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In this paper we investigate a model of consensus decision making [Hartnett A. T., et al., Phys. Rev. Lett., 2016,
116, 038701] following a statistical physics approach presented in [Sarkanych P., et al., Phys. Biol., 2023, 20,
045005]. Within this approach, the temperature serves as a measure of fluctuations, not considered before in
the original model. Here, we discuss the model on a complete graph. The main goal of this paper is to show that
an analytical description may lead to a very rich phase behaviour, which is usually not expected for a complete
graph. However, the variety of individual agent (spin) features— their inhomogeneity and bias strength— taken
into account by the model leads to rather non-trivial collective effects. We show that the latter may emerge in
a form of continuous or abrupt phase transitions sometimes accompanied by re-entrant and order-parameter
flipping behaviour. In turn, this may lead to appealing interpretations in terms of social decision making. We
support analytical predictions by numerical simulation. Moreover, while analytical calculations are performed
within an equilibrium statistical physics formalism, the numerical simulations add yet another dynamical feature
— local non-linearity or conformity of the individual to the opinion of its surroundings. This feature appears to
have a strong impact both on theway inwhich an equilibrium state is approached aswell as on its characteristics.
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In memory of Ralph Kenna: wonderful person,
brilliant physicist, and very dear friend.

1. Introduction

Collective behaviour is a fascinating phenomenon exhibited by a wide range of biological taxa, ranging
from social insects [1, 2] to humans crowds [3]. Different evolutionary benefits of being in a group have
been discussed in the literature, such as increased predator protection or improved foraging success [4, 5].
Many of these benefits can be traced back to collective information processing and collective decision
making, i.e., the ability of animal collectives to process and pool information gathered by individuals
through social interactions, and to make accurate consensus decisions in a fully distributed fashion [6–9].
The corresponding remarkable capability of collectives to outperform even the best individuals within
the group led to the introduction of terms “collective intelligence” or “wisdom of crowds”.
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From a statistical physics point of view, the process of an initially undecided group choosing one option
among multiple available ones (typically two), corresponds to a symmetry-breaking phase transition [10].
Therefore, spin models provide a natural and well established theoretical framework to study the self-
organised collective decision making in systems of many interacting agents [11, 12]. In 2016, Hartnett et
al. [13] suggested a spin model for binary collective decision making in heterogeneous collectives,
consisting of subgroups with different biases towards one of the two options. The modelling work was
inspired by previous experimental and theoretical results on the decisive role of unbiased individuals in
the system as “mediators” between subgroups with opposing biases. In the original publication, the model
was studied on the lattice, which demonstrated a rich phenomenology. Recently, we have shown that the
consideration of the model on a complete graph enables an analytical investigation of the consensus
states in the thermodynamic equilibrium [14]. Here, we build on this previous work, and demonstrate
how a systematic analysis of the steady-state dynamics exhibits a rich behaviour, even on the complete
graph. Our particular focus lies on the role of temperature, not considered when the original model was
introduced.

In the next section, we provide a more in-depth discussion of the model, before turning to the
theoretical predictions and to the results of numerical simulations.

2. The model: agent-individual features and local decision making rules

The model suggested by Hartnett et al. [13] to describe consensus decision making in a group of
agents rests on two main ingredients, which are meant to account for agent heterogeneity and for the
non-linearity governing their local interaction dynamics. Below we explain them more in detail.

2.1. Heterogeneity: a bias in the preferred state

Let us consider a process of reaching consensus in a group of 𝑁 agents, each being able to attain
two opinions (states) 𝑆𝑖 = ±1, 𝑖 = 1, . . . , 𝑁 . To account for agent heterogeneity, let us attribute an
additional feature to each of them, reflecting agent bias in the preferred state and representing the
strength of an individual opinion. Below, we call the biased agents the ‘informed’ ones, assuming that
their bias originates from the information about a preferred opinion/state. In turn, unbiased/uninformed
agents do not have any individual preference. This feature is described by a three-state random variable
𝜔𝑖 = {𝜔0, 𝜔+, 𝜔−}. The value 𝜔0 = 1 corresponds to an unbiased agent (no preferred states), whereas
𝜔+ > 1 and 0 < 𝜔− < 1 correspond to agent preferences/biases to the 𝑆𝑖 = +1 and 𝑆𝑖 = −1 opinions,
respectively. Note that for the negatively biased agents, a smaller 𝜔− corresponds to a stronger bias
towards the opinion 𝑆𝑖 = −1. The individual biases are randomly and uniformly distributed with densities
𝜌0, (1 − 𝜌0)𝜌+, (1 − 𝜌0)𝜌− , where 𝜌+ + 𝜌− = 1 are partial densities of biased agents and 𝜌0 ⩽ 1 is the
density of unbiased/uninformed ones. See also figure 1.

Agents interact via the local social field ℎ𝑖 that acts on each of them and is defined based on the
opinions of the neighbourhood:

ℎ𝑖 =
𝜔𝑖𝑛

+
𝑖
− 𝑛−

𝑖

𝜔𝑖𝑛
+
𝑖
+ 𝑛−

𝑖

. (1)

Here, 𝑛±
𝑖

are numbers of the 𝑖-th agent nearest neighbours with the opinion +1 or −1, correspondingly.

2.2. Local non-linearity: conformity to the neighbouring opinion

Being 𝜔-dependent, the social field (1) is distorted by an individual bias: it is enhanced when
the neighbours are of the same opinion as the agent bias and it is weakened when these opinions do
not coincide. Such an effect is known as a confirmation bias, widely discussed in the literature [15, 16].
However, in general, an individual can respond to a given social field in different ways. Possible diversities
of such a response constitute another ingredient of the model. To this end, to interpret the model evolution
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(a) (b)

Figure 1. (Colour online) In the model we consider, each of 𝑁 agents 𝑆1, . . . , 𝑆𝑁 is able to attain one
of the two contradicting opinions: 𝑆𝑖 = ±1 (𝑁 = 4 in the figure). Besides, each agent 𝑖 can have a
bias 𝜔𝑖 towards any opinion or can be unbiased: 𝜔𝑖 = {𝜔+, 𝜔− , 𝜔0}. Agent biases and initial opinions
are randomly distributed and fixed in a given configuration. The biases remain unchanged, these are
individual opinions that change when the consensus is reached under the influence of a social field,
equation (1), experienced by each agent. (a) Agents are located on a 2D square lattice, only the nearest
neighbours emanate social field for a given agent (the case originally suggested in reference [13]). (b) Each
agent experiences social field emanated by all other agents (the case analysed in reference [14] and in
this paper).

as consensus decisions making, an algorithm has been proposed that probabilistically defines the state of
an agent 𝑖 at time 𝑡 + 1 by its social field ℎ𝑖 at time 𝑡 with the help of the probability function

𝐺𝑖 =
1
2

[
1 + tanh(𝑏ℎ𝑖)

tanh(𝑏)

]
, (2)

with the nonlinearity parameter 𝑏. Within the consensus making dynamics, agents in state 𝑆 = −1
switch to the state 𝑆 = +1 with a probability 𝐺𝑖 and agents in state 𝑆 = +1 switch to the state 𝑆 = −1
with a probability 1 − 𝐺𝑖 . When the bias is absent (all 𝜔𝑖 = 1), equation (2) in the limiting cases
𝑏 = 0 and 𝑏 = ∞ reproduces dynamics rules of the classical voter [17, 18] and majority-rule [19] models,
correspondingly. Its behaviour is further sketched in figure 2. Since function𝐺𝑖 describes agents’ reaction
on the opinions/states of its neighbours, it may be also interpreted in terms of agent conformity, i.e.,
its tendency to align with the opinions of its surroundings. As one sees from figure 2, such a reaction
is governed by parameter 𝑏 in a non-trivial way, thus allowing to treat 𝑏 as a non-linearity parameter,
further discussed below.

Taking into account the agent non-homogeneity and local non-linearity allowed to unveil fundamental
mechanisms that govern the decision making dynamics also in living systems. In particular, it has been
shown [13] that uninformed (unbiased) agents may play a key role in the decision making process while
the final collective state is strongly dependent on the non-linearity of local interactions. Originally, the
model was described in terms of a generalised voter model, by suggesting a cellular automata algorithm
to run its evolution. In our recent paper we pushed forward an analogy between the decision making
process and the phase transition into the ordered state and suggested a statistical physics description,
writing down the many-particle Hamiltonian governing the inter-agent interactions [14]. In terms of such
a description, temperature serves as a measure of fluctuations, not considered before in the original model.
It appeared that different Hamiltonians that capture principal features of the above described algorithm
can be suggested. In what follows below we use one of such Hamiltonian descriptions to show that the
interplay of agent bias and conformity — their inhomogeneity and non-linearity — taken into account
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Figure 2. (Colour online) Behaviour of the probability function 𝐺 [equation (2)] for different values of
the social field ℎ and of the non-linearity parameter 𝑏. Note that by definition [equation (1)] the social
field is bounded in the region −1 ⩽ ℎ ⩽ 1. (a). At small 𝑏, the dependency on ℎ is almost linear, this
changes to the sigmoid form with an increase of 𝑏, finally resulting in a step-like function for large 𝑏.
(b). At large |ℎ | ∼ 1, the function does not depend on 𝑏: 𝐺𝑖 ∼ 1, 𝐺𝑖 ∼ 0 for ℎ ∼ ±1, correspondingly.
With a decrease of |ℎ |, 𝐺 strongly discriminates between large and small 𝑏, whereas for small |ℎ| ∼ 0 it
attains a monotonous behaviour reaching 𝐺 = 1/2 at ℎ = 0.

by the model leads to rather non-trivial collective effects that were not observed so far.

3. Complex behaviour from simple assumptions

3.1. Equilibrium state. Analytic results for the phase diagram

In reference [14] we have complemented an analysis of the algorithmic model described above for
opinion formation by using the approach of statistical physics. Doing so, on the one hand, we had the
intention to push the physical analogy of the process of opinion formation even further; on the other
hand, we had in mind to open an avenue to explore the influence of possible noise/random fluctuations
in the agent behaviour on the entire process. This last aim can be achieved by interpreting a temperature
variable as a source of such noise. One of the Hamiltonians that is suggested in reference [14] (and called
the social-field Hamiltonian there) reads:

𝐻 = −
𝑁∑︁
𝑖=1

ℎ𝑖𝑆𝑖 , (3)

where the local field ℎ𝑖 is given by equation (1) and 𝑆𝑖 = ±1, as before. In this Hamiltonian, the interaction
between spins 𝑆𝑖 occurs via the field ℎ𝑖 that is emanated by its neighbours. Note, however, that the ‘social
field’ (1) is introduced in the algorithm by the update rule (2). The last, in turn, involves the conformity
parameter 𝑏 which is of course absent in the equilibrium statistical physics settings. We will comment
more on that later.

Considering the model Hamiltonian (3) on the complete graph when each agent is a subject of a social
field emanated by all other agents (see figure 1 b), we used the mean-field approach to obtain expressions
for the thermodynamic functions in a closed form. In particular, the obtained Gibbs free energy per site
reads:

−𝛽𝑔(𝛽) = 𝜌0 log[cosh(𝛽𝑚)] + (1 − 𝜌0)𝜌+ log[cosh(𝛽ℎ+)] + (1 − 𝜌0)𝜌− log[cosh(𝛽ℎ−)], (4)

where 𝛽 = 1/(𝑘B𝑇) is an inverse temperature, 𝑘B is the Boltzmann constant, and the equilibrium
magnetisation per site (consensus opinion) 𝑚 = 𝑚(𝛽) is found from the solution of the self-consistency
relation:

𝑚(𝛽) = 𝜌0 tanh(𝛽𝑚) + (1 − 𝜌0)𝜌+ tanh(𝛽ℎ+) + (1 − 𝜌0)𝜌− tanh(𝛽ℎ−), (5)
with fields

ℎ± =
(𝜔± + 1)𝑚 + 𝜔± − 1
(𝜔± − 1)𝑚 + 𝜔± + 1

. (6)
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In what follows below, we aim to show that the thermodynamics of a model governed by the
Hamiltonian (1) is characterised by a rich phase behaviour, which is usually not expected for models on a
complete graph. Such a behaviour is due to the variety of individual agent (spin) features — in this case,
it is their inhomogeneity caused by bias strength — taken into account by the model. To demonstrate this,
we will have a closer look on numerical solutions of a transcendental equation (5) for several choices of
model parameters (𝜌𝑖 , 𝜔𝑖). These case studies may be further interpreted as: two weakly biased groups
of similar size; strongly biased minority and weaker majority; confronting strongly biased groups. The
main difference between these three cases is the ratio between the bias strength 𝜔+ and 𝜔− , as well as
the composition of the system governed by densities (𝜌0, 𝜌+, 𝜌−).1 We will have a closer look on the
equilibrium properties of each of these three special cases in the following subsections.

3.1.1. Competition between two weakly biased groups of similar size

We will illustrate this case by choosing 𝜌+ = 0.6, 𝜌− = 0.4 and 𝜔+ = 1.5. Here, we purposely allow
𝜌0 and 𝜔− to change to examine how they affect the equilibrium properties. It was earlier shown [13]
that unbiased individuals help the system to reach the consensus. Therefore, in figure 3(a), we show
how equilibrium magnetisation (consensus opinion) depends on the temperature for different values of
𝜌0 = [0, 1] and fixed 𝜔− = 0.7. In the limiting case 𝜌0 = 1, all the agents are unbiased, thus the system
reverts to the standard Ising model. It has a twofold degeneracy of the ground state dictated by the
symmetry of the 𝑆 = +1 and 𝑆 = −1 states. For this plot, we omit the negative branch for clarity reasons.
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Figure 3. (Colour online) Equilibrium magnetisation as a function of temperature in the case when the
system consists of weakly biased groups comparable by size. The behaviour is identical to the Ising
model in an external magnetic field. (a) The effect that the fraction of unbiased individuals has on the
consensus opinion between two weakly biased groups comparable by size. As the fraction of unbiased
individuals 𝜌0 increases, the equilibrium magnetisation decreases. Only in the limiting case 𝜌0 = 1 the
system undergoes the second order phase transition. (b) The effect of the bias of the smaller subgroup has
on the consensus formation between two weakly biased groups comparable by size. When the smaller
subgroup biased towards 𝑆 = −1 has a stronger bias (low values of 𝜔−) it manages to shift the consensus
opinion to the negative values of magnetisation. Otherwise, the majority dictates the decision. It is similar
to the change of a sign of the effective external magnetic field.

Based on the curves in figure 3(a), one can tell that for small temperatures the difference in equilibrium
magnetisation is very small and becomes more pronounced as temperature rises. Furthermore, the
introduction of biased individuals destroys the phase transition that exists in the Ising limiting case
making the system behave like the Ising model in an external magnetic field, i.e., there is always some
finite magnetisation for any finite temperature. The higher the fraction of unbiased individuals, the smaller
is the resulting magnetisation for a fixed temperature.

1Note that 𝜔+ and 𝜔− are used on inverse scales, thus in order to understand which subgroup has stronger bias, one has to
compare 𝜔+ and 1/𝜔− . In addition only two out of three densities are independent as 𝜌+ + 𝜌− = 1.
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In figure 3(b) we examine the effect of the bias on the consensus opinion. To this end, we fix 𝜌0 = 0.7
and plot magnetisation as a function of temperature for 𝜔− = [0.1, 1]. In the case of strong bias (low
values of𝜔−), the consensus opinion is aligned with the 𝑆 = −1 state, while for weaker biases the majority
𝜌+ > 𝜌− favouring 𝑆 = +1 wins. Similarly to figure 3(a) the system behaves like the Ising model in the
external field, with a small exception that in a narrow range 0.54 ⩽ 𝜔− ⩽ 0.55 a first order transition
occurs. This effect will be addressed in the next subsection.

3.1.2. Competition between strongly biased minority and weaker majority

For this case, we will assume that our agents have stronger biases than in the previous case and their
densities are comparable but not equal. Obviously, if the dominating subgroup has a stronger bias, it
dictates the consensus opinion. Therefore, we will consider the case where the larger subgroup has a
slightly weaker bias than the smaller subgroup. In the following example we consider 𝜌+ = 0.6, 𝜌− = 0.4,
𝜔+ = 2, varying parameters 𝜌0 and 𝜔− .
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Figure 4. (Colour online) Equilibrium magnetisation as a function of temperature in the case when the
system consists of a larger subgroup with the weaker bias and a smaller subgroup with a stronger bias. In
this case, the system may undergo a first order phase transition. (a) The effect that the fraction of unbiased
individuals has on the consensus opinion within strongly biased minority and weaker majority. Similarly
to the previous case shown in figure 3(a), an increase in the number of unbiased individuals results in a
more aligned equilibrium state for the temperature range outside transition region. For low values of 𝜌0,
the system undergoes a first order phase transition. While for large values of 𝜌0, the transition disappears.
(b) The effect that the bias of the smaller subgroup has on the consensus opinion within strongly biased
minority and weaker majority. When the smaller subgroups bias is significantly stronger than the larger
subgroups, the consensus opinion shifts to the negative values of magnetisation. Otherwise, the majority
wins. Only in a very narrow range of 𝜔− one can observe a first order phase transition. Otherwise, the
behaviour is similar to that of the Ising model in an external field.

In figure 4(a) we show how unbiased individuals affect the consensus opinion in a system with a
stronger minority and weaker majority. For low temperatures, the system resides in a state with strong
negative magnetisation, which can be interpreted as the stronger minority dictating the consensus.
As the temperature increases, the system undergoes a first order phase transition from the state with
strong negative magnetisation to the state with weak positive magnetisation. With a further increase in
temperature, the system approaches the state 𝑚 = 0, although no phase transition occurs at this point.

We observe this kind of phase transition only for small values of the fraction of unbiased individuals.
As 𝜌0 increases, the transition disappears and the system starts to behave similarly to the Ising model in
an external field. The jump in magnetisation, or equivalently the latent heat, decreases with an increase
in the number of unbiased individuals. This correlates well with the aforementioned conclusion from
reference [13] that unbiased individuals help in reaching a consensus.

In figure 4(b), the effect of the minority’s bias on the consensus is shown. When the bias is strong
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(low values of 𝜔−) the minority dictates the opinion for all values of the temperature. On the other hand,
if the minority is not strong enough, the resulting opinion is completely in the positive 𝑚 semi-plane.
Only for a small range of 𝜔− , a transition occurs. In order to observe this kind of behaviour, two factors
must be met: the fraction of unbiased individuals 𝜌0 should be small, and the biases of two competing
subgroups 𝜔+ and 𝜔− must be fine-tuned.

3.1.3. Decision making in two confronting strongly biased groups

The third case we consider is the system where two opposing subgroups have very strong biases.
To this end, we set 𝜌+ = 0.7, 𝜌− = 0.3 and 𝜔+ = 10. Similarly to the previous two cases, we keep an
asymmetric distribution between the positively biased and negatively biased subgroups.
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Figure 5. (Colour online) Equilibrium magnetisation as a function of temperature in the case when the
system consists of two confronting subgroups with very strong biases. In this case, for some sets of
parameters the system might undergo a re-entrant phase transition. (a) The effect that the fraction of
unbiased individuals has on the consensus opinion within two very strongly biased subgroups. Similarly
to the previous case shown in figure 4(a), an increase in the number of unbiased individuals results in
a more aligned equilibrium state for the temperature range outside the transition region. For low values
of 𝜌0, the system undergoes a re-entrant phase transition when for a short range of temperatures the
system jumps from a positive magnetisation semi-plane to negative values of 𝑚, while for large values
of 𝜌0, the transition disappears. Another interesting aspect is the existence of a temperature for which
the equilibrium opinion does not depend on 𝜌0. (b) The effect that the bias of the smaller subgroup has
on the consensus formation between two very strongly biased subgroups. For very low values of 𝜔− as
well as for larger ones, only a single first order phase transition is observed, while the re-entrant phase
transition occurs in a narrow range of 𝜔− .

In figure 5(a) we show how the fraction of unbiased individuals changes the equilibrium magnetisation
dependency on temperature. On the one hand, like in the previous two cases, an increase in 𝜌0 results
in a more aligned consensus opinion. However, this is only the case up to a certain temperature, starting
from which the trend is the opposite: an increase in 𝜌0 decreases the magnetisation. On the other hand, as
temperature increases, the system undergoes two consecutive phase transitions from large positive values
of 𝑚 to large negative values and then back to large positive values. This re-entrant phase transition is a
new feature inherent to this case and not observed in the previous two cases. Similarly, as 𝜌0 becomes
large, both phase transitions disappear. Unfortunately, the phase with large negative magnetisation is only
present for a very small temperature region, making it very hard to observe in simulations (as we will see
later).

Another interesting aspect of figure 5(a) is that there exists a temperature for which the equilibrium
magnetisation does not depend on the fraction of unbiased individuals: the intersection of all curves in
the figure.

In figure 5(b) we examine the effect that 𝜔− has on the equilibrium magnetisation. For 𝜔− =
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[0.01, 0.04], a single first order phase transition takes place between the state with large negative
magnetisation and a state with positive magnetisation. Similarly, for 𝜔− = [0.07, 0.1], there is only one
first order transition, but it occurs between two states with positive magnetisation. In the intermediate
region illustrated by 𝜔− = 0.05 and 𝜔− = 0.06 one can observe a re-entrant phase transition when,
with the increase in temperature, the system jumps from a state with large positive magnetisation to the
state with large negative magnetisation and as the temperature further increases it jumps back to the
positive 𝑚 semi-plane. As 𝜔− increases, the region where the phase with negative magnetisation can be
observed decreases until it totally vanishes and the 𝑚(𝑇) dependency is characterised by a single first
order transition.

3.2. Evolution to steady state. Numerical simulations

In order to investigate collective decision making dynamics as well as the final stationary states,
we performed numerical simulations of the model following the general setup discussed in [14]. The
collective decision making process of the original model [13] is stochastic due to the probabilistic
interaction mechanism: An agent aligns with its neighbours’ social opinion field with the sigmoidal
probability function 𝐺𝑖 given in equation (2). The nonlinearity parameter 𝑏 controls the steepness of the
sigmoidal function.

In particular, we expanded the original model of Hartnett et al. [13] by an additional noise process
to explicitly control the stochasticity, and thus the effective temperature, of the decision making process,
independent of the interaction. Via this noise process, an agent has a probability 𝑝noise of switching from
state ±1 to ∓1 within a time step. For 𝑝noise = 0, the original model on a complete graph is recovered.
Even though the temperature and the noise parameter are related, this relation is rather qualitative: an
increase in temperature plays the role similar to an increase in 𝑝noise.

In individual-based model simulations, we necessarily always simulate a finite system. Thus, besides
testing the theoretical predictions in the thermodynamic limit, our simulations also allow us to study
potential finite size effects, such as relaxation towards long-lived meta-stable states, resulting in a co-
existence of different steady states and dependence on initial conditions [14]. Therefore, in addition to
the steady-state average opinion state (magnetisation 𝑚), we also evaluate its standard deviation across
many realisations to quantify the variability of the collective decision process due to noise and finite size
effects.

3.2.1. Numerical implementation

The computer model used for numerical simulations was implemented in the Utopia modelling
framework [20–22], which handles the simulation configuration, parallelised parameter sweeps as well
as efficiently reading, writing, and evaluating high-dimensional simulation output. The model itself was
implemented in modern C++ and uses a graph data structure to allow representing arbitrary topology,
while also including performance improvements for the algorithmically simpler complete graph scenario.
The model implementation can be found online, see [23].

At the beginning of each realisation, agents are grouped according to 𝜌0 and 𝜌± and respective bias
values 𝜔0 = 1 or 𝜔± are assigned. Each agent is randomly assigned a magnetisation 𝑆𝑖 so that the average
magnetisation matches the specified 𝑚0 := 𝑚(𝑡 = 0) initialisation parameter. During the model iteration,
each agents’ social field ℎ𝑖 is computed using equation (1). Depending on their current state, agents will
flip to 𝑆𝑖 = +1 with a probability of 𝐺𝑖 [see equation (2)] or to 𝑆𝑖 = −1 with a probability of 1 − 𝐺𝑖 .
Subsequently, through the additional noise process, agents have a probability of 𝑝noise ∈ [0, 1] (also
referred to as noise level) to flip to the opposite state. Finally, all state changes are applied synchronously
and the model continues to the next iteration step. Iteration is repeated until the specified number of
iteration steps is reached, concluding one realisation. For the next realisation, the agents’ biases and
states are randomly re-initialised and the above procedure is repeated. For each parameter combination,
512 realisations were carried out.

In all simulations, we used complete graphs with 𝑁 = 104 agents. If not mentioned otherwise, we used
𝑏 = 1.0 for the nonlinearity parameter; as can be seen in figure 2(a), this corresponds to an almost linear
mapping between ℎ𝑖 and 𝐺𝑖 . The initial magnetisation 𝑚0 for the different parameter scans performed
was chosen so that relaxation towards meta-stable states, as described in [14], is reduced whenever
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possible. In particular, when the expected final steady state magnetisation across the parameters scanned
is predicted by the theory to be 𝑚 > 0 (𝑚 < 0), then we choose the initial state to be ordered with
𝑚0 = +1 (𝑚0 = −1). On the other hand, if the sign of the equilibrium opinion is predicted by the theory
to vary across the parameters scanned, then we choose the disordered initial condition with 𝑚0 = 0.

To numerically determine the final state magnetisation, we ran simulations sufficiently long and used
values from the end of the resulting time series 𝑚(𝑡) to compute the final state magnetisation. With
the system reaching its pseudo-steady state within at most 200 iteration steps, we chose a simulation
time of 1000 steps. To reduce the effect of the noise process on the quantitative result, we averaged the
magnetisation 𝑚 over the last 50 steps to arrive at the average final state magnetisation.

3.2.2. Simulation results

In the following, we present the results of numerical simulations by showing the mean steady-state
opinion and the standard deviation across realisations.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
noise level

1.0

0.5

0.0

0.5

1.0

m

0
0.0
0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9
1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30
noise level

1.0

0.5

0.0

0.5

1.0

m

0.1
0.2
0.3
0.4
0.5

0.6
0.7
0.8
0.9
1.0

(a) (b)

Figure 6. (Colour online) Two weakly biased groups; simulation results for a complete graph with 𝑁 = 104

nodes, showing average final state magnetisation depending on noise level. (a) Colours denote varying 𝜌0
values, other parameters are chosen to match the analytical results in figure 3 (𝜌+ = 0.6, 𝜌− = 0.4, 𝜔+ =

1.5, 𝜔− = 0.7). The initial magnetisation is 𝑚0 = +1. Each point is the mean value over 512 realisations,
with error bars showing the corresponding standard deviation. (b) Like (a) but for a fixed 𝜌0 = 0.7 and
varying 𝜔− parameter. Here, the system was initialised with 𝑚0 = 0. The increased variability at low
noise levels for 𝜔− = 0.5 and 0.6 illustrates the bi-stability in that parameter range.

In figure 6(a), we confirm the theoretical prediction of section 3.1 on the impact of the ratio of unbiased
agents on the dependence of magnetisation on effective temperature, here controlled via the noise intensity.
Only for 𝜌0 = 1, we observe a second order phase transition behaviour, with a corresponding critical point
where the magnetisation drops to zero. In the presence of any biased individuals, the system exhibits a
monotonous decrease of magnetisation towards 𝑚 = 0, analogous to the Ising model in an external field.

In figure 6(b), we reproduce the theoretical results on the impact of bias strength of a minority, in
the presence of an oppositely biased majority. Once the minority bias is sufficiently strong, it is able
to overcome the majority, which is biased towards opinion 𝑆 = +1, and switch the collective decision
state towards negative magnetisation. Here, the most prominent difference to the theoretical prediction
(figure 3(b)), is the deviation of the average magnetisation for 𝜔− = 0.5 from the curves for a stronger
negative bias 𝜔𝑖 < 0.5. The reason for this is the existence of a meta-stable state at positive magnetisation
for finite-sized systems and the relaxation of individual simulation runs starting from a disordered initial
condition 𝑚0 = 0 towards this meta-stable state with 𝑚 > 0. Thus, due to the bistability of the steady-state
solutions in numerical simulations, the average over all realisations is closer to the disordered state 𝑚 = 0.
A signature of this bistability is also the large standard deviations of the average magnetisation for the
corresponding parameters.

In figure 7(a), we show the role of the ratio of unbiased agents for the average magnetisation in
the case of a competition of a strongly biased minority to a weakly biased majority. Again our numer-
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Figure 7. (Colour online) Strong minority vs. weak majority; simulation results for a complete graph
with 𝑁 = 104 nodes, showing average final state magnetisation depending on noise level. (a) colours
denote varying 𝜌0, other parameters are as in figure 4 (𝜌+ = 0.6, 𝜌− = 0.4, 𝜔+ = 2.0, 𝜔− = 0.3). Here,
the non-linearity parameter was set to a value (𝑏 = 1.3) that qualitatively matches the corresponding
analytical results. The initial state was chosen as 𝑚0 = −1 to focus on the transition from negative to
positive final magnetisation. Each point is the mean value over 512 realisations, with error bars showing
the corresponding standard deviation. (b) Like (a) but for a fixed 𝜌0 = 0.3, varying 𝜔− instead. Due to
the existence of both positive and negative attractive states, the initial state was chosen as 𝑚0 = 0, leading
to high fluctuations for the 𝜔− = 0.3 line at low noise levels. Unlike in figure 4(b), where 𝜔− = 0.3 line
has a discontinuous transition from 𝑚 < 0, these simulations only show the transition from a state with
𝑚 > 0.

ical simulations confirm the theoretical prediction of a discontinuous transition, with the discontinuity
decreasing with increasing 𝜌0, eventually resulting in a continuous transition for 𝜌0 → 1.

In figure 7(b), the competition of the oppositely biased, differently-sized subgroups is investigated for
different bias strengths 𝜔− , of the negatively biased minority (𝜌− = 0.4 versus 𝜌+ = 0.6). As predicted
by the theory, for a sufficiently strong negative bias (𝜔− ≲ 0.3), the minority is able to dominate the
collective opinion. The main difference to the analytical prediction [figure 4(b)] is the positive overall
magnetisation for 𝜔− = 0.3. This is probably a consequence of the initial condition and the finite size of
the system. For this transitional negative bias, the state with the positive consensus opinion appears to
be a meta-stable state with a large basin of attraction. For the chosen initial condition 𝑚0 = 0, a majority
of individual simulation runs relax towards this positive meta-stable state; only a minority of runs relax
towards a negative steady state as predicted by the theory, which results in a large standard deviation of
the mean magnetisation when averaged over multiple realisations.

In figure 8(a), we show that our numerical simulations are capable of reproducing the theoretical
result on all steady-state opinion solutions for different 𝜌0, to cross each other at a particular value of
effective temperature, controlled here by the noise level. Below the crossing point (𝑝noise ≲ 0.1), an
increase in the ratio of unbiased individuals leads to an increase in average opinion, while above the
crossing point (𝑝noise ≳ 0.1) the average consensus opinion decreases with 𝜌0.

In figure 8(b) we investigate the competition of two strongly biased groups for different bias strengths
of the negatively biased minority. In contrast to the theoretical predictions, for the system size studied,
we do not observe the discontinuous transition or the re-entrant phase transition at low temperatures. The
consensus opinion is dominated by the positively biased majority with a monotonous decrease of 𝑚 with
an increasing noise level. This is probably due to finite size effects, which become particularly impactful
for low noise, where the phase transitions had been predicted. An additional difficulty is the unknown
mapping between the temperature in the Hamiltonian and the noise level 𝑝noise in the simulations. Even
for very large systems, an extremely fine sampling at very low 𝑝noise may be required to observe the
predicted effects.
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Figure 8. (Colour online) Two opposing groups with strong biases; simulation results for a complete graph
with 𝑁 = 104 nodes, showing average final state magnetisation depending on noise level. (a) Colours
denote varying 𝜌0, other parameters are as in figure 5 (𝜌+ = 0.7, 𝜌− = 0.3, 𝜔+ = 10, 𝜔− = 0.05). The
initial state is 𝑚0 = +1. (b) Like (a) but with 𝜌0 = 0.3 and varying 𝜔− . Note that the range 𝜔− is varied
in is [0.01, 0.1], not [0.1, 1.0] as in previous figures.

4. Conclusions and outlook

Recently [14], we have extended the model suggested by Hartnett et al. [13] to describe consensus
formation. The original model rests on two ingredients: agent inhomogeneity and non-linearity of their
interaction. In our extension, in addition to the randomness in the agent bias which is described in the
original model by random variables 𝜔𝑖 , we have accounted for yet another random feature: fluctuations
in agent opinion, a noise process that can randomly change the agent opinion irrespective of the opinions
of its neighbours. In our equilibrium statistical physics description, we attribute this feature to the
temperature 𝑇 . As we show in this paper, even if considered on a complete graph, the model manifests
rich and sometimes unexpected behaviour for non-zero temperature. The last, in turn, may be interpreted
as new emergent critical behaviour induced by noise in a multi-agent system. Having in mind all
possible caveats of such an analogy, we support our observations by a series of numerical simulations,
where the noise was directly incorporated on each step of the algorithm in a probabilistic way. Besides
the reported novel phase transitions, a specific result we would like to highlight here, is the different
impact of uninformed agents on the steady state opinion for the strongly-biased groups scenario: For
low temperatures, the steady state opinion increases with 𝜌0, but above a specific temperature where
the consensus state does not depend on 𝜌0, the opposite is the case. The qualitative and very often
close quantitative correspondence between analytic predictions and results of numerical simulations is
encouraging and calls for further analysis. In particular, an obvious further step will be to use the model
to analyse consensus decision making on graphs with a more complex topology.
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Консенсусне прийняття рiшень на повному графi: складна
поведiнка на основi простих припущень

П. Сарканич1,2, Ю. Севiнчан3,4, М. Красницька1,2, П. Романчук3,4,
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7 Центр науки про складнiсть, Вiдень, 1080, Австрiя

У статтi ми дослiджуємо модель одностайного (консенсусного) прийняття рiшень [Hartnett A. T., et al., Phys.
Rev. Lett., 2016, 116, 038701] слiдуючи пiдходу статистичної фiзики представленому в [Sarkanych P., et al.,
Phys. Biol., 2023, 20, 045005]. У такому пiдходi температура є мiрою флуктуацiй, якi не розглядалися ранiше
в оригiнальнiй моделi. Ми розглядаємо модель на повному графi. Основна мета статтi полягає в тому, щоб
показати, що аналiтичний опис може призвести до дуже багатої фазової поведiнки, неочiкуваної для мо-
делей на повному графi. Однак рiзноманiття iндивiдуальних ознак агента (спiну) — неоднорiднiсть i сила
переконання — врахованi моделлю призводять до нетривiальних колективних ефектiв. Ми демонструє-
мо, що цi ефекти можуть виникати як неперервнi або рiзкi фазовi переходи, якi iнодi супроводжуються по-
вторенням (re-entrant behaviour) чи перевертанням параметрiв порядку. Це у свою чергу може призвести
до цiкавої iнтерпретацiї в термiнах прийняття соцiальних рiшень. Ми пiдтверджуємо аналiтичнi прогнози
за допомогою чисельного моделювання. В той час як аналiтичнi розрахунки виконуються в рамках фор-
малiзму рiвноважної статистичної фiзики, чисельне моделювання додає ще одну динамiчну особливiсть
— локальну нелiнiйнiсть або пiдпорядкування iндивiда думцi його оточення. Схоже, що ця особливiсть
має сильний вплив як на спосiб досягнення рiвноважного стану, так i на його характеристики.

Ключовi слова: колективне прийняття рiшень, спiновi моделi, уподобання, узгодження
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