Plasmonic resonances in the chain of spheroidal metallic nanoparticles on the dielectric substrate
DOI:
https://doi.org/10.5488/cmp.27.43701Keywords:
prolate metallic spheroids, chains of nanoparticles, dielectric substrate, chain polarizability tensor, plasmonic resonance, chain sumsAbstract
The optical and plasmonic properties of the chains of prolate metallic spheroids of the dielectric substrate are studied in the work using the local field approximation. The case when spheroids are arranged in such a way that their major semi-axis belongs to the substrate plane is considered. The relations for the transverse component of the chain polarizability tensor and the frequency of the transverse chain resonance are obtained. The comparative analysis of spectral shifts of the maxima of the imaginary part of the transverse chain polarizability and the polarizability of isolated prolate spheroid is performed. The influence of the variation of the material of particles in the chain and the dielectric environment on the location of the maxima of the imaginary part of the transverse polarizability is studied. The limits of applicability of the theory proposed in the paper are established.
References
Maier S. A., Plasmonics: Fundamentals and Applications, Springer Science and Business Media, New York, 2007. DOI: https://doi.org/10.1007/0-387-37825-1
Li M., Cushing S. K., Wu N., Analyst, 2015, 140, 386–406. DOI: https://doi.org/10.1039/C4AN01079E
Yang A., Hoang T., Dridi M., Mikkelsen M. H., Schatz G. C., Odom T. W., Nat. Commun., 2015, 6, 6939. DOI: https://doi.org/10.1038/ncomms7939
Sharma B., Cardinal M. F., Kleinman S. L., Greeneltch N., Frontiera R. R., Blaber M. G., Schatz G. C., Van Duyne R. P., MRS Bull., 2013, 38, 615–624. DOI: https://doi.org/10.1557/mrs.2013.161
Koenderink A. F., Waele R., Prangsma J. C., Polman A., Phys. Rev. B, 2007, 76, 201403. DOI: https://doi.org/10.1103/PhysRevB.76.201403
Dobrzynski L., Akjouj A., Djafari-Rouhani B., Vasseur J. O., Bouazaoui M., Vilcot J. P., Wahsh H. A., Zielinski P., Vigneron J. P., Phys. Rev. E, 2004, 69, 035601. DOI: https://doi.org/10.1103/PhysRevE.69.035601
Rasskazov I. L., Karpov S. V., Panasyuk G. Y., Markel V. A., J. Appl. Phys., 2016, 119, 043101. DOI: https://doi.org/10.1063/1.4940415
Crozier K. B., Togan E., Simsek E., Yang T., Opt. Express, 2007, 15, 17482–17493. DOI: https://doi.org/10.1364/OE.15.017482
Govyadinov A. A., Markel V. A., Phys. Rev. B, 2008, 78, 035403. DOI: https://doi.org/10.1103/PhysRevB.78.035403
Hadad Y., Steinberg B. Z., Phys. Rev. B, 2011, 84, 125402. DOI: https://doi.org/10.1103/PhysRevB.84.125402
Lee C., Tame M., Noh C., Lim J., Maier S. A., Lee J., Angelakis D. J., New J. Phys., 2013, 15, 083017. DOI: https://doi.org/10.1088/1367-2630/15/8/083017
Lin S., Li M., Dujardin E., Girard C., Mann S., New J. Phys., 2005, 17, 2553. DOI: https://doi.org/10.1002/adma.200500828
Taleb A., Petit C., Pileni M. P., J. Phys. Chem. B, 1998, 102, 2214. DOI: https://doi.org/10.1021/jp972807s
Garno J. C., Yang Y., Amro N. A., Cruchon-Dupeyrat S., Chen S., Liu G. Y., Nano Lett., 2003, 3, 389. DOI: https://doi.org/10.1021/nl025934v
Liang C.-C., Liao M.-Y., Chen W.-Y., Cheng T.-C., Chang W.-H., Lin C.-H., Opt. Express, 2011, 19, 4768. DOI: https://doi.org/10.1364/OE.19.004768
Rose A. H., Wirth B. M., Hatem R. E., Rashed Ahmed A. P., Burns J., Naughton M. J., Kempa K., Opt. Express, 2014, 22, 5228–5233. DOI: https://doi.org/10.1364/OE.22.005228
Zhang X., Li Z., Chen J. J., Yue S., Gong Q. H., Opt. Express, 2013, 21, 14548–14554. DOI: https://doi.org/10.1364/OE.21.014548
Han Z., Bozhevolnyi S. I., Rep. Prog. Phys., 2013, 76, 016402. DOI: https://doi.org/10.1088/0034-4885/76/1/016402
Udagedara I. B., Rukhlenko I. D., Premaratne M., Opt. Express, 2011, 19, 19973–19986. DOI: https://doi.org/10.1364/OE.19.019973
Rolly B., Bonod N., Stout B. M., J. Opt. Soc. Am. B: Opt. Phys., 2012, 29, 1012–1019. DOI: https://doi.org/10.1364/JOSAB.29.001012
Maier S. A., Kik P. G., Atwater H. A., Appl. Phys. Lett., 2002, 81, 1714–1716. DOI: https://doi.org/10.1063/1.1503870
Rasskazov I. L., Markel V. A, Karpov S. V., Opt. Spectrosc., 2013, 115, 666–674. DOI: https://doi.org/10.1134/S0030400X13110180
Rasskazov I. L., Karpov S. V., Markel V. A., Phys. Rev. B, 2014, 90, 075405. DOI: https://doi.org/10.1103/PhysRevB.90.075405
Maier S. A., Kik P. G., Atwater H. A., Phys. Rev. B, 2003, 67, 205402. DOI: https://doi.org/10.1103/PhysRevB.67.205402
Krenn J. R., Dereux A., Weeber J. C., Bourillot E., Lacroute Y., Goudonnet J. P., Schider G., Gotschy W., Leitner A., Aussenegg F. R., Girard C., Phys.Rev. Lett., 1999, 82, 2590–2593. DOI: https://doi.org/10.1103/PhysRevLett.82.2590
Van der Meer B. W., Coker G., Chen S. Y., Resonance Energy Transfer, New York, WCH, 1994.
Pikalov A. M., Dorofeenko A. V., Lozovik Y. E., Phys. Rev. B, 2018, 98, 085134. DOI: https://doi.org/10.1103/PhysRevB.98.085134
Chubchev E. D., Nechepurenko I. A., Dorofeenko A. V., Vinogradov A. P., Lisyansky A. A., J. Opt. Soc. Am. B: Opt. Phys., 2020, 37, 2732–2737. DOI: https://doi.org/10.1364/JOSAB.396739
Kosobukin V. A., Phys. Solid State, 2012, 54, 2471–2480. DOI: https://doi.org/10.1134/S1063783412120207
Korotun A. V., Karandas Y. V., Reva V. I., Ukr. J. Phys., 2022, 67, 849–858. DOI: https://doi.org/10.15407/ujpe67.12.849
Korotun A. V., Pavlyshche N. I., Funct. Mater., 2022, 29, 567–575.
Korotun A. V., Smirnova N. A., Reva V. I., Titov I. M., Shilo G. M., Condens. Matter Phys., 2023, 26, 43704. DOI: https://doi.org/10.5488/CMP.26.43704
Smirnova N. A., Maniuk M. S., Korotun A. V., Titov I. M., Phys. Chem. Solid State, 2023, 24, 181–189. DOI: https://doi.org/10.15330/pcss.24.1.181-189
Cherqui C., Bourgeois M. R., Wang D., Schatz G. C., Acc. Chem. Res., 2019, 52, 2548–2558. DOI: https://doi.org/10.1021/acs.accounts.9b00312
Downloads
Published
License
Copyright (c) 2024 M. S. Maniuk, A. V. Korotun, V. I. Reva, I. M. Titov
This work is licensed under a Creative Commons Attribution 4.0 International License.