The self-assembly behavior of a diblock copolymer/homopolymer induced by Janus nanorods

Authors

  • Y. Q. Guo Department of Chemical Engineering and Materials Engineering, Lyuliang University, 033001 Lishi, China https://orcid.org/0000-0003-1576-5148
  • J. Liu School of Physics and Information Engineering, Shanxi Normal University, 030031 Taiyuan, China; Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, 033001 Taiyuan, China https://orcid.org/0009-0008-3817-968X
  • H. R. He School of Chemistry and Chemical Engineering, Shanxi University, 030006 Taiyuan, China
  • N. Wu Department of Chemical Engineering and Materials Engineering, Lyuliang University, 033001 Lishi, China
  • J. J. Zhang School of Physics and Information Engineering, Shanxi Normal University, 030031 Taiyuan, China; Shanxi Institute of Coal Chemistry, Chinese Academy of Sciences, 033001 Taiyuan, China

DOI:

https://doi.org/10.5488/cmp.28.33602

Keywords:

self-assembly, diblock copolymer, homopolymer, Janus nanorods

Abstract

We employ cell dynamics simulation based on the CH/BD model to investigate the self-assembly behavior of a mixed system consisting of diblock copolymers (AB), homopolymers (C), and Janus nanorods. The results indicate that, at different component ratios, the mixed system undergoes various phase transitions with an increasing number of nanorods. Specifically, when the homopolymer component is 0.40, the mixed system transitions from a disordered structure to a parallel lamellar structure, subsequently to a tilted layered structure, and ultimately to a perpendicular lamellar structure as the number of nanorods increases. To explore this phenomenon in greater depth, we conduct a comprehensive analysis of domain sizes and pattern evolution. Additionally, we investigate the effects of the repulsive interaction strength between polymers, wetting strength, length of nanorods, and degree of asymmetry on the self-assembly behavior of the mixed system. This research provides significant theoretical and experimental insights for the preparation of novel nanomaterials.

References

Boey F. Y. C., Fuchs H., Chen X., Small, 2011, 7, 1275. DOI: https://doi.org/10.1002/smll.201100750

Liu Y. X., Yu S. H., Small, 2015, 11, 1022. DOI: https://doi.org/10.1002/smll.201403605

Priestley R., JACS Au, 2022, 2, 1948. DOI: https://doi.org/10.1021/jacsau.2c00485

Chen X., Zhao Y., Zhang Y., Li B., Li Y., Jiang L., Small Methods, 2024, 8, 2470001. DOI: https://doi.org/10.1002/smtd.202301386

Zhou J. J., Shi A. C., Physics, 2023, 52, 493. DOI: https://doi.org/10.1016/j.jcp.2023.112423

Li W., Wickham R. A., Macromolecules, 2009, 42, 7530. DOI: https://doi.org/10.1021/ma900667w

Takenaka M., Hasegawa H., Curr. Opin. Chem. Eng., 2013, 2, 88. DOI: https://doi.org/10.1016/j.coche.2012.10.008

Pinto-Gómez C., Pérez-Murano F., Bausells J., Villanueva L. G., Fernández-Regúlez M., Polymers, 2020, 12, 2432. DOI: https://doi.org/10.3390/polym12102432

Hu H., Gopinadhan M., Osuji C. O., Soft Matter, 2014, 10, 3867. DOI: https://doi.org/10.1039/c3sm52607k

Hasannia M., Aliabadi A., Abnous K., Taghdisi S. M., Ramezani M., Alibolandi M., J. Controlled Release, 2022, 341, 95. DOI: https://doi.org/10.1016/j.jconrel.2021.11.010

Obermeyer A. C., Olsen B. D., ACS Macro Lett., 2015, 4, 101. DOI: https://doi.org/10.1021/mz500732e

Singh A. N., Thakre R. D., More J. C., Sharma P. K., Agrawal Y. K., Polym. Plast. Technol. Eng., 2015, 54, 1077. DOI: https://doi.org/10.1080/03602559.2014.986811

Politakos N., Avgeropoulos A., Polymers, 2023, 15, 2930. DOI: https://doi.org/10.3390/polym15132930

Mai Y., Eisenberg A., Chem. Soc. Rev., 2012, 41, 5969. DOI: https://doi.org/10.1039/c2cs35115c

Liu Y., Hu T., Li Y., Lin Y., Redouane B., Liao Y., Prog. Chem., 2022, 34, 609.

Karayianni M., Pispas S., J. Polym. Sci., 2021, 59, 1874. DOI: https://doi.org/10.1002/pol.20210430

Jin Z., Fan H., Soft Matter, 2014, 10, 9212. DOI: https://doi.org/10.1039/C4SM02064B

Guo Y., Pan J., Sun M., Zhang J., J. Chem. Phys., 2017, 146, 024902. DOI: https://doi.org/10.1063/1.4973560

Guo Y., Chin. Phys. B, 2021, 30, 043801. DOI: https://doi.org/10.1088/1674-1056/abdea4

Mendoza C., Nirwan V. P., Fahmi A., J. Appl. Polym. Sci., 2023, 140, e53409. DOI: https://doi.org/10.1002/app.53409

Huang X., Jiang P., Adv. Mater., 2015, 27, 546.

Müller K., Bugnicourt E., Latorre M., Jorda M., Echegoyen S. Y., Lagaron J. M., Miesbauer O., Bianchin A., Hankin S., Bölz U., Pérez G., Jesdinszki M., Lindner M., Scheuerer Z., Castellò S., Schmid M., Nanomaterials, 2017, 7, 74. DOI: https://doi.org/10.3390/nano7040074

Dai X., Chen P., Zhu G., Xu Z., Zhang X., Yan L. T., J. Phys. Chem. Lett., 2019, 10, 7970. DOI: https://doi.org/10.1021/acs.jpclett.9b03253

Wu K. H., Lu S. Y., Macromol. Rapid Commun., 2006, 27, 424. DOI: https://doi.org/10.1002/marc.200500763

Chiu J. J., Kim B. J., Kramer E. J., Pine D. J., J. Am. Chem. Soc., 2005, 127, 5036. DOI: https://doi.org/10.1021/ja050376i

Chiu J. J., Kim B. J., Yi G. R., Bang J., Kramer E. J., Pine D. J., Macromolecules, 2007, 40, 3361. DOI: https://doi.org/10.1021/ma061503d

Kim B. J., Chiu J. J., Yi G. R., Pine D. J., Kramer E. J., Adv. Mater., 2005, 17, 2618. DOI: https://doi.org/10.1002/adma.200500502

Kim B. J., Bang J., Hawker C. J., Chiu J. J., Pine D. J., Jang S. G., Yang S. M., Kramer E. J., Langmuir, 2007, 23, 12693. DOI: https://doi.org/10.1021/la701906n

Yeh S. W., Wei K. H., Sun Y. S., Jeng U. S., Liang K. S., Macromolecules, 2005, 38, 6559. DOI: https://doi.org/10.1021/ma047653a

Hickey R. J., Sanchez-Gaytan B. L., Cui W., Composto R. J., Fryd M., Wayland B. B., Park S. J., Small, 2010, 6, 48. DOI: https://doi.org/10.1002/smll.200901266

Sarkar B., Alexandridis P., Langmuir, 2012, 28, 15975. DOI: https://doi.org/10.1021/la303568e

Mai Y., Eisenberg A., J. Am. Chem. Soc., 2010, 132, 10078. DOI: https://doi.org/10.1021/ja1024063

Mai Y., Eisenberg A., Macromolecules, 2011, 44, 3179. DOI: https://doi.org/10.1021/ma2000288

Li J. Y., Li L., Xu J. P., Zhang X. S., Li H. Y., Zhuang J. Y., Sci. China Ser. E: Technol. Sci., 2009, 52, 888. DOI: https://doi.org/10.1007/s11431-008-0192-8

Zhang P., Song X., Tong W., Gao C., Macromol. Biosci., 2014, 14, 1495. DOI: https://doi.org/10.1002/mabi.201400259

Balazs A. C., Ginzburg V. V., Qiu F., Peng G., Jasnow D., J. Phys. Chem. B, 2000, 104, 3411. DOI: https://doi.org/10.1021/jp993356+

Peng G., Qiu F., Ginzburg V. V., Jasnow D., Balazs A. C., Science, 2000, 288, 1802. DOI: https://doi.org/10.1126/science.288.5472.1802

Lee J. Y., Thompson R. B., Jasnow D., Balazs A. C., Macromolecules, 2002, 35, 4855. DOI: https://doi.org/10.1021/ma0200266

Lee J. Y., Shou Z., Balazs A. C., Macromolecules, 2003, 36, 7730. DOI: https://doi.org/10.1021/ma034765d

Ding H., Tian W., Ma Y., ACS Nano, 2012, 6, 1230. DOI: https://doi.org/10.1021/nn2038862

Yang K., Ma Y., Nat. Nanotechnol., 2010, 5, 579. DOI: https://doi.org/10.1038/nnano.2010.141

Wang C., Tian W., Ding Y., Ma Y., Wang Z. L., Markovic N. M., Stamenkovic V. R., Daimon H., Sun S., J. Am. Chem. Soc., 2010, 132, 6524. DOI: https://doi.org/10.1021/ja101305x

Kalra V., Mendez S., Escobedo F., Joo Y. L., J. Chem. Phys., 2008, 128, 164909. DOI: https://doi.org/10.1063/1.2911690

Zhang J. J., Jin G., Ma Y., Eur. Phys. J. E, 2005, 18, 359. DOI: https://doi.org/10.1140/epje/e2005-00044-7

Zhang J., Jin G., Ma Y., Phys. Rev. E, 2005, 71, 051803. DOI: https://doi.org/10.1103/PhysRevE.71.051803

Sun M., Zhang J., Wang B., Wu H., Pan J., Phys. Rev. E, 2011, 84, 011802. DOI: https://doi.org/10.1103/PhysRevE.84.011802

Sun M. N., Zhang J. J., Pan J. X., Wang B. F., Wu H. S., Nano, 2016, 11, 1650008. DOI: https://doi.org/10.1142/S1793292016500089

Geng X., Pan J., Zhang J., Sun M., Cen J., Chin. Phys. B, 2018, 27, 085102. DOI: https://doi.org/10.1088/1674-1056/27/5/058102

Diaz J., Pinna M., Zvelindovsky A. V., Asta A., Pagonabarraga I., Macromol. Theory Simul., 2017, 26, 1600050. DOI: https://doi.org/10.1002/mats.201600050

Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Soft Matter, 2019, 15, 9325. DOI: https://doi.org/10.1039/C9SM01760G

Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Adv. Theor. Simul., 2018, 9, 1800066.

Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Soft Matter, 2022, 18, 3638. DOI: https://doi.org/10.1039/D2SM00214K

Diaz J., Pinna M., Zvelindovsky A. V., Pagonabarraga I., Macromolecules, 2019, 52, 8285. DOI: https://doi.org/10.1021/acs.macromol.9b01754

Taylor P. A., Wang J., Ge T., O’Connor T. C., Grest G. S., Macromolecules, 2024, 57, 2482. DOI: https://doi.org/10.1021/acs.macromol.3c01826

Zhou Y., Huang M., Lu T., Gao H., Macromolecules, 2018, 51, 3135. DOI: https://doi.org/10.1021/acs.macromol.7b02624

Osipov M. A., Kudryavtsev Y. V., Ushakova A. S., Berezkin A. V., Liq. Cryst., 2018, 45, 2065. DOI: https://doi.org/10.1080/02678292.2018.1519122

Huang J. H., Li X. Z., Soft Matter, 2012, 8, 5881. DOI: https://doi.org/10.1039/c2sm25196e

Yao Y., Gao L., Cai C., Lin J., Lin S., Angew. Chem. Int. Ed., 2023, 62, e202216872. DOI: https://doi.org/10.1002/anie.202216872

Pottail L., Chithambharan A., Sharma S. C., Chem. Phys. Impact, 2023, 7, 100250. DOI: https://doi.org/10.1016/j.chphi.2023.100250

Tran L. T. C., Lesieur S., Faivre V., Expert Opin. Drug Deliv., 2014, 11, 1061. DOI: https://doi.org/10.1517/17425247.2014.915806

Yang Q., Loos K., Polym. Chem., 2017, 8, 641. DOI: https://doi.org/10.1039/C6PY01795A

Poggi E., Gohy J. F., Colloid. Polym. Sci., 2017, 295, 2083. DOI: https://doi.org/10.1007/s00396-017-4192-8

Agrawal G., Agrawal R., ACS Appl. Nano Mater., 2019, 2, 1738. DOI: https://doi.org/10.1021/acsanm.9b00283

Safaie N., Ferrier R. C., J. Appl. Phys., 2020, 127, 170902. DOI: https://doi.org/10.1063/5.0003329

Fu J., An D., Song Y., Wang C., Qiu M., Zhang H., Coord. Chem. Rev., 2020, 422, 213467. DOI: https://doi.org/10.1016/j.ccr.2020.213467

Zhang X., Fu Q., Duan H., Song J., Yang H., ACS Nano, 2021, 15, 6147. DOI: https://doi.org/10.1021/acsnano.1c01146

Du J., O’Reilly R. K., Chem. Soc. Rev., 2011, 40, 2402. DOI: https://doi.org/10.1039/c0cs00216j

Walther A., Müller A. H. E., Chem. Rev., 2013, 113, 5194. DOI: https://doi.org/10.1021/cr300089t

Diaz J., Pinna M., Zvelindovsky A., Pagonabarraga I., Soft Matter, 2019, 15, 6400. DOI: https://doi.org/10.1039/C9SM01062A

Li Q., Wang L., Lin J., Zhang L., Phys. Chem. Chem. Phys., 2019, 21, 2651. DOI: https://doi.org/10.1039/C8CP06431H

Fan X., Yang J., Loh X. J., Li Z., Macromol. Rapid Commun., 2019, 40, 1800203. DOI: https://doi.org/10.1002/marc.201800203

Qiang X., Chakroun R., Janoszka N., Gröschel A. H., Isr. J. Chem., 2019, 59, 945. DOI: https://doi.org/10.1002/ijch.201900044

Liu Y., Wang J., Shao Y., Deng R., Zhu J., Yang Z., Prog. Mater. Sci., 2022, 124, 100888. DOI: https://doi.org/10.1016/j.pmatsci.2021.100888

He H. L., Liang F. X., Chin. J. Polym. Sci., 2023, 41, 500. DOI: https://doi.org/10.1007/s10118-022-2878-y

Liu J. Y., Song H. R., Wang M., Jin S. H., Liang Z., Mao X., Li W., Deng R. H., Zhu J. T., Chin. J. Polym. Sci., 2023, 41, 787. DOI: https://doi.org/10.1007/s10118-023-2935-1

Xu K., Guo R., Dong B., Yan L. T., Soft Matter, 2012, 8, 9581. DOI: https://doi.org/10.1039/c2sm26193f

Li W., Dong B., Yan L. T., Macromolecules, 2013, 46, 7465. DOI: https://doi.org/10.1021/ma4009884

Liu Z., Guo R., Xu G., Huang Z., Yan L. T., Nano Lett., 2014, 14, 6910. DOI: https://doi.org/10.1021/nl5029396

Zhu G., Huang Z., Xu Z., Yan L. T., Acc. Chem. Res., 2018, 51, 900. DOI: https://doi.org/10.1021/acs.accounts.8b00001

Paiva F. L., Hore M. J. A., Secchi A., Calado V., Maia J., Khani S., Langmuir, 2020, 36, 4184. DOI: https://doi.org/10.1021/acs.langmuir.9b03604

Zhou C., Luo S., Sun Y., Zhou Y., Qian W., J. Appl. Polym. Sci., 2016, 133, 44098. DOI: https://doi.org/10.1002/app.44098

Wang L., Liu H., Li F., Shen J., Zheng Z., Gao Y., Liu J.,Wu Y., Zhang L., Phys. Chem. Chem. Phys., 2016, 18, 27232. DOI: https://doi.org/10.1039/C6CP05853A

Burgos-Marmol J. J., Patti A., Polymers, 2021, 13, 1524. DOI: https://doi.org/10.3390/polym13091524

Osipov M. A., Ushakova A. S., J. Mol. Liq., 2018, 267, 330. DOI: https://doi.org/10.1016/j.molliq.2018.01.048

Zhang S., Bao H., Shen X., Song Y., Wang S., Droplet, 2023, 2, e81. DOI: https://doi.org/10.1002/dro2.81

Han S., Pensec S., Yilmaz D., Lorthioir C., Jestin J., Guigner J. M., Niepceron F., Rieger J., Stoffelbach F., Nicol E., Colombani O., Bouteiller L., Nat. Commun., 2020, 11, 4760. DOI: https://doi.org/10.1038/s41467-020-18587-2

Li Y., von der Lühe M., Schacher F. H., Ling J., Macromolecules, 2018, 51, 4938. DOI: https://doi.org/10.1021/acs.macromol.8b00949

Yang Q., Loos K., Macromol. Chem. Phys., 2017, 218, 1600451. DOI: https://doi.org/10.1002/macp.201600451

Ginzburg V. V., Qiu F., Paniconi M., Peng G., Jasnow D., Balazs A. C., Phys. Rev. Lett., 1999, 82, 4026. DOI: https://doi.org/10.1103/PhysRevLett.82.4026

Qiu F., Ginzburg V. V., Paniconi M., Peng G., Jasnow D., Balazs A. C., Langmuir, 1999, 15, 4952. DOI: https://doi.org/10.1021/la9904410

Buxton G. A., Balazs A. C., Mol. Simul., 2004, 30, 249. DOI: https://doi.org/10.1080/08927020310001659142

Ginzburg V. V., Peng G., Qiu F., Jasnow D., Balazs A. C., Phys. Rev. E, 1999, 60, 4352. DOI: https://doi.org/10.1103/PhysRevE.60.4352

Ito A., Phys. Rev. E, 1998, 58, 6158. DOI: https://doi.org/10.1103/PhysRevE.58.6158

Liu B., Tong C., Yang Y., J. Phys. Chem. B, 2001, 105, 10091. DOI: https://doi.org/10.1021/jp011536p

Tong C., Yang Y., J. Chem. Phys., 2002, 116, 1519. DOI: https://doi.org/10.1063/1.1425820

Oono Y., Bahiana M., Phys. Rev. Lett., 1988, 61, 1109. DOI: https://doi.org/10.1103/PhysRevLett.61.1109

Bates F. S., Fredrickson G. H., Annu. Rev. Phys. Chem., 1990, 41, 525. DOI: https://doi.org/10.1146/annurev.pc.41.100190.002521

Chakrabarti A., Gunton J. D., Phys. Rev. E, 1993, 47, R792. DOI: https://doi.org/10.1103/PhysRevE.47.R792

Oono Y., Puri S., Phys. Rev. Lett., 1987, 58, 836. DOI: https://doi.org/10.1103/PhysRevLett.58.836

Oono Y., Puri S., Phys. Rev. A, 1988, 38, 434. DOI: https://doi.org/10.1103/PhysRevA.38.434

Puri S., Oono Y., Phys. Rev. A, 1988, 38, 1542. DOI: https://doi.org/10.1103/PhysRevA.38.1542

Bahiana M., Oono Y., Phys. Rev. A, 1990, 41, 6763. DOI: https://doi.org/10.1103/PhysRevA.41.6763

Shinozaki A., Oono Y., Phys. Rev. E, 1993, 48, 2622. DOI: https://doi.org/10.1103/PhysRevE.48.2622

Ohta T., Kawasaki K., Macromolecules, 1986, 19, 2621. DOI: https://doi.org/10.1021/ma00164a028

Kawasaki K., Ohta T., Kohrogui M., Macromolecules, 1988, 21, 2972. DOI: https://doi.org/10.1021/ma00188a014

Kawasaki K., Kawakatsu T., Macromolecules, 1990, 23, 4006. DOI: https://doi.org/10.1021/ma00219a022

Published

2025-09-23

Issue

Section

Articles

Categories

How to Cite

[1]
Y. Q. Guo, J. Liu, H. R. He, N. Wu, and J. J. Zhang, “The self-assembly behavior of a diblock copolymer/homopolymer induced by Janus nanorods”, Condens. Matter Phys., vol. 28, no. 3, p. 33602, Sep. 2025, doi: 10.5488/cmp.28.33602.

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.