Eigensolutions and thermodynamic properties of generalized hyperbolic Hulthen and Woods-Saxon potential

Authors

DOI:

https://doi.org/10.5488/cmp.27.43301

Keywords:

eigensolutions, thermodynamic properties, parametric Nikiforov-Uvarov method, hyperbolic Hulthen and Woods-Saxon potentials

Abstract

In this paper, we present the solutions of the Schrödinger equation and the thermodynamic properties of generalized hyperbolic Hulthen and Woods-Saxon potential. The eigenvalues and eigenfunctions were found using the parametric Nikiforov-Uvarov method (PNUM). The clean energies of the molecules HCl, NiC, CO, I2, H2, LiH, CuLi and CrH are calculated for certain values of n and l. They are positive and close to the energy of the ground state (n = l = 0) in the case of the atomic unit (whose energies become negative for n = 2). The figures show that the proper energies decrease as n, lα increase, while they increase as m increases, which confirms the results obtained in the literature. The obtained energy was used to calculate the partition function from which thermodynamic properties such as average energy, specific heat capacity, entropy and free energy are calculated. Numerical results are generated for this generalized hyperbolic Hulthen and Woods-Saxon potential. This study showed that the disorder dec reases if the temperature decreases and this decrease is more rapid for HCl and H2 molecules.

References

Greiner W., Relativistics Quantum Mechanics, Springer Berlin, Heidelberg, 2000. DOI: https://doi.org/10.1007/978-3-662-04275-5

Schrödinger E., Ann. Phys., 1926, 79, 361–376. DOI: https://doi.org/10.1002/andp.19263840404

Sun W., Liu Y., Li M., Cheng Q., Zhao L., Energy, 2023, 269, 127001. DOI: https://doi.org/10.1016/j.energy.2023.127001

Dong S. H., Cruz-Irisson M., J. Math. Chem., 2012, 50, 881. DOI: https://doi.org/10.1007/s10910-011-9931-3

Khordad R., Sedehi H. R. R., J. Low Temp. Phys., 2018, 190, 200. DOI: https://doi.org/10.1007/s10909-017-1831-x

Inyang E. P., William E. S., Omugbe E., Inyang E. P., Ibanga E. A., Ayedun F., Akpan I. O., Ntibi J. E., Rev. Mex. Fis., 2022, 68, 020401. DOI: https://doi.org/10.31349/RevMexFis.68.020401

Njoku I. J., Onyenegecha C. P., Okereke C. J., Opara A. I., Ukewuihe U. M., Nwaneho F. U., Results Phys., 2021, 24, 104208. DOI: https://doi.org/10.1016/j.rinp.2021.104208

Demirci M., Sever R., Eur. Phys. J. Plus, 2023, 138, 409. DOI: https://doi.org/10.1140/epjp/s13360-023-04030-0

Ramantswana M., Rampho G. J., Edet C. O., Ikot A. N., Okorie U. S., Qadir K.W., Abdullah H. Y., Phys. Open, 2023, 14, 100135. DOI: https://doi.org/10.1016/j.physo.2022.100135

Oluwadare O. J., Oyewumi K. J.,Abiola T. O., Indian J. Phys., 2022, 96, 1921. DOI: https://doi.org/10.1007/s12648-021-02139-5

Wang C. W., Wang J., Liu Y. S., Li J., Peng X. L., Jia C. S., Zhang L. H., Yi L. Z., Liu J. Y., Li C. J., Jia X., J. Mol. Liq., 2021, 321, 114912. DOI: https://doi.org/10.1016/j.molliq.2020.114912

Okon I. B., Omugbe E., Antia A. D., Onate C. A., Akpabio L. E., Osafile O., Sci. Rep., 2021, 11, 892. DOI: https://doi.org/10.1038/s41598-020-77756-x

Edet C. O., Okorie U. S., Osobonge G., Ikot A. N., Rampho G. J, Sever R., J. Math. Chem., 2020, 58, 989-1013. DOI: https://doi.org/10.1007/s10910-020-01107-4

Ikot A. N., Chukwuocha E. O., Onyeaju M. C., Onate C. A., Ita B. I., Udoh M. E., Pramana, 2018, 90, 22. DOI: https://doi.org/10.1007/s12043-017-1510-0

Okorie U. S., Ibekwe E. E., Ikot A. N., Onyeaju M. C., Chukwuocha E. O., J. Korean Phys. Soc., 2018, 73, 1211–1218. DOI: https://doi.org/10.3938/jkps.73.1211

OkorieU. S., Ikot A.N., Onyeaju M. C., Chukwuocha E. O., J. Mol. Model., 2018, 24, 1–12. DOI: https://doi.org/10.1007/s00894-018-3811-8

Okon I. B., Popoola O. O., Omugbe E., Antia A. D., Isonguyo C. N., Ituen E. E., Comput. Theor. Chem., 2021, 1196, 113132. DOI: https://doi.org/10.1016/j.comptc.2020.113132

Omugbe E., Osafile O. E., Okon I. B., Eur. Phys. J. Plus, 2021, 136, 740. DOI: https://doi.org/10.1140/epjp/s13360-021-01712-5

Isonguyo C. N., Okon I. B., Antia A. D., Oyewumi K. J., Omugbe E., Onate C. A., Joshua R. U., Udoh M. E., Ituen E. E., Aruajo J. P., Front. Phys., 2022, 10, 962717. DOI: https://doi.org/10.3389/fphy.2022.962717

Okon I. B., Isonguyo C. N., Onate C. A., Antia A. D., Purohit K. R., Ekott E. E., Essien K. E., William E. S., Asuquo N. E., Preprint arXiv:10.48550/arXiv.2304.08219, 2023.

Emeje K. O., Onate C. A., Okon I. B., Omugbe E., Eyube E. S., Olanrewaju D. B., Aghemenloh E., J. Low Temp. Phys., 2024, 215, 109. DOI: https://doi.org/10.1007/s10909-024-03074-5

Ikhdair S. M., Sever R., J. Mol. Struct. THEOCHEM, 2007, 809, 103. DOI: https://doi.org/10.1016/j.theochem.2007.01.019

Edet C. O., Amadi P. O., Okorie U. S., Tas A., Ikot A. N., Rampho G., Rev. Mex. Fis., 2020, 66, 824. DOI: https://doi.org/10.31349/RevMexFis.66.824

Qiang W. C., Li K., Chen W. L., J. Phys. A: Math. Theor., 2009, 42, 205306. DOI: https://doi.org/10.1088/1751-8113/42/20/205306

Eğrifes H., Demirhan D., Büyükkiliç F., Phys. Scr., 1999, 60, 195. DOI: https://doi.org/10.1238/Physica.Regular.060a00195

Okorie U. S., Ikot A. N., Edet C. O., Rampho G. J., Sever R., Akpan I. O., J. Phys. Commun., 2019, 3, 095015. DOI: https://doi.org/10.1088/2399-6528/ab42c6

Ahmadov A. I., Demirci M., Mustamin M. F., Aslanova S. M., Orujova M. Sh., Eur. Phys. J. Plus., 2021, 136, 208. DOI: https://doi.org/10.1140/epjp/s13360-021-01163-y

Abramovitz M., Stegun I. A. (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55, U.S. Government Printing Office, Washington, D.C., 1964.

Oyewumi K. J., Sen K. D., J. Math. Chem., 2012, 50, 1039–1059. DOI: https://doi.org/10.1007/s10910-011-9967-4

Oyewumi K. J., Oluwadare O. J., Sen K. D., Babalola O. A., J. Math. Chem., 2013, 51, 976. DOI: https://doi.org/10.1007/s10910-012-0123-6

Published

2024-12-30

Issue

Section

Articles

Categories

How to Cite

[1]
Y. M. Assimiou, S. T. Daniel, G. Issoufou, D. F. Anselme, and G. Y. H. Avossevou, “Eigensolutions and thermodynamic properties of generalized hyperbolic Hulthen and Woods-Saxon potential”, Condens. Matter Phys., vol. 27, no. 4, p. 43301, Dec. 2024, doi: 10.5488/cmp.27.43301.