Plasmonic resonances in the chain of spheroidal metallic nanoparticles on the dielectric substrate

Authors

  • M. S. Maniuk National University “Zaporizhzhia Politechnic”, 64 University St., Zaporizhzhya 69063, Ukraine https://orcid.org/0009-0006-4195-5577
  • A. V. Korotun National University “Zaporizhzhia Politechnic”, 64 University St., Zaporizhzhya 69063, Ukraine; G. V. Kurdyumov Institute for Metal Physics of the NAS of Ukraine, 36 Academician Vernadsky Blvd., Kyiv 03142, Ukraine https://orcid.org/0000-0003-4165-2788
  • V. I. Reva National University ``“Zaporizhzhia Politechnic”, 64 University St., Zaporizhzhya 69063, Ukraine https://orcid.org/0000-0002-3265-1735
  • I. M. Titov National University “Zaporizhzhia Politechnic”, 64 University St., Zaporizhzhya 69063, Ukraine

DOI:

https://doi.org/10.5488/cmp.27.43701

Keywords:

prolate metallic spheroids, chains of nanoparticles, dielectric substrate, chain polarizability tensor, plasmonic resonance, chain sums

Abstract

The optical and plasmonic properties of the chains of prolate metallic spheroids of the dielectric substrate are studied in the work using the local field approximation. The case when spheroids are arranged in such a way that their major semi-axis belongs to the substrate plane is considered. The relations for the transverse component of the chain polarizability tensor and the frequency of the transverse chain resonance are obtained. The comparative analysis of spectral shifts of the maxima of the imaginary part of the transverse chain polarizability and the polarizability of isolated prolate spheroid is performed. The influence of the variation of the material of particles in the chain and the dielectric environment on the location of the maxima of the imaginary part of the transverse polarizability is studied. The limits of applicability of the theory proposed in the paper are established.

References

Maier S. A., Plasmonics: Fundamentals and Applications, Springer Science and Business Media, New York, 2007. DOI: https://doi.org/10.1007/0-387-37825-1

Li M., Cushing S. K., Wu N., Analyst, 2015, 140, 386–406. DOI: https://doi.org/10.1039/C4AN01079E

Yang A., Hoang T., Dridi M., Mikkelsen M. H., Schatz G. C., Odom T. W., Nat. Commun., 2015, 6, 6939. DOI: https://doi.org/10.1038/ncomms7939

Sharma B., Cardinal M. F., Kleinman S. L., Greeneltch N., Frontiera R. R., Blaber M. G., Schatz G. C., Van Duyne R. P., MRS Bull., 2013, 38, 615–624. DOI: https://doi.org/10.1557/mrs.2013.161

Koenderink A. F., Waele R., Prangsma J. C., Polman A., Phys. Rev. B, 2007, 76, 201403. DOI: https://doi.org/10.1103/PhysRevB.76.201403

Dobrzynski L., Akjouj A., Djafari-Rouhani B., Vasseur J. O., Bouazaoui M., Vilcot J. P., Wahsh H. A., Zielinski P., Vigneron J. P., Phys. Rev. E, 2004, 69, 035601. DOI: https://doi.org/10.1103/PhysRevE.69.035601

Rasskazov I. L., Karpov S. V., Panasyuk G. Y., Markel V. A., J. Appl. Phys., 2016, 119, 043101. DOI: https://doi.org/10.1063/1.4940415

Crozier K. B., Togan E., Simsek E., Yang T., Opt. Express, 2007, 15, 17482–17493. DOI: https://doi.org/10.1364/OE.15.017482

Govyadinov A. A., Markel V. A., Phys. Rev. B, 2008, 78, 035403. DOI: https://doi.org/10.1103/PhysRevB.78.035403

Hadad Y., Steinberg B. Z., Phys. Rev. B, 2011, 84, 125402. DOI: https://doi.org/10.1103/PhysRevB.84.125402

Lee C., Tame M., Noh C., Lim J., Maier S. A., Lee J., Angelakis D. J., New J. Phys., 2013, 15, 083017. DOI: https://doi.org/10.1088/1367-2630/15/8/083017

Lin S., Li M., Dujardin E., Girard C., Mann S., New J. Phys., 2005, 17, 2553. DOI: https://doi.org/10.1002/adma.200500828

Taleb A., Petit C., Pileni M. P., J. Phys. Chem. B, 1998, 102, 2214. DOI: https://doi.org/10.1021/jp972807s

Garno J. C., Yang Y., Amro N. A., Cruchon-Dupeyrat S., Chen S., Liu G. Y., Nano Lett., 2003, 3, 389. DOI: https://doi.org/10.1021/nl025934v

Liang C.-C., Liao M.-Y., Chen W.-Y., Cheng T.-C., Chang W.-H., Lin C.-H., Opt. Express, 2011, 19, 4768. DOI: https://doi.org/10.1364/OE.19.004768

Rose A. H., Wirth B. M., Hatem R. E., Rashed Ahmed A. P., Burns J., Naughton M. J., Kempa K., Opt. Express, 2014, 22, 5228–5233. DOI: https://doi.org/10.1364/OE.22.005228

Zhang X., Li Z., Chen J. J., Yue S., Gong Q. H., Opt. Express, 2013, 21, 14548–14554. DOI: https://doi.org/10.1364/OE.21.014548

Han Z., Bozhevolnyi S. I., Rep. Prog. Phys., 2013, 76, 016402. DOI: https://doi.org/10.1088/0034-4885/76/1/016402

Udagedara I. B., Rukhlenko I. D., Premaratne M., Opt. Express, 2011, 19, 19973–19986. DOI: https://doi.org/10.1364/OE.19.019973

Rolly B., Bonod N., Stout B. M., J. Opt. Soc. Am. B: Opt. Phys., 2012, 29, 1012–1019. DOI: https://doi.org/10.1364/JOSAB.29.001012

Maier S. A., Kik P. G., Atwater H. A., Appl. Phys. Lett., 2002, 81, 1714–1716. DOI: https://doi.org/10.1063/1.1503870

Rasskazov I. L., Markel V. A, Karpov S. V., Opt. Spectrosc., 2013, 115, 666–674. DOI: https://doi.org/10.1134/S0030400X13110180

Rasskazov I. L., Karpov S. V., Markel V. A., Phys. Rev. B, 2014, 90, 075405. DOI: https://doi.org/10.1103/PhysRevB.90.075405

Maier S. A., Kik P. G., Atwater H. A., Phys. Rev. B, 2003, 67, 205402. DOI: https://doi.org/10.1103/PhysRevB.67.205402

Krenn J. R., Dereux A., Weeber J. C., Bourillot E., Lacroute Y., Goudonnet J. P., Schider G., Gotschy W., Leitner A., Aussenegg F. R., Girard C., Phys.Rev. Lett., 1999, 82, 2590–2593. DOI: https://doi.org/10.1103/PhysRevLett.82.2590

Van der Meer B. W., Coker G., Chen S. Y., Resonance Energy Transfer, New York, WCH, 1994.

Pikalov A. M., Dorofeenko A. V., Lozovik Y. E., Phys. Rev. B, 2018, 98, 085134. DOI: https://doi.org/10.1103/PhysRevB.98.085134

Chubchev E. D., Nechepurenko I. A., Dorofeenko A. V., Vinogradov A. P., Lisyansky A. A., J. Opt. Soc. Am. B: Opt. Phys., 2020, 37, 2732–2737. DOI: https://doi.org/10.1364/JOSAB.396739

Kosobukin V. A., Phys. Solid State, 2012, 54, 2471–2480. DOI: https://doi.org/10.1134/S1063783412120207

Korotun A. V., Karandas Y. V., Reva V. I., Ukr. J. Phys., 2022, 67, 849–858. DOI: https://doi.org/10.15407/ujpe67.12.849

Korotun A. V., Pavlyshche N. I., Funct. Mater., 2022, 29, 567–575.

Korotun A. V., Smirnova N. A., Reva V. I., Titov I. M., Shilo G. M., Condens. Matter Phys., 2023, 26, 43704. DOI: https://doi.org/10.5488/CMP.26.43704

Smirnova N. A., Maniuk M. S., Korotun A. V., Titov I. M., Phys. Chem. Solid State, 2023, 24, 181–189. DOI: https://doi.org/10.15330/pcss.24.1.181-189

Cherqui C., Bourgeois M. R., Wang D., Schatz G. C., Acc. Chem. Res., 2019, 52, 2548–2558. DOI: https://doi.org/10.1021/acs.accounts.9b00312

Published

2024-12-30

Issue

Section

Articles

Categories

How to Cite

[1]
M. S. Maniuk, A. V. Korotun, V. I. Reva, and I. M. Titov, “Plasmonic resonances in the chain of spheroidal metallic nanoparticles on the dielectric substrate”, Condens. Matter Phys., vol. 27, no. 4, p. 43701, Dec. 2024, doi: 10.5488/cmp.27.43701.

Similar Articles

11-20 of 30

You may also start an advanced similarity search for this article.