Percolation connectivity in deposits obtained usingcompetitive random sequential adsorption of binarydisk mixtures
DOI:
https://doi.org/10.5488/cmp.27.13201Keywords:
packing, jamming, adsorption, competition, deposition, percolationAbstract
Connectedness percolation phenomena in the two-dimensional (2D) packing of binary mixtures of disks with different diameters were studied numerically. The packings were produced using random sequential adsorption (RSA) model with simultaneous deposition of disks. The ratio of the particle diameters was varied within the range D=1-10, and the selection probability of the small disks was varied within the range 0-1. A core-shell structure of the particles was assumed for the analysis of connectivity. The packing coverages in a jamming state for different components, connectivities through small, large and both types of disks, the behavior of electrical conductivity were analyzed. The observed complex effects were explained accounting for the formation of conductive "bridges" from small disks in pores between large disks.
References
Plawsky J. L., Kim J. K., Schubert E. F., Mater. Today, 2009, 12, No. 6, 36–45, https://doi.org/10.1016/S1369-7021(09)70179-8. DOI: https://doi.org/10.1016/S1369-7021(09)70179-8
Leclerc S., Petryk M., Canet D., Fraissard J., Catal. Today, 2012, 187, No. 1, 104–107, https://doi.org/10.1016/j.cattod.2011.09.007. DOI: https://doi.org/10.1016/j.cattod.2011.09.007
Petryk M., Leclerc S., Canet D., Sergienko I., Deineka V., Fraissard J., J. Phys. Chem. C, 2015, 119, No. 47, 26519–26525, https://doi.org/10.1021/acs.jpcc.5b07974. DOI: https://doi.org/10.1021/acs.jpcc.5b07974
Soonmin H., Ajenifuja E., Res. J. Chem. Environ., 2019, 23, No. 6, 138.
Zighem F., Faurie D., J. Phys.: Condens. Matter, 2021, 33, No. 23, 233002, https://doi.org/10.1088/1361-648X/abe96c. DOI: https://doi.org/10.1088/1361-648X/abe96c
Evans J. W., Rev. Mod. Phys., 1993, 65, 1281–1329, https://doi.org/10.1103/RevModPhys.65.1281. DOI: https://doi.org/10.1103/RevModPhys.65.1281
Meakin P., Skjeltorp A. T., Adv. Phys., 1993, 42, No. 1, 1–127, https://doi.org/10.1080/00018739300101464. DOI: https://doi.org/10.1080/00018739300101464
Talbot J., Tarjus G.,Van Tassel P. R.,Viot P., Colloids Surf., A, 2000, 165,No. 1–3, 287–324, https://doi.org/10.1016/S0927-7757(99)00409-4. DOI: https://doi.org/10.1016/S0927-7757(99)00409-4
Adamczyk Z., Particles at Interfaces: Interactions, Deposition, Structure, Academic Press, 2017.
Adamczyk Z., Morga M., Nattich-Rak M., Sadowska M., Adv. Colloid Interface Sci., 2022, 302, 102630, https://doi.org/10.1016/j.cis.2022.102630. DOI: https://doi.org/10.1016/j.cis.2022.102630
Finegold L., Donnell J. T., Nature, 1979, 278, No. 5703, 443–445, https://doi.org/10.1038/278443a0. DOI: https://doi.org/10.1038/278443a0
Tanemura M., Ann. Inst. Stat. Math., 1979, 31, 351–365, https://doi.org/10.1007/BF02480293. DOI: https://doi.org/10.1007/BF02480293
Feder J., J. Theor. Biol., 1980, 87, No. 2, 237–254, https://doi.org/10.1016/0022-5193(80)90358-6. DOI: https://doi.org/10.1016/0022-5193(80)90358-6
Hinrichsen E. L., Feder J., Jøssang T., J. Stat. Phys., 1986, 44, 793–827, https://doi.org/10.1007/BF01011908. DOI: https://doi.org/10.1007/BF01011908
Hinrichsen E. L., Feder J., Jøssang T., Phys. Rev. A, 1990, 41, 4199–4209, https://doi.org/10.1103/PhysRevA.41.4199. DOI: https://doi.org/10.1103/PhysRevA.41.4199
Wang J. S., Int. J. Mod. Phys. C, 1994, 5, No. 04, 707–715, https://doi.org/10.1142/S0129183194000817. DOI: https://doi.org/10.1142/S0129183194000817
Huang Z., Deng W., Zhang S., Li S., Soft Matter, 2023, 18, 3325–3336, https://doi.org/10.1039/D3SM00166K. DOI: https://doi.org/10.1039/D3SM00166K
Brouwers H. J. H., Soft Matter, 2023, 19, 8465–8471, https://doi.org/10.1039/D3SM01254A. DOI: https://doi.org/10.1039/D3SM01254A
Talbot J., Schaaf P., Phys. Rev. A, 1989, 40, No. 1, 422–427, https://doi.org/10.1103/PhysRevA.40.422. DOI: https://doi.org/10.1103/PhysRevA.40.422
Sherwood J. D., J. Phys. A: Math. Gen., 1990, 23, No. 13, 2827, https://doi.org/10.1088/0305-4470/23/13/021. DOI: https://doi.org/10.1088/0305-4470/23/13/021
Ricci S. M., Talbot J., Tarjus G., Viot P., J. Chem. Phys., 1992, 97, No. 7, 5219–5228, https://doi.org/10.1063/1.463988. DOI: https://doi.org/10.1063/1.463988
Viot P., Tarjus G., Ricci S. M., Talbot J., J. Chem. Phys., 1992, 97, No. 7, 5212–5218, https://doi.org/10.1063/1.463820. DOI: https://doi.org/10.1063/1.463820
Haiduk K., Kubala P., Cieśla M., Phys. Rev. E, 2018, 98, 063309, https://doi.org/10.1103/PhysRevE.98.063309. DOI: https://doi.org/10.1103/PhysRevE.98.063309
Abritta P., Hoy R. S., Phys. Rev. E, 2022, 106, 054604, https://doi.org/10.1103/PhysRevE.106.054604. DOI: https://doi.org/10.1103/PhysRevE.106.054604
Vigil R. D., Ziff R. M., J. Chem. Phys., 1989, 91, No. 4, 2599–2602, https://doi.org/10.1063/1.457021. DOI: https://doi.org/10.1063/1.457021
Vigil R. D., Ziff R. M., J. Chem. Phys., 1990, 93, No. 11, 8270–8272, https://doi.org/10.1063/1.459307. DOI: https://doi.org/10.1063/1.459307
Viot P., Tarjus G., Europhys. Lett., 1990, 13, No. 4, 295, https://doi.org/10.1209/0295-5075/13/4/002. DOI: https://doi.org/10.1209/0295-5075/13/4/002
Lebovka N. I., Tarasevich Y. Y., In: Order, Disorder and Criticality: Advanced Problems of Phase Transition
Theory, Holovatch Y. (Ed.), World Scientific, 2020, 153–200, https://doi.org/10.1142/9789811216220_0004. DOI: https://doi.org/10.1142/9789811216220_0004
Tarjus G., Viot P., Phys. Rev. Lett., 1991, 67, 1875–1878, https://doi.org/10.1103/PhysRevLett.67.1875. DOI: https://doi.org/10.1103/PhysRevLett.67.1875
De Bianchi F., Ponnusami S. A., Silvestroni L., Grande A. M., Mater. Today Commun., 2021, 29, 102754, https://doi.org/10.1016/j.mtcomm.2021.102754. DOI: https://doi.org/10.1016/j.mtcomm.2021.102754
Chao X., Qi L., Ma W., Ge J., Tian W., Mater. Today Commun., 2022, 33, 104275, https://doi.org/10.1016/j.mtcomm.2022.104275. DOI: https://doi.org/10.1016/j.mtcomm.2022.104275
UetsujiY.,Yasuda S., TeramotoY., Compos. Struct., 2022, 301, 116201, https://doi.org/10.1016/j.compstruct.2022.116201. DOI: https://doi.org/10.1016/j.compstruct.2022.116201
Ammi M., Bideau D., Troadec J., J. Phys. D: Appl. Phys., 1987, 20,No. 4, 424, https://doi.org/10.1088/0022-3727/20/4/005. DOI: https://doi.org/10.1088/0022-3727/20/4/005
Zhang G., Torquato S., Phys. Rev. E, 2013, 88, 053312, https://doi.org/10.1103/PhysRevE.88.053312. DOI: https://doi.org/10.1103/PhysRevE.88.053312
Cieśla M., J. Comput. Phys., 2020, 401, 108999, https://doi.org/10.1016/j.jcp.2019.108999. DOI: https://doi.org/10.1016/j.jcp.2019.108999
Cieśla M., Kozubek K., Kubala P., J. Phys. A: Math. Theor., 2022, 55, No. 18, 184003, https://doi.org/10.1088/1751-8121/ac5dff. DOI: https://doi.org/10.1088/1751-8121/ac5dff
Kubala P., Batys P., Barbasz J., Weroński P., Cieśla M., Adv. Colloid Interface Sci., 2022, 306, 102692, https://doi.org/10.1016/j.cis.2022.102692. DOI: https://doi.org/10.1016/j.cis.2022.102692
Morga M., Nattich-Rak M., Adamczyk Z., Mickiewicz D., Gadzinowski M., Basinska T., J. Phys. Chem. C, 2022, 126, No. 43, 18550–18559, https://doi.org/10.1021/acs.jpcc.2c06028. DOI: https://doi.org/10.1021/acs.jpcc.2c06028
Talbot J., Jin X., Wang N. H. L., Langmuir, 1994, 10, No. 6, 1663–1666, https://doi.org/10.1021/la00018a009. DOI: https://doi.org/10.1021/la00018a009
Meakin P., Jullien R., Phys. Rev. A, 1992, 46, No. 4, 2029–2038, https://doi.org/10.1103/PhysRevA.46.2029. DOI: https://doi.org/10.1103/PhysRevA.46.2029
Wagaskar K. V., Late R., Banpurkar A. G., Limaye A. V., Shelke P. B., J. Stat. Phys., 2020, 181, No. 6, 2191–2205, https://doi.org/10.1007/s10955-020-02660-7. DOI: https://doi.org/10.1007/s10955-020-02660-7
Tarjus G., Talbot J., J. Phys. A: Math. Gen., 1991, 24, No. 16, L913, https://doi.org/10.1088/0305-4470/24/16/006. DOI: https://doi.org/10.1088/0305-4470/24/16/006
Marques J. F., Lima A. B., Araújo N. A. M., Cadilhe A., Phys. Rev. E, 2012, 85, No. 6, 061122, https://doi.org/10.1103/PhysRevE.85.061122. DOI: https://doi.org/10.1103/PhysRevE.85.061122
Švrakić N. M., Aleksić B. N., Belić M. R., Physica A, 2016, 441, 93–99, https://doi.org/10.1016/j.physa.2015.07.004. DOI: https://doi.org/10.1016/j.physa.2015.07.004
Adamczyk Z., Siwek B., Weroński P., J. Colloid Interface Sci., 1997, 195, No. 1, 261–263. DOI: https://doi.org/10.1006/jcis.1997.5162
Adamczyk Z., Siwek B., Weroński P., Zembala M., Prog. Colloid Polym. Sci., 1998, 111, 41–47, https://doi.org/10.1007/BFb0118107. DOI: https://doi.org/10.1007/BFb0118107
Adamczyk Z., Weroński P., J. Chem. Phys., 1998, 108, No. 23, 9851–9858, https://doi.org/10.1063/1.476423. DOI: https://doi.org/10.1063/1.476423
Adamczyk Z., Weroński P., Musiał E., J. Colloid Interface Sci., 2001, 241, No. 1, 63–70, https://doi.org/10.1006/jcis.2001.7601. DOI: https://doi.org/10.1006/jcis.2001.7601
Adamczyk Z., Siwek B., Musiał E., Langmuir, 2001, 17, No. 15, 4529–4533, https://doi.org/10.1021/la010208d. DOI: https://doi.org/10.1021/la010208d
Adamczyk Z., Weroński P., Musiał E., J. Chem. Phys., 2002, 116, No. 11, 4665–4672, https://doi.org/10.1063/1.1446425. DOI: https://doi.org/10.1063/1.1446425
Adamczyk Z., Weroński P., Musiał E., J. Colloid Interface Sci., 2002, 248, No. 1, 67–75, https://doi.org/10.1006/jcis.2001.8170. DOI: https://doi.org/10.1006/jcis.2001.8170
Weroński P., Adv. Colloid Interface Sci., 2005, 118, No. 1–3, 1–24, https://doi.org/10.1016/j.cis.2005.03.002. DOI: https://doi.org/10.1016/j.cis.2005.03.002
Weroński P., Colloids Surf., A, 2007, 294, No. 1–3, 254–266, https://doi.org/10.1016/j.colsurfa.2006.08.018. DOI: https://doi.org/10.1016/j.colsurfa.2006.08.018
Weroński P., Colloids Surf., A, 2007, 294, No. 1–3, 267–279, https://doi.org/10.1016/j.colsurfa.2006.08.020. DOI: https://doi.org/10.1016/j.colsurfa.2006.08.020
Araújo N. A. M., Cadilhe A., Privman V., Phys. Rev. E, 2008, 77, No. 3, 031603, https://doi.org/10.1103/PhysRevE.77.031603. DOI: https://doi.org/10.1103/PhysRevE.77.031603
Sadowska M., Cieśla M., Adamczyk Z., Colloids Surf., A, 2021, 617, 126296, https://doi.org/10.1016/j.colsurfa.2021.126296. DOI: https://doi.org/10.1016/j.colsurfa.2021.126296
Cieśla M., Barbasz J., J. Chem. Phys., 2012, 137, No. 4, 044706, https://doi.org/10.1063/1.4738472. DOI: https://doi.org/10.1063/1.4738472
Tartaglione V., Sabatier J., Farges C., Fractal Fract., 2021, 5, No. 3, 65, https://doi.org/10.3390/fractalfract5030065. DOI: https://doi.org/10.3390/fractalfract5030065
Adamczyk Z., Jaszczółt K., Michna A., Siwek B., Szyk-Warszyńska L., Zembala M., Adv. Colloid Interface Sci., 2005, 118, No. 1–3, 25–42, https://doi.org/10.1016/j.cis.2005.03.003. DOI: https://doi.org/10.1016/j.cis.2005.03.003
Adamczyk Z., Curr. Opin. Colloid Interface Sci., 2012, 17, No. 3, 173–186, https://doi.org/10.1016/j.cocis.2011.12.002. DOI: https://doi.org/10.1016/j.cocis.2011.12.002
Barker G. C., Grimson M. J., J. Phys.: Condens. Matter, 1989, 1, No. 17, 2779, https://doi.org/10.1088/0953-8984/1/17/001. DOI: https://doi.org/10.1088/0953-8984/1/17/001
Odagaki T., Hoshiko A., J. Phys. Soc. Jpn., 2002, 71, No. 9, 2350–2351, https://doi.org/10.1143/JPSJ.71.2350. DOI: https://doi.org/10.1143/JPSJ.71.2350
Okubo T., Odagaki T., J. Phys.: Condens. Matter, 2004, 16, No. 37, 6651, https://doi.org/10.1088/0953-8984/16/37/002. DOI: https://doi.org/10.1088/0953-8984/16/37/002
Lebovka N., Petryk M., Vorobiev E., Phys. Rev. E, 2022, 106, 064610, https://doi.org/10.1103/PhysRevE.106.064610. DOI: https://doi.org/10.1103/PhysRevE.106.064610
Sahimi M., Applications of Percolation Theory, Vol. 213, Springer Nature, 2023. DOI: https://doi.org/10.1007/978-3-031-20386-2
Quintanilla J. A., Ziff R. M., Phys. Rev. E, 2007, 76, 051115, https://doi.org/10.1103/PhysRevE.76.051115. DOI: https://doi.org/10.1103/PhysRevE.76.051115
Balram A. C., Dhar D., Pramana, 2010, 74, 109–114, https://doi.org/10.1007/s12043-010-0012-0. DOI: https://doi.org/10.1007/s12043-010-0012-0
Mertens S., Moore C., Phys. Rev. E, 2012, 86, 061109, https://doi.org/10.1103/PhysRevE.86.061109. DOI: https://doi.org/10.1103/PhysRevE.86.061109
Speidel L., Harrington H. A., Chapman S. J., Porter M. A., Phys. Rev. E, 2018, 98, No. 1, 012318, https://doi.org/10.1103/PhysRevE.98.012318. DOI: https://doi.org/10.1103/PhysRevE.98.012318
Quintanilla J., Torquato S., Ziff R. M., J. Phys. A: Math. Gen., 2000, 33, No. 42, L399, https://doi.org/10.1088/0305-4470/33/42/104. DOI: https://doi.org/10.1088/0305-4470/33/42/104
Zuyev S., Quintanilla J., J. Math. Phys., 2003, 44, No. 12, 6040–6046, https://doi.org/10.1063/1.1624489. DOI: https://doi.org/10.1063/1.1624489
Meester R., Roy R., Sarkar A., J. Stat. Phys., 1994, 75, 123–134, https://doi.org/10.1007/BF02186282. DOI: https://doi.org/10.1007/BF02186282
Meester R., Roy R., Continuum Percolation, Cambridge University Press, Cambridge, UK, 1996. DOI: https://doi.org/10.1017/CBO9780511895357
Phani M. K., Dhar D., J. Phys. A: Math. Gen., 1984, 17, No. 12, L645, https://doi.org/10.1088/0305-4470/17/12/004. DOI: https://doi.org/10.1088/0305-4470/17/12/004
Quintanilla J., Phys. Rev. E, 2001, 63, 061108, https://doi.org/10.1103/PhysRevE.63.061108. DOI: https://doi.org/10.1103/PhysRevE.63.061108
Quintanilla J., Mech. Mater., 2006, 38, No. 8–10, 849–858, https://doi.org/10.1016/j.mechmat.2005.06.019. DOI: https://doi.org/10.1016/j.mechmat.2005.06.019
Janssens S. D., Vázquez-Cortés D., Fried E., Acta Mater., 2022, 225, 117555, https://doi.org/10.1016/j.actamat.2021.117555. DOI: https://doi.org/10.1016/j.actamat.2021.117555
He D., Ekere N. N., Cai L., Phys. Rev. E, 2002, 65, 061304, https://doi.org/10.1103/PhysRevE.65.061304. DOI: https://doi.org/10.1103/PhysRevE.65.061304
Drwenski T., Van Roij R., Van Der Schoot P., J. Chem. Phys., 2018, 149, No. 5, 054902, https://doi.org/10.1063/1.5040185. DOI: https://doi.org/10.1063/1.5040185
Lebovka N. I., Tatochenko M. O., Vygornitskii N. V., Tarasevich Y. Y., Phys. Rev. E, 2021, 104, 054104, https://doi.org/10.1103/PhysRevE.104.054104. DOI: https://doi.org/10.1103/PhysRevE.104.064104
Lebovka N. I., Tatochenko M. O., Vygornitskii N. V., Eserkepov A. V., Akhunzhanov R. K., Tarasevich Y. Y., Phys. Rev. E, 2021, 103, 042113, https://doi.org/10.1103/PhysRevE.103.042113. DOI: https://doi.org/10.1103/PhysRevE.103.042113
Hoshen J., Kopelman R., Phys. Rev. B, 1976, 14, 3438–3445, https://doi.org/10.1103/PhysRevB.14.3438. DOI: https://doi.org/10.1103/PhysRevB.14.3438
van der Marck S. C., Phys. Rev. E, 1997, 55, 1514–1517, https://doi.org/10.1103/PhysRevE.55.1514. DOI: https://doi.org/10.1103/PhysRevE.55.1514
Frank D. J., Lobb C. J., Phys. Rev. B, 1988, 37, 302–307, https://doi.org/10.1103/PhysRevB.37.302. DOI: https://doi.org/10.1103/PhysRevB.37.302
Lebovka N. I., Vygornitskii N. V., Tarasevich Y. Y., Phys. Rev. E, 2020, 102, 022133, https://doi.org/10.1103/PhysRevE.102.022133. DOI: https://doi.org/10.1103/PhysRevE.102.022133
Lebovka N., Petryk M., Tatochenko M. O., Vygornitskii N. V., Phys. Rev. E, 2023, 108, No. 2, 024109, https://doi.org/10.1103/PhysRevE.108.024109. DOI: https://doi.org/10.1103/PhysRevE.108.024109
Kennedy T., Discrete Comput. Geom., 2006, 35, 255–267, https://doi.org/10.1007/s00454-005-1172-4. DOI: https://doi.org/10.1007/s00454-005-1172-4
Lebovka N., Lisunova M., Mamunya Y. P., Vygornitskii N., J. Phys. D: Appl. Phys., 2006, 39, No. 10, 2264, https://doi.org/10.1088/0022-3727/39/10/040. DOI: https://doi.org/10.1088/0022-3727/39/10/040
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 N. I. Lebovka, M. R. Petryk, N. V. Vygornitskii
This work is licensed under a Creative Commons Attribution 4.0 International License.