ∼ 𝐿−(𝑑−2ϙ) over conventional FSS (which is
equivalent to ϙ = 1 in each case).

We simulated 5D FBC Ising lattices up to 𝐿 = 40. To probe the 𝑑-dimensionality of the system, we
remove the contributions of sites close to the surfaces resulting in lattice cores of size 𝐿/2. The plot
demonstrates that this procedure changes the apparent effective critical exponent from 2 (coming from
the 4D surface sites and erroneously hinting at Gaussian behaviour) to 5/2. (In fact in figure 1(a), the
susceptibility peaks for FBC lattice cores are multiplied by 5 to bring them within the range of the plot,
but this does not affect scaling.) This supports the universality of ϙ and modified FSS at pseudocriticality.

To numerically extract the correlation length, we use the second moment of the correlation function 𝜉𝐿 .
The FSS of the correlation-length peak and the pseudocritical point are given in figure 1(b) for PBC’s
and verify the 5D scaling forms 𝜉𝐿 ∼ 𝜉𝑃𝐿

∼ 𝐿5/4 and 𝑡𝐿 ∼ 𝐿−5/2 over the Gaussian forms 𝜉𝐿 ∼ 𝐿 and
𝑡𝐿 ∼ 𝐿−2. The validity of modified FSS above 𝑑𝑐 = 4 is further confirmed for the Lee-Yang edge, which
scales as ℎ1(𝐿) ∼ 𝐿−15/4 instead of ℎ1(𝐿) ∼ 𝐿−3. The pseudocritical field scales as ℎ𝑐 (𝐿) ∼ 𝐿−15/4

instead of as 𝐿−3. (The Lee-Yang zeros are multiplied by 104 and the pseudocritical field by 200 to bring
them within the range of the plot.) The form 𝐺 ∼ 𝐿−5/2 from equation (1.12) is also verified and the
Gaussian form 𝐺 ∼ 𝐿−2 is dispelled (see also reference [12–14]). This represents a fundamental change
in our understanding of the behaviour of the correlation function in high dimensions — the hitherto
widely accepted mean field value of zero for the anomalous dimension is an effective one, holding when
the distance is measured in emergent 𝑃-space only. In terms of the more fundamental distance scale of
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𝑄-space, the anomalous dimension is negative and given by equation (1.13).
To summarize so far, above the upper critical dimension, a second notion of distance 𝜉𝑃𝐿

∼ 𝐿ϙ

emerges alongside 𝜉𝑄𝐿
∼ 𝐿 [2, 3, 5, 8, 21, 24]. Each length scale has an associated dimensionality; 𝑑 for

the fundamental 𝑄-space and 𝑑𝑐 for emergent 𝑃-space. Correlation decay is governed by the stretched
exponential (1.12) in 𝑄-space and the more usual form (1.9) in 𝑃-space. Defining 𝜈𝑃 = ϙ𝜈𝑄 = 𝜈 restores
the new hyperscaling and fluctuation-response relations (1.6) and (1.13) to the standard forms 𝜈𝐷 = 2−𝛼

and 𝜈(2 − 𝜂) = 𝛾, provided (𝐷, 𝜈, 𝜂) = (𝑑, 𝜈𝑄, 𝜂𝑄) in 𝑄-space and (𝐷, 𝜈, 𝜂) = (𝑑𝑐, 𝜈𝑃 , 𝜂𝑃) in 𝑃-space.
The thermodynamic limit is then characterized by 𝜉𝑄∞ ∼ |𝑡 |−𝜈𝑄 and 𝜉𝑃∞ ∼ |𝑡 |−𝜈𝑃 in fundamental and
emergent space and only the latter is captured by mean-field theory. Thermodynamic functions 𝑐, 𝑚 and
𝜒 and associated exponents 𝛼, 𝛽, 𝛾, 𝛿 are the same in 𝑄-and 𝑃-space since, rather than notions of length
or dimensionality, they involve sums over the lattice or integrals over the continuum.

We now turn to logarithmic corrections at the upper critical dimension itself and propose a deeper
reason behind the heuristic arguments for equation (1.2) given earlier. FSS at the upper critical dimension
exhibits multiplicative logarithmic corrections of the form [2, 21, 27, 28]

𝜉𝐿 ∼ 𝐿 (ln 𝐿)ϙ̂, (1.14)

which is not captured by the heuristic argument associated with equation (1.3). An empirical observation,
which to our knowledge has gone unnoticed in the literature3, is that the relationship

ϙ̂ =
1
𝑑𝑐

(1.15)

appears to hold for models at their upper critical dimensions: 𝑑𝑐 = 4 for the Ising and 𝑂 (𝑛) models for all
values of 𝑛; 𝑑𝑐 = 6 for 𝑚-component spin glasses for all 𝑚, as well as for percolation and the Yang-Lee
edge problem; and 𝑑𝑐 = 2𝜎 for models with long-range interactions characterised by 𝜎 [28, 29]. Models
below the upper critical dimension which exhibit logarithmic corrections, on the other hand, have ϙ̂ = 0
(e.g., the 4-state Potts and Ising models in 𝑑 = 2, the random-bond or site Ising model in 𝑑 = 2, and the
𝑛-color Ashkin-Teller model) [28, 29].

A transformation of the form 𝑥 = 𝑧ϙ from 𝑄-space to 𝑃-space is not bĳective and is therefore
associated with a loss of information, which should be taken into account. According to the Landauer
Principle, any such logically irreversible transfer of information must be accompanied by an entropy
increase [37]. Recent experiments verify that information is indeed physical and the conversion of
information to energy is possible [38, 39]. In statistical mechanics, information is measured through
Shannon or Hartley entropy, which is an extensive concept provided the system under consideration has
short-range interactions. The Hartley information content of 𝑄-space is 𝐻 = ln𝑊 where 𝑊 = (𝐿𝑑)! is
the number of ways to place 𝐿𝑑 spins on the 𝑄-lattice. Assuming the information loss is proportional to
the amount of information available, Landauer’s theory predicts the energy gain in mapping from 𝑄- to
𝑃-space is 𝜉𝑑𝑐

𝑃𝐿
𝑒𝑃𝐿

− 𝐿𝑑𝑒𝑄𝐿
= ln(𝐿𝑑!) = 𝐿𝑑 ln 𝐿𝑑 by Stirling’s approximation. Here, 𝑒𝑄𝐿

and 𝑒𝑃𝐿
are

the internal energies in 𝑄-and 𝑃-space, respectively, and, dominated by the regular part, are constant to
the leading order. Above the upper critical dimension, we have seen that we must account for long-range
correlations since ϙ > 1 and 𝜂𝑄 < 0 in 𝑄-space. We, therefore, promote the Hartley information entropy
to Tsallis’s Q-logarithmic form, so that

𝑎
𝜉
𝑑𝑐
𝑃𝐿

𝐿𝑑
− 1 ≈ 𝑏 ln�̃� 𝐿𝑑 , (1.16)

for constants 𝑎 and 𝑏. The 𝑄-logarithm, defined as ln�̃� 𝑧 = (𝑧�̃�−1 −1)/(𝑞−1), becomes a usual logarithm
in the limit 𝑞 → 1. The identification 𝑞 = 1/ϙ yields 𝜉𝑃𝐿

∼ 𝐿ϙ(1+ 𝑐𝐿−(𝑑−𝑑𝑐 ) ), recovering equation (1.3)
as the dominant behaviour when 𝑑 > 𝑑𝑐 together with the same corrections as those from the RG
treatment of the susceptibility in references [12–14]. If 𝑑 < 𝑑𝑐, equation (1.16) delivers 𝜉𝑃𝐿

∼ 𝐿 with
corrections which are swamped by the Wegner irrelevant-field terms [41–43]. In addition, the ϙ = 1 limit
delivers equation (1.15), explaining the observations made earlier for various models. This also explains
why ϙ̂ = 0 in models away from their upper critical dimensions [28, 29].

3An argument was later given in [48].
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When 𝑑 = 𝑑𝑐, the 𝑃- and 𝑄-space correlation functions (1.10) and (1.12) become 𝐺𝑃 (𝑥) ∼
𝑥−(𝑑𝑐−2+𝜂) (ln 𝑥)𝜂𝑃 and 𝐺𝑄 (𝑥) ∼ 𝑧−(𝑑𝑐−2+𝜂) (ln 𝑧)𝜂𝑄 , respectively. With 𝜉∞(𝑡) ∼ |𝑡 |−𝜈 (− ln |𝑡 |) �̂� and
𝜒∞(𝑡) ∼ |𝑡 |−𝛾 (− ln |𝑡 |) �̂� , logarithmic analogues to (1.11) and (1.13) are 𝜂𝑃 = �̂� − �̂�(2 − 𝜂) and
𝜂𝑄 = �̂� − (�̂� − ϙ) (2 − 𝜂) respectively (also see supplemental material). In condensed matter physics,
systems with long-range interactions have a lowered upper dimensionality [15, 44]. Thus three, or even
two-dimensional systems may reside above 𝑑𝑐 and be experimentally accessible. In the RG approach
to such systems, the lattice spacing has physical meaning and the physical quantities are the bare ones.
Similarly, in condensed matter, the 𝑄-space introduced here is physical, while 𝑃-space is a mathematical
construct without direct physical meaning. This is why the anomalous dimension is given by the new
equation (1.13) rather than equation (1.11).

In high-energy, fundamental-particle systems, on the other hand, the lattice spacing is an artificial
construct that regularizes quantum field theories. Continuous phase transitions, where the correlation
length (inverse mass gap) diverges, are the portals through which such theories return to the continuum
limit. Physics takes place on the length scale 𝜉𝐿 = 𝜉𝑃𝐿

and the RG philosophy is that the emergent
(renormalized) quantities are the physical, observable ones. Similarly, in 𝑄-theory, 𝑃-space is physical
spacetime which emerges via 𝑄-information-entropic, dangerous irrelevancy [4, 12–15, 23] through
Binder’s thermodynamic or correlation length [3, 4, 8, 16] (see supplemental material). Thus, a 𝑑𝑐 =

4-dimensional physical system, with length scale 𝜉𝑃𝐿
, emerges from a Euclidean field theory with length

scale 𝐿 and arbitrary dimensionality 𝑑 > 4, while the anomalous dimension is the mean-field one given
by equation (1.11).

Finally, in discussing spontaneous symmetry breaking, Coleman famously remarked that “a little man
living inside . . . a ferromagnet would have a hard time detecting the rotational invariance of the laws of
nature” [45]. We now realize that he is confronted with a similar difficulty if he attempts to measure the
dimensionality of his world. Since physics takes place on a scale associated with the emergent length,
any attempt to measure the extent of a high-dimensional universe yields 𝜉𝑃𝐿

rather than the underlying
length 𝐿 and the little person’s world will appear to have dimensionality 𝑑𝑐 = 4 rather than 𝑑. Although
we start with a highly correlated (𝜈𝑄 = ϙ𝜈𝑃 , ϙ > 1, 𝜂𝑄 < 0) 𝑑 > 4 dimensional 𝑄-space, the physical
universe necessarily emerges as a Gaussian (𝜈𝑃 = 𝜈 = 1/2, 𝜂𝑃 = 0) four-dimensional one. The extension
of hyperscaling to above four dimensions through the 𝑄-information-entropic, dangerous-irrelevant
mechanism proposed here delivers an explanation for the four-dimensionality of our physical universe
without the need for dimensional compactification or submanifold restrictions which are features of other
high-dimensional theories. 𝑄-theory, therefore, provides a mechanism for hiding the extra dimensions
that have long been suspected.

Acknowledgements: We thank Christophe Chatelain and Yurĳ Holovatch for discussions. This work is
supported by the EU FP7 IRSES Projects 269139 and 295302.
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The critiques from the referee

We received three referee reports. Two of them (say A and B) suggested the paper be submitted to
a more specialized journal, stating it was not of sufficient general interest. B agreed that “the issue of
FSS for 𝑑 > 4 certainly requires better understanding” and that our “ideas and claims might ... constitute
progress”. C said we “raise some interesting issues about scaling” and expose “an inconsistency which
may not have been pointed out before”. All this is rather positive (we all know that the general interest
issue is referee-dependent).
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The problem of “Q-entropy”

More serious is that both Referees A and C were puzzled by our derivation of equation (1.16) and our
usage of the term “Q-entropy” and Referee B was concerned that our paper lacked a “solid foundation in
terms of a viable theory”. Also, Referee C asked “Surely if I live in a seven-dimensional world, I would
be able to look out in all seven dimensions, and not think that I was living in only four dimensions?”.

As we see, the major criticism concerns the very subject of the article, and although more details
were available in the Supplemental Material that we had provided in support of our submission, this did
not convince the Referees. We gave up and did not submit the same paper anywhere else, since we agreed
eventually our hypothesis was not solid enough.

Nevertheless, I think it is useful now to provide an answer, using other insights from unpublished
material. We based the central hypothesis using a nonextensive entropic start. We were aware that
nonextensive entropy, while enjoying the support of some famous names (Gell-Mann [49]) is not
universally supported (Nauenberg [50]). Nonextensive entropy is a generalization of the traditional
Boltzmann-Gibbs entropy used in statistical mechanics. It has found applications in various fields,
including complex systems, systems with long-range interactions which depart from extensivity, and
non-equilibrium statistical mechanics (for example the volume from the Sante Fe Institute on the Sciences
of Complexity edited by Gell-Mann and Tsallis [49] is devoted to applications in complex systems). On
the other hand, nonextensive entropy has faced several critiques. One of the main critiques revolves
around its theoretical foundations and the departure from the standard principles of statistical mechanics.

Despite these caveats, since this single hypothesis is capable of explaining (i) the coincidence of the
finite-size correlation length with system size below the upper critical dimensionality (ii) the power-law
scaling 𝜉 = 𝐿ϙ above 𝑑𝑐, (iii) the multiplicative log corrections to the FSS of 𝜉 in a multitude of models
at 𝑑𝑐 and their absence in models away from 𝑑𝑐, we felt it constitutes progress.

Let us look at the problem with the elaboration of equation (1.16), but before that, a few comments
are in order to clarify the meaning of the different lengths introduced in the original submission. The
quantity called correlation length, 𝜉 (𝑡) ∼ |𝑡 |−𝜈 , is, as usual, the characteristic length appearing in the
correlation functions, e.g., that which measures the typical exponential decay of the correlations when
approaching criticality. What we denote as 𝜉𝑄𝐿

∼ 𝐿 and call characteristic length is just the physical
length associated with the lattice (Q-space) and 𝜉𝑃𝐿

∼ 𝐿ϙ, called emergent, is the finite-size critical
correlation length (in P-space). The thermodynamic length was introduced in reference [3] to account for
the fact that 𝜉𝑄𝐿

does not govern FSS in P-space. In terms of our notations, it is ℓ(𝑡) ∼ |𝑡 |−𝜈/ϙ and its
FSS counterpart was called coherence length in reference [24].

In terms of the finite-size correlation length, the volume of the system in emergent space is 𝑃 =

(𝜉𝐿/𝑥0)𝑑𝑐 while that of the physical space is 𝑄 = (𝐿/𝑧0)𝑑 . Here, 𝑥0 and 𝑧0 are lattice units.
We will show that the hypothesis

𝑃 ∼ 𝑄 or 𝜉
𝑑𝑐
𝐿

∼ 𝐿𝑑 (2.17)

is valid to first approximation (i.e., to the leading order) for 𝑑𝑐 = 4, where the symbol “∼” indicates
asymptotic proportionality (similar scaling behaviour at least to leading order). Equation (2.17) does not
constitute a full description of correlation-volume scaling because it does not capture the logarithmic
corrections in equation (1.14) which are present when 𝑑 = 4.

Moreover, the map associated with equation (2.17) is not bĳective. In particular, if ϙ > 1, a given set of
coordinates in some reference frame of the P-space is not sufficient to reconstruct a corresponding event
in the Q-space unambiguously. The loss of information in going from Q-space to P-space is associated
with the fact that long-range correlations are introduced in Q-space automatically. The reason is that even
short-range correlations between contiguous sites in P-space translate to interactions between several
non-adjacent sites in Q-space. These are consistent with the notion that 𝜉𝐿 emerges from dangerous
irrelevant variables (DIVs) and Renormalization Group (RG) (see reference [51]) but not the other way
— the RG is a semi-group, not a group. These arguments mean the information-cardinality of Q-space is
greater than that of P-space — a Q-microstate contains more information than a P-microstate.

Therefore, the RG DIV transformation from Q-space to P-space is logically irreversible in the sense
that the former cannot be uniquely determined from the latter. According to the Landauer Principle,
information is physical and the deletion of information is a dissipative process accompanied by an
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entropy increase, and conversion of information to energy is possible [52–54]. The information content
is measured through the Shannon entropy,

𝐻 = −
𝑊∑︁
𝑖=1

𝑝𝑖 ln 𝑝𝑖 , (2.18)

where 𝑝𝑖 is the probability of the particular message 𝑖 from the “message space” which contains 𝑊

messages [55]. If the microstates 𝑖 have equal probability, the information entropy becomes the Hartley
entropy [56]

𝐻 = ln𝑊. (2.19)

In the case of thermodynamic probabilities, the connection between information entropy and
thermodynamic Gibbs entropy comes by identifying the (reduced) Gibbs entropy with the amount
of Shannon information needed to uniquely determine the microscopic state of the system from its
macroscopic description.

Here, we write the total energy content of Q- and P-space as

𝐸𝑄 = 𝑄𝜖𝑄, 𝐸𝑃 = 𝑃𝜖𝑃 , (2.20)

in terms of the energy densities in each space, and these energies are expected to differ due to the difference
in their information content. In the discrete case, 𝑊 = 𝑃!/(𝑃 −𝑄)! distinct pieces of information
(messages) are required to reconstruct Q-space from P-space. The corresponding Hartley entropy is

𝐻𝑄→𝑃 = ln
𝑃!

(𝑃 −𝑄)! . (2.21)

The Landauer energy gain associated with this loss of information in going from Q-space to P-space is
𝑘B𝑇𝐻𝑄→𝑃 . Conservation of energy/information then demands that

𝐸𝑃 − 𝐸𝑄 = 𝑘B𝑇𝐻𝑄→𝑃 . (2.22)

Now, defining 𝜆 = 𝜖𝑃/𝜖𝑄 and 𝜅 = 𝑘B𝑇/𝜖𝑄, we have, using Stirling’s formula,

𝜆𝑃 −𝑄 = 𝜅(𝑃 ln 𝑃 − (𝑃 −𝑄) ln(𝑃 −𝑄) −𝑄), (2.23)

and introducing 𝑟 = 𝑄/𝑃 < 1 this becomes

𝜆𝑃 −𝑄 = 𝜅𝑄(ln 𝑃 + (1 − 𝑟−1) ln(1 − 𝑟) − 1). (2.24)

The leading contribution reads as 𝜆𝑃 − 𝑄 ≃ 𝜅𝑄 ln 𝑃 [then, 𝑟 ≃ 1/(𝜅 ln 𝑃) and (1 − 𝑟−1) ln(1 − 𝑟) ≃ 1],
which can be iterated to produce

𝜆𝑃 −𝑄 ≃ 𝜅𝑄 ln 𝑃

≃ 𝜅𝑄(ln𝑄 + ln ln𝑄 + . . . )

≃ 𝜅𝑄 ln𝑄
(
1 + O

( ln ln𝑄
ln𝑄

))
. (2.25)

Note that the dominant 𝑄 term is not that on the left which we started with. Instead, it is the newly arising
term coming from the information entropy – the term on the right.

At 𝑑 = 𝑑𝑐 = 4, inserting 𝑃 ∼ 𝜉4
𝐿

and 𝑄 ∼ 𝐿4 into equation (2.25) recovers equation (1.14) with

ϙ̂ = 1/𝑑𝑐 = 1/4. (2.26)

To deal with the 𝑑 > 4 case, we have to take the character of the interactions on the two spaces
into account. We started with a model in Q-space with only nearest-neighbor interactions. Long-range
correlations emerge in Q-space (𝜂𝑄 < 0 and ϙ > 1) but not in P-space (𝜂𝑃 = 0). Therefore, the
long-ranged correlations are a property of the Q-lattice, not a property of the spin interactions, which
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remain short-range. To take this into account, we promote the measure of information content to Tsallis’
𝑞-entropy [49]. A minimalist way to do this is to promote the entropic logarithm in equation (2.25) to a
𝑞-logarithm:

𝜆𝑃 −𝑄 ≃ 𝜅𝑄 ln�̃� 𝑄, (2.27)

where

ln�̃� 𝑄 =
𝑄�̃�−1 − 1
𝑞 − 1

(2.28)

which delivers the ordinary logarithm when 𝑞 → 1. Equation (2.27) is then equation (1.16) in the form

𝜆𝜉
𝑑𝑐
𝐿

≃ 𝜅𝐿𝑑 ln�̃� (𝐿𝑑) + 𝐿𝑑 . (2.29)

The value of 𝑞 is chosen to recover equation (1.2) to the leading order, as well as the main corrections to
scaling calculated by Luĳten and Blöte [57]. In the case of the susceptibility they got

𝜒𝐿 ≃ 𝐿𝑑/2(𝑎0 + 𝑎1𝑡𝐿
𝑑/2 + 𝑏1𝐿

4−𝑑 + . . . ), (2.30)

where 𝑡 ∼ 𝐿4−𝑑−𝑑/2, i.e. 𝜒𝐿 ∼ 𝐿𝑑/2(1 + 𝑐𝐿4−𝑑 + . . . ). In the case of the correlation length, this would
translate into

𝜉𝐿 ∼ 𝐿𝑑/4(1 + 𝑐𝐿4−𝑑 + . . . ). (2.31)

This is exactly what we get using 𝑞 = 1/ϙ.

The problem with FBCs

Referee B did not feel “that a coherent and viable FSS theory has been developed for free boundary
conditions”. Referee C suggested checking the rounding exponent alongside the other exponents. We had
done this, and we confirmed the Referee’s expectation that both the rounding and shifting exponents are
𝑑/2 for PBCs and for FBCs we confirmed the Referee’s expectation that the shift exponent is 2 and the
rounding exponent is 𝑑/2. The Referee’s motivation here was that, if the shift is bigger than the rounding,
𝑇𝑐 will be too far from 𝑇𝐿 to “feel” the peak — which will be outside the FSS zone. This would explain
why, even if 𝜒𝐿 (𝑇𝐿) (at the pseudocritical point) scales as 𝐿𝑑/2 for FBCs, 𝜒𝐿 (𝑇𝑐) (at the critical point)
may scale differently, like 𝐿2 at 𝑇𝑐, and may rescue Gaussian FSS at 𝑇𝑐 for FBC.

We had checked this explicitly too and we found that in 5D 𝜒𝐿 (𝑇𝑐) (at the critical point with FBCs)
scales as 𝐿1.71(2) using all sites of the Q-lattices or 𝐿1.92(2) using only sites at the core of the lattices.
This was close to, but not quite the Gaussian behaviour expected by the Referee. Therefore, we had not
been able to confirm the Referee’s expectation that it is Gaussian at criticality. Specifically, we were able
to claim, in our revised version that (i) Q-space systems with PBCs and 𝑑 > 𝑑𝑐 are not Gaussian either
at criticality or at pseudocriticality. Instead ϙ = 𝑑/𝑑𝑐 governs modified FSS. This was in agreement with
Luĳten’s and Blöte’s numerics in the PBC case at criticality [58]. (ii) Q-space 𝑑 > 𝑑𝑐 systems with
FBCs are not Gaussian at the pseudocritical point. Instead, ϙ = 𝑑/𝑑𝑐 governs modified FSS there. Thus,
pseudocriticality with FBCs is essentially the same as pseudocriticality with PBCs and obeys modified
FSS. (iii) Q-space 𝑑 > 𝑑𝑐 systems with FBCs may or may not be Gaussian at the critical point, but with
currently available lattices our numerics were not supportive of Gaussian behaviour there. The question
went on attracting the attention of the community later [59, 60], and even recently, Ralph was still involved
in trying to solve this difficult question [61]. (iv) All 𝑑 > 𝑑𝑐 systems in P-space are Gaussian, as per
Landau theory.

Since 2012

Since 2012, a few papers that I consider as important in the field have been published, clarifying, or
completing some of the perspectives presented in the present paper.

As far as I know, Wittmann and Young [62] were the first to study the FSS of Fourier modes in
high dimensional Ising models. They have shown that the modified FSS that allows for violation of
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hyperscaling due to a dangerous irrelevant variable applies only to k = 0 fluctuations, and that “standard”
FSS applies to k ≠ 0 fluctuations. Nevertheless, the denomination of “standard” was referring to Landau
scaling while an elucidation in references [60, 63] has shown that this should be understood as Gaussian
Fixed Point scaling.

The universality class of the percolation problem above its upper critical dimension 𝑑𝑐 = 6 was
studied from the perspective of the role of the dangerous irrelevant variable in systems with PBCs and
FBCs in reference [64].

After the spectacular work of Luĳten [58] in 1997, the case of the logarithmic corrections of the Ising
Model exactly at 𝑑𝑐 = 4 was revisited very convincingly recently by Lv et al. [65].

The work of Langheld et al. [66] has extended Q-FSS to quantum systems in a remarkable manner.
The study was performed in the case of a finite 𝑑-dimensional Transverse Field Ising Model (TFIM),
a quantum system of Pauli spin operators interacting in nearest neighbours, ∼ 𝜎𝑧

𝑖
𝜎𝑧
𝑗

(the long-range
interacting case was also considered), with an additional transverse interaction ∼ ℎ𝜎𝑥

𝑖
. The quantum

time evolution plays the role of an additional space dimension for the classical analogue 𝐿𝑑 × ∞ of
dimension 𝐷 = 𝑑 + 1. For the 𝑑-dimensional quantum system, the upper critical dimension is thus
𝑑𝑐 = 3 = 𝐷𝑐 − 1 and the exponent ϙ takes the value ϙ = 𝑑/3 = (𝐷 − 1)/(𝐷𝑐 − 1) which differs from
a 𝐷-dimensional classical analogue for which one would have ϙcl = 𝐷/4. The hyperscaling relation
also needs to be rewritten. 𝑑-dimensional classical systems below their upper critical dimension have
2 − 𝛼 = 𝜈𝑑. 𝑑−dimensional quantum systems have 2 − 𝛼 = 𝜈(𝑑 + 𝑧) in terms of the anisotropy exponent
(that distinguishes the time direction from the spatial ones), and above their upper critical dimension,
quantum systems have 2 − 𝛼 = 𝜈( 𝑑

ϙ
+ 𝑧).

Random field Ising models above their upper critical dimension (𝑑𝑐 = 6) in 𝑑 = 7 were studied very
recently by Fytas et al. in reference [67] where the anomalous FSS of the correlation length 𝜉𝐿 ∼ 𝐿

7
6 was

confirmed for the first time in a disordered system.

Some personal thoughts

A scientist leaves a mark through his scientific production, and his articles, but also through how he
has left his mark on the people he has encountered, his students, and his colleagues. Ralph is certainly
one of those people whose memory will stay with us for a long time. I think he would have been happy
to have this article published and I don’t think I’m betraying his wishes by submitting it to Condensed
Matter Physics.

Acknowledgement

I thank Jean-Charles Walter for having accepted the publication of this previously unpublished paper,
Thierry Platini for the wonderful photo, and my friends Olesya, Reinhard and Yurko, the editors of this
issue for their support. I thank Ernesto Medina for the comforting discussions we had during this period
full of contradictory emotions and Tim Ellis for his nice words. Of course, I also want to express here my
deepest support for Claire and Roísín. Roísín, you can be proud of what your father has accomplished.

References
46. Kenna R., Berche B., Condens. Matter Phys., 2013, 16, 23601, doi:10.5488/CMP.16.23601.
47. Kenna R., Berche B., Europhys. Lett., 2014, 105, 26005, doi:10.1209/0295-5075/105/26005.
48. Ruiz-Lorenzo J. J., Condens. Matter Phys., 2017, 20, 13601, doi:10.5488/CMP.20.13601.
49. Gell-Mann M., Tsallis C. (Eds.), Nonextensive Entropy Interdisciplinary Applications, Oxford University Press,

2004.
50. Nauenberg M., Phys. Rev. E, 2003, 67, 036114, doi:10.1103/PhysRevE.67.036114.
51. Berche B., Ellis T., Holovatch Yu., Kenna R., SciPost Phys. Lect. Notes, 2022, 60, 1–44,

doi:10.21468/SciPostPhysLectNotes.60.
52. Landauer R., IBM J. Res. Dev., 1961, 5, 183–191, doi:10.1147/rd.53.0183.

33602-13

https://doi.org/10.5488/CMP.16.23601
https://doi.org/10.1209/0295-5075/105/26005
https://doi.org/10.5488/CMP.20.13601
https://doi.org/10.1103/PhysRevE.67.036114
https://doi.org/10.21468/SciPostPhysLectNotes.60
https://doi.org/10.1147/rd.53.0183


R. Kenna, B. Berche

53. Toyabe S., Sagawa T., Ueda M., Muneyuki E., Sano M., Nat. Phys., 2010, 6, 988–992,
doi:10.1038/NPHYS1821.

54. Bérut A., Arakelyan A., Petrosyan A., Ciliberto S., Dillenschneider R., Lutz E., Nature, 2012, 483, 187–190,
doi:10.1038/nature10872.

55. Shannon C. E., Bell Syst. Tech. J., 1948, 27, 379–423, doi:10.1002/j.1538-7305.1948.tb01338.x.
56. Hartley R. V. L., Bell Syst. Tech. J., 1928, 7, 535–563, doi:10.1002/j.1538-7305.1928.tb01236.x.
57. Luĳten E., Blöte H. W. J., Phys. Rev. B, 1997, 56, 8945, doi:10.1103/PhysRevB.56.8945.
58. Luĳten E., Ph.D. Thesis, Delft University, 1997.
59. Lundow P., Markström K., Nucl. Phys. B, 2014, 889, 249, doi:10.1016/j.nuclphysb.2014.10.011.
60. Flores-Sola E., Berche B., Kenna R., Weigel M., Phys. Rev. Lett., 2016, 116, 115701,

doi:10.1103/PhysRevLett.116.115701.
61. Honchar Yu., Berche B., Holovatch Yu., Kenna R., Preprint arXiv:2311.11721, 2023.
62. Wittmann, M., Young A. P., Phys. Rev. E, 2014, 90, 062137, doi:10.1103/PhysRevE.90.0621378.
63. Flores-Sola E. J., Berche B., Kenna R., Weigel M., Eur. Phys. J. B, 2014, 88, 1–8,

doi:10.1140/epjb/e2014-50683-1.
64. Kenna R., Berche B., J. Phys. A: Math. Theor., 2017, 50, 235001, doi:10.1088/1751-8121/aa6bd5.
65. Lv J. P., Xu W., Sun Y., Chen K., Deng Y., Natl. Sci. Rev., 2021, 8, nwaa212, doi:10.1093/nsr/nwaa212.
66. Langheld A., Koziol J. A., Adelhardt P., Kapfer S. C., Schmidt K. P., SciPost Phys., 2022, 13, 088,

doi:10.21468/SciPostPhys.13.4.088.
67. Fytas N. G., Martín-Mayor V., Parisi G., Picco M., Sourlas N., Phys. Rev. E, 2023, 108, 044146,

doi:10.1103/PhysRevE.108.044146.

Про одну неопублiковану роботу з Ральфом Кенною

Р. Кенна 1,3, Б. Берш2,3

1 Центр дослiдження рiдин i складних систем, Унiверситет Ковентрi, Англiя
2 Лабораторiя теоретичної фiзики та хiмiї, CNRS – Унiверситет Лотарингiї, UMR 7019, Нансi, Францiя
3 Колаборацiя L4, Ляйпциг-Лотарингiя-Львiв-Ковентрi, Європа

Це частина неопублiкованої роботи у спiвпрацi з Ральфом Кенною. Ймовiрно, вона була ще недостатньо
зрiлою на момент подання понад десять рокiв тому. Вiдтак, її вiдхилили редактори, але деякi iдеї пiзнiше
були частково опублiкованi у наступних роботах. Я вважаю, що ця “чернетка” дуже багато розповiдає про
ентузiазм та смiливiсть Ральфа i тому заслуговує на публiкацiю зараз, можливо, як частина його спадщини.
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