The self-assembly behavior of a diblock copolymer/homopolymer induced by Janus nanorods
DOI:
https://doi.org/10.5488/cmp.28.33602Keywords:
self-assembly, diblock copolymer, homopolymer, Janus nanorodsAbstract
We employ cell dynamics simulation based on the CH/BD model to investigate the self-assembly behavior of a mixed system consisting of diblock copolymers (AB), homopolymers (C), and Janus nanorods. The results indicate that, at different component ratios, the mixed system undergoes various phase transitions with an increasing number of nanorods. Specifically, when the homopolymer component is 0.40, the mixed system transitions from a disordered structure to a parallel lamellar structure, subsequently to a tilted layered structure, and ultimately to a perpendicular lamellar structure as the number of nanorods increases. To explore this phenomenon in greater depth, we conduct a comprehensive analysis of domain sizes and pattern evolution. Additionally, we investigate the effects of the repulsive interaction strength between polymers, wetting strength, length of nanorods, and degree of asymmetry on the self-assembly behavior of the mixed system. This research provides significant theoretical and experimental insights for the preparation of novel nanomaterials.
References
Boey F. Y. C., Fuchs H., Chen X., Small, 2011, 7, 1275. DOI: https://doi.org/10.1002/smll.201100750
Liu Y. X., Yu S. H., Small, 2015, 11, 1022. DOI: https://doi.org/10.1002/smll.201403605
Priestley R., JACS Au, 2022, 2, 1948. DOI: https://doi.org/10.1021/jacsau.2c00485
Chen X., Zhao Y., Zhang Y., Li B., Li Y., Jiang L., Small Methods, 2024, 8, 2470001. DOI: https://doi.org/10.1002/smtd.202301386
Zhou J. J., Shi A. C., Physics, 2023, 52, 493. DOI: https://doi.org/10.1016/j.jcp.2023.112423
Li W., Wickham R. A., Macromolecules, 2009, 42, 7530. DOI: https://doi.org/10.1021/ma900667w
Takenaka M., Hasegawa H., Curr. Opin. Chem. Eng., 2013, 2, 88. DOI: https://doi.org/10.1016/j.coche.2012.10.008
Pinto-Gómez C., Pérez-Murano F., Bausells J., Villanueva L. G., Fernández-Regúlez M., Polymers, 2020, 12, 2432. DOI: https://doi.org/10.3390/polym12102432
Hu H., Gopinadhan M., Osuji C. O., Soft Matter, 2014, 10, 3867. DOI: https://doi.org/10.1039/c3sm52607k
Hasannia M., Aliabadi A., Abnous K., Taghdisi S. M., Ramezani M., Alibolandi M., J. Controlled Release, 2022, 341, 95. DOI: https://doi.org/10.1016/j.jconrel.2021.11.010
Obermeyer A. C., Olsen B. D., ACS Macro Lett., 2015, 4, 101. DOI: https://doi.org/10.1021/mz500732e
Singh A. N., Thakre R. D., More J. C., Sharma P. K., Agrawal Y. K., Polym. Plast. Technol. Eng., 2015, 54, 1077. DOI: https://doi.org/10.1080/03602559.2014.986811
Politakos N., Avgeropoulos A., Polymers, 2023, 15, 2930. DOI: https://doi.org/10.3390/polym15132930
Mai Y., Eisenberg A., Chem. Soc. Rev., 2012, 41, 5969. DOI: https://doi.org/10.1039/c2cs35115c
Liu Y., Hu T., Li Y., Lin Y., Redouane B., Liao Y., Prog. Chem., 2022, 34, 609.
Karayianni M., Pispas S., J. Polym. Sci., 2021, 59, 1874. DOI: https://doi.org/10.1002/pol.20210430
Jin Z., Fan H., Soft Matter, 2014, 10, 9212. DOI: https://doi.org/10.1039/C4SM02064B
Guo Y., Pan J., Sun M., Zhang J., J. Chem. Phys., 2017, 146, 024902. DOI: https://doi.org/10.1063/1.4973560
Guo Y., Chin. Phys. B, 2021, 30, 043801. DOI: https://doi.org/10.1088/1674-1056/abdea4
Mendoza C., Nirwan V. P., Fahmi A., J. Appl. Polym. Sci., 2023, 140, e53409. DOI: https://doi.org/10.1002/app.53409
Huang X., Jiang P., Adv. Mater., 2015, 27, 546.
Müller K., Bugnicourt E., Latorre M., Jorda M., Echegoyen S. Y., Lagaron J. M., Miesbauer O., Bianchin A., Hankin S., Bölz U., Pérez G., Jesdinszki M., Lindner M., Scheuerer Z., Castellò S., Schmid M., Nanomaterials, 2017, 7, 74. DOI: https://doi.org/10.3390/nano7040074
Dai X., Chen P., Zhu G., Xu Z., Zhang X., Yan L. T., J. Phys. Chem. Lett., 2019, 10, 7970. DOI: https://doi.org/10.1021/acs.jpclett.9b03253
Wu K. H., Lu S. Y., Macromol. Rapid Commun., 2006, 27, 424. DOI: https://doi.org/10.1002/marc.200500763
Chiu J. J., Kim B. J., Kramer E. J., Pine D. J., J. Am. Chem. Soc., 2005, 127, 5036. DOI: https://doi.org/10.1021/ja050376i
Chiu J. J., Kim B. J., Yi G. R., Bang J., Kramer E. J., Pine D. J., Macromolecules, 2007, 40, 3361. DOI: https://doi.org/10.1021/ma061503d
Kim B. J., Chiu J. J., Yi G. R., Pine D. J., Kramer E. J., Adv. Mater., 2005, 17, 2618. DOI: https://doi.org/10.1002/adma.200500502
Kim B. J., Bang J., Hawker C. J., Chiu J. J., Pine D. J., Jang S. G., Yang S. M., Kramer E. J., Langmuir, 2007, 23, 12693. DOI: https://doi.org/10.1021/la701906n
Yeh S. W., Wei K. H., Sun Y. S., Jeng U. S., Liang K. S., Macromolecules, 2005, 38, 6559. DOI: https://doi.org/10.1021/ma047653a
Hickey R. J., Sanchez-Gaytan B. L., Cui W., Composto R. J., Fryd M., Wayland B. B., Park S. J., Small, 2010, 6, 48. DOI: https://doi.org/10.1002/smll.200901266
Sarkar B., Alexandridis P., Langmuir, 2012, 28, 15975. DOI: https://doi.org/10.1021/la303568e
Mai Y., Eisenberg A., J. Am. Chem. Soc., 2010, 132, 10078. DOI: https://doi.org/10.1021/ja1024063
Mai Y., Eisenberg A., Macromolecules, 2011, 44, 3179. DOI: https://doi.org/10.1021/ma2000288
Li J. Y., Li L., Xu J. P., Zhang X. S., Li H. Y., Zhuang J. Y., Sci. China Ser. E: Technol. Sci., 2009, 52, 888. DOI: https://doi.org/10.1007/s11431-008-0192-8
Zhang P., Song X., Tong W., Gao C., Macromol. Biosci., 2014, 14, 1495. DOI: https://doi.org/10.1002/mabi.201400259
Balazs A. C., Ginzburg V. V., Qiu F., Peng G., Jasnow D., J. Phys. Chem. B, 2000, 104, 3411. DOI: https://doi.org/10.1021/jp993356+
Peng G., Qiu F., Ginzburg V. V., Jasnow D., Balazs A. C., Science, 2000, 288, 1802. DOI: https://doi.org/10.1126/science.288.5472.1802
Lee J. Y., Thompson R. B., Jasnow D., Balazs A. C., Macromolecules, 2002, 35, 4855. DOI: https://doi.org/10.1021/ma0200266
Lee J. Y., Shou Z., Balazs A. C., Macromolecules, 2003, 36, 7730. DOI: https://doi.org/10.1021/ma034765d
Ding H., Tian W., Ma Y., ACS Nano, 2012, 6, 1230. DOI: https://doi.org/10.1021/nn2038862
Yang K., Ma Y., Nat. Nanotechnol., 2010, 5, 579. DOI: https://doi.org/10.1038/nnano.2010.141
Wang C., Tian W., Ding Y., Ma Y., Wang Z. L., Markovic N. M., Stamenkovic V. R., Daimon H., Sun S., J. Am. Chem. Soc., 2010, 132, 6524. DOI: https://doi.org/10.1021/ja101305x
Kalra V., Mendez S., Escobedo F., Joo Y. L., J. Chem. Phys., 2008, 128, 164909. DOI: https://doi.org/10.1063/1.2911690
Zhang J. J., Jin G., Ma Y., Eur. Phys. J. E, 2005, 18, 359. DOI: https://doi.org/10.1140/epje/e2005-00044-7
Zhang J., Jin G., Ma Y., Phys. Rev. E, 2005, 71, 051803. DOI: https://doi.org/10.1103/PhysRevE.71.051803
Sun M., Zhang J., Wang B., Wu H., Pan J., Phys. Rev. E, 2011, 84, 011802. DOI: https://doi.org/10.1103/PhysRevE.84.011802
Sun M. N., Zhang J. J., Pan J. X., Wang B. F., Wu H. S., Nano, 2016, 11, 1650008. DOI: https://doi.org/10.1142/S1793292016500089
Geng X., Pan J., Zhang J., Sun M., Cen J., Chin. Phys. B, 2018, 27, 085102. DOI: https://doi.org/10.1088/1674-1056/27/5/058102
Diaz J., Pinna M., Zvelindovsky A. V., Asta A., Pagonabarraga I., Macromol. Theory Simul., 2017, 26, 1600050. DOI: https://doi.org/10.1002/mats.201600050
Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Soft Matter, 2019, 15, 9325. DOI: https://doi.org/10.1039/C9SM01760G
Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Adv. Theor. Simul., 2018, 9, 1800066.
Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Soft Matter, 2022, 18, 3638. DOI: https://doi.org/10.1039/D2SM00214K
Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Macromolecules, 2019, 52, 8285. DOI: https://doi.org/10.1021/acs.macromol.9b01754
Taylor P. A., Wang J., Ge T., O’Connor T. C., Grest G. S., Macromolecules, 2024, 57, 2482. DOI: https://doi.org/10.1021/acs.macromol.3c01826
Zhou Y., Huang M., Lu T., Gao H., Macromolecules, 2018, 51, 3135. DOI: https://doi.org/10.1021/acs.macromol.7b02624
Osipov M. A., Kudryavtsev Y. V., Ushakova A. S., Berezkin A. V., Liq. Cryst., 2018, 45, 2065. DOI: https://doi.org/10.1080/02678292.2018.1519122
Huang J. H., Li X. Z., Soft Matter, 2012, 8, 5881. DOI: https://doi.org/10.1039/c2sm25196e
Yao Y., Gao L., Cai C., Lin J., Lin S., Angew. Chem. Int. Ed., 2023, 62, e202216872. DOI: https://doi.org/10.1002/anie.202216872
Pottail L., Chithambharan A., Sharma S. C., Chem. Phys. Impact, 2023, 7, 100250. DOI: https://doi.org/10.1016/j.chphi.2023.100250
Tran L. T. C., Lesieur S., Faivre V., Expert Opin. Drug Deliv., 2014, 11, 1061. DOI: https://doi.org/10.1517/17425247.2014.915806
Yang Q., Loos K., Polym. Chem., 2017, 8, 641. DOI: https://doi.org/10.1039/C6PY01795A
Poggi E., Gohy J. F., Colloid. Polym. Sci., 2017, 295, 2083. DOI: https://doi.org/10.1007/s00396-017-4192-8
Agrawal G., Agrawal R., ACS Appl. Nano Mater., 2019, 2, 1738. DOI: https://doi.org/10.1021/acsanm.9b00283
Safaie N., Ferrier R. C., J. Appl. Phys., 2020, 127, 170902. DOI: https://doi.org/10.1063/5.0003329
Fu J., An D., Song Y., Wang C., Qiu M., Zhang H., Coord. Chem. Rev., 2020, 422, 213467. DOI: https://doi.org/10.1016/j.ccr.2020.213467
Zhang X., Fu Q., Duan H., Song J., Yang H., ACS Nano, 2021, 15, 6147. DOI: https://doi.org/10.1021/acsnano.1c01146
Du J., O’Reilly R. K., Chem. Soc. Rev., 2011, 40, 2402. DOI: https://doi.org/10.1039/c0cs00216j
Walther A., Müller A. H. E., Chem. Rev., 2013, 113, 5194. DOI: https://doi.org/10.1021/cr300089t
Diaz J., Pinna M., Zvelindovsky A., Pagonabarraga I., Soft Matter, 2019, 15, 6400. DOI: https://doi.org/10.1039/C9SM01062A
Li Q., Wang L., Lin J., Zhang L., Phys. Chem. Chem. Phys., 2019, 21, 2651. DOI: https://doi.org/10.1039/C8CP06431H
Fan X., Yang J., Loh X. J., Li Z., Macromol. Rapid Commun., 2019, 40, 1800203. DOI: https://doi.org/10.1002/marc.201800203
Qiang X., Chakroun R., Janoszka N., Gröschel A. H., Isr. J. Chem., 2019, 59, 945. DOI: https://doi.org/10.1002/ijch.201900044
Liu Y., Wang J., Shao Y., Deng R., Zhu J., Yang Z., Prog. Mater. Sci., 2022, 124, 100888. DOI: https://doi.org/10.1016/j.pmatsci.2021.100888
He H. L., Liang F. X., Chin. J. Polym. Sci., 2023, 41, 500. DOI: https://doi.org/10.1007/s10118-022-2878-y
Liu J. Y., Song H. R., Wang M., Jin S. H., Liang Z., Mao X., Li W., Deng R. H., Zhu J. T., Chin. J. Polym. Sci., 2023, 41, 787. DOI: https://doi.org/10.1007/s10118-023-2935-1
Xu K., Guo R., Dong B., Yan L. T., Soft Matter, 2012, 8, 9581. DOI: https://doi.org/10.1039/c2sm26193f
Li W., Dong B., Yan L. T., Macromolecules, 2013, 46, 7465. DOI: https://doi.org/10.1021/ma4009884
Liu Z., Guo R., Xu G., Huang Z., Yan L. T., Nano Lett., 2014, 14, 6910. DOI: https://doi.org/10.1021/nl5029396
Zhu G., Huang Z., Xu Z., Yan L. T., Acc. Chem. Res., 2018, 51, 900. DOI: https://doi.org/10.1021/acs.accounts.8b00001
Paiva F. L., Hore M. J. A., Secchi A., Calado V., Maia J., Khani S., Langmuir, 2020, 36, 4184. DOI: https://doi.org/10.1021/acs.langmuir.9b03604
Zhou C., Luo S., Sun Y., Zhou Y., Qian W., J. Appl. Polym. Sci., 2016, 133, 44098. DOI: https://doi.org/10.1002/app.44098
Wang L., Liu H., Li F., Shen J., Zheng Z., Gao Y., Liu J.,Wu Y., Zhang L., Phys. Chem. Chem. Phys., 2016, 18, 27232. DOI: https://doi.org/10.1039/C6CP05853A
Burgos-Marmol J. J., Patti A., Polymers, 2021, 13, 1524. DOI: https://doi.org/10.3390/polym13091524
Osipov M. A., Ushakova A. S., J. Mol. Liq., 2018, 267, 330. DOI: https://doi.org/10.1016/j.molliq.2018.01.048
Zhang S., Bao H., Shen X., Song Y., Wang S., Droplet, 2023, 2, e81. DOI: https://doi.org/10.1002/dro2.81
Han S., Pensec S., Yilmaz D., Lorthioir C., Jestin J., Guigner J. M., Niepceron F., Rieger J., Stoffelbach F., Nicol E., Colombani O., Bouteiller L., Nat. Commun., 2020, 11, 4760. DOI: https://doi.org/10.1038/s41467-020-18587-2
Li Y., von der Lühe M., Schacher F. H., Ling J., Macromolecules, 2018, 51, 4938. DOI: https://doi.org/10.1021/acs.macromol.8b00949
Yang Q., Loos K., Macromol. Chem. Phys., 2017, 218, 1600451. DOI: https://doi.org/10.1002/macp.201600451
Ginzburg V. V., Qiu F., Paniconi M., Peng G., Jasnow D., Balazs A. C., Phys. Rev. Lett., 1999, 82, 4026. DOI: https://doi.org/10.1103/PhysRevLett.82.4026
Qiu F., Ginzburg V. V., Paniconi M., Peng G., Jasnow D., Balazs A. C., Langmuir, 1999, 15, 4952. DOI: https://doi.org/10.1021/la9904410
Buxton G. A., Balazs A. C., Mol. Simul., 2004, 30, 249. DOI: https://doi.org/10.1080/08927020310001659142
Ginzburg V. V., Peng G., Qiu F., Jasnow D., Balazs A. C., Phys. Rev. E, 1999, 60, 4352. DOI: https://doi.org/10.1103/PhysRevE.60.4352
Ito A., Phys. Rev. E, 1998, 58, 6158. DOI: https://doi.org/10.1103/PhysRevE.58.6158
Liu B., Tong C., Yang Y., J. Phys. Chem. B, 2001, 105, 10091. DOI: https://doi.org/10.1021/jp011536p
Tong C., Yang Y., J. Chem. Phys., 2002, 116, 1519. DOI: https://doi.org/10.1063/1.1425820
Oono Y., Bahiana M., Phys. Rev. Lett., 1988, 61, 1109. DOI: https://doi.org/10.1103/PhysRevLett.61.1109
Bates F. S., Fredrickson G. H., Annu. Rev. Phys. Chem., 1990, 41, 525. DOI: https://doi.org/10.1146/annurev.pc.41.100190.002521
Chakrabarti A., Gunton J. D., Phys. Rev. E, 1993, 47, R792. DOI: https://doi.org/10.1103/PhysRevE.47.R792
Oono Y., Puri S., Phys. Rev. Lett., 1987, 58, 836. DOI: https://doi.org/10.1103/PhysRevLett.58.836
Oono Y., Puri S., Phys. Rev. A, 1988, 38, 434. DOI: https://doi.org/10.1103/PhysRevA.38.434
Puri S., Oono Y., Phys. Rev. A, 1988, 38, 1542. DOI: https://doi.org/10.1103/PhysRevA.38.1542
Bahiana M., Oono Y., Phys. Rev. A, 1990, 41, 6763. DOI: https://doi.org/10.1103/PhysRevA.41.6763
Shinozaki A., Oono Y., Phys. Rev. E, 1993, 48, 2622. DOI: https://doi.org/10.1103/PhysRevE.48.2622
Ohta T., Kawasaki K., Macromolecules, 1986, 19, 2621. DOI: https://doi.org/10.1021/ma00164a028
Kawasaki K., Ohta T., Kohrogui M., Macromolecules, 1988, 21, 2972. DOI: https://doi.org/10.1021/ma00188a014
Kawasaki K., Kawakatsu T., Macromolecules, 1990, 23, 4006. DOI: https://doi.org/10.1021/ma00219a022
Downloads
Published
License
Copyright (c) 2025 Y. Q. Guo, J. Liu, H. R. He, N. Wu, J. J. Zhang

This work is licensed under a Creative Commons Attribution 4.0 International License.