Hamiltonian limited valence model for liquid polyamorphism

Authors

DOI:

https://doi.org/10.5488/cmp.27.23601

Keywords:

liquid-liquid phase transition, liquid-gas phase transition, solid-solid transformations, phase diagrams

Abstract

Liquid-liquid phase transitions have been found experimentally or by computer simulations in many compounds such as water, hydrogen, sulfur, phosphorus, carbon, silica, and silicon. Limited valence model implemented via event-driven molecular dynamics algorithm provides a simple generic mechanism for the liquid-liquid phase transitions in all these diverse cases. Here, we introduce a variant of the limited valence model with a well defined Hamiltonian, i.e., a unique algorithm by which the potential energy of the system of particles can be computed solely from the coordinates of the particles and is thus equivalent to a complex multi-body potential. We present several examples of the model which can be used to reproduce liquid--liquid phase transition in systems with maximum valence z = 1 (hydrogen),  z = 2 (sulfur) and  z = 4 (water), where z is the maximum number of bonds an atom is allowed to have. For z = 1, we find a set of parameters for which the system has a liquid-liquid and an isostructural solid-solid critical points. For z = 4, we find a set of parameters for which the phase diagram resembles that of water with a wide region of negative thermal expansion coefficient (density anomaly) extending into the metastable region of negative pressures. The limited valence model can be modified to forbid not only too large valences but also too low valences. In the case of sulfur, we forbid the formation of monomers, thus restricting the valence v of an atom to be within an interval 1 = vmin ≤  vvmax ≡ z = 2.

References

Debenedetti P. G., Nature, 1998, 392, 127–128. DOI: https://doi.org/10.1038/32286

Stanley H. E. (Ed.), Liquid Polymorphism, Vol. 152, John Wiley & Sons, 2013. DOI: https://doi.org/10.1002/9781118540350

Anisimov M. A., Duška M., Caupin F., Amrhein L. E., Rosenbaum A., Sadus R. J., Phys. Rev. X, 2018, 8, 011004. DOI: https://doi.org/10.1103/PhysRevX.8.011004

Tanaka H., J. Chem. Phys., 2020, 153, 130901. DOI: https://doi.org/10.1063/5.0021045

Vollhardt D., Woelfle P., The Superfluid Phases of Helium 3, CRC Press, London, 1990. DOI: https://doi.org/10.1063/1.2810215

Schmitt A., Introduction to Superfluidity: Field-theoretical Approach and Applications, LectureNotes in Physics, Vol. 888, Springer International Publishing, Cham, 2015. DOI: https://doi.org/10.1007/978-3-319-07947-9

Ohta K., Ichimaru K., Einaga M., Kawaguchi S., Shimizu K., Matsuoka T., Hirao N., Ohishi Y., Sci. Rep., 2015, 5, 16560. DOI: https://doi.org/10.1038/srep16560

Zaghoo M., Salamat A., Silvera I. F., Phys. Rev. B, 2016, 93, 155128. DOI: https://doi.org/10.1103/PhysRevB.93.155128

McWilliams R. S., Dalton D. A., Mahmood M. F., Goncharov A. F., Phys. Rev. Lett., 2016, 116, 255501. DOI: https://doi.org/10.1103/PhysRevLett.116.255501

Norman G. E., Saitov I. M., Phys.-Usp., 2021, 64, 1094. DOI: https://doi.org/10.3367/UFNe.2021.07.039004

Fried N. R., Longo T. J., Anisimov M. A., J. Chem. Phys., 2022, 157, 101101. DOI: https://doi.org/10.1063/5.0107043

Henry L., Mezouar M., Garbarino G., Sifré D., Weck G., Datchi F., Nature, 2020, 584, 382–386. DOI: https://doi.org/10.1038/s41586-020-2593-1

Katayama Y., Mizutani T., Utsumi W., Shimomura O., Yamakata M., Funakoshi K., Nature, 2000, 403, 170–173. DOI: https://doi.org/10.1038/35003143

Katayama Y., Inamura Y., Mizutani T., Yamakata M., Utsumi W., Shimomura O., Science, 2004, 306, No. 5697, 848–851. DOI: https://doi.org/10.1126/science.1102735

Glosli J. N., Ree F. H., Phys. Rev. Lett., 1999, 82, 4659–4662. DOI: https://doi.org/10.1103/PhysRevLett.82.4659

Sastry S., Angell C. A., Nat. Mater., 2003, 2, 739–743. DOI: https://doi.org/10.1038/nmat994

Beye M., Sorgenfrei F., Schlotter W. F.,WurthW., Föhlisch A., Proc. Natl. Acad. Sci. U.S.A., 2010, 107, No. 39, 16772–16776. DOI: https://doi.org/10.1073/pnas.1006499107

Vasisht V. V., Saw S., Sastry S., Nat. Phys., 2011, 7, 549–553. DOI: https://doi.org/10.1038/nphys1993

Sciortino F., Nat. Phys., 2011, 7, 523–524. DOI: https://doi.org/10.1038/nphys2038

Saika-Voivod I., Sciortino F., Poole P. H., Phys. Rev. E, 2000, 63, 011202. DOI: https://doi.org/10.1103/PhysRevE.63.011202

Lascaris E., Hemmati M., Buldyrev S. V., Stanley H. E., Angell C. A., J. Chem. Phys., 2014, 140, 224502. DOI: https://doi.org/10.1063/1.4879057

Tsuchiya Y., Seymour E. F. W., J. Phys. C: Solid State Phys., 1982, 15, No. 22, L687–L695. DOI: https://doi.org/10.1088/0022-3719/15/22/002

Brazhkin V. V., Popova S. V., Voloshin R. N., Physica B, 1999, 265, 64–71. DOI: https://doi.org/10.1016/S0921-4526(98)01318-0

Cadien A., Hu Q. Y., Meng Y., Cheng Y. Q., Chen M. W., Shu J. F., Mao H. K., Sheng H. W., Phys. Rev. Lett., 2013, 110, 125503. DOI: https://doi.org/10.1103/PhysRevLett.110.125503

Angell C. A., J. Phys. Chem., 1971, 75, No. 24, 3698. DOI: https://doi.org/10.1021/j100693a010

Angell C. A., Annu. Rev. Phys. Chem., 2004, 55, 559–583. DOI: https://doi.org/10.1146/annurev.physchem.55.091602.094156

Poole P. H., Sciortino F., Essmann U., Stanley H. E., Nature, 1992, 360, 324–328. DOI: https://doi.org/10.1038/360324a0

Holten V., Anisimov M. A., Sci. Rep., 2012, 2, 713. DOI: https://doi.org/10.1038/srep00713

Holten V., Palmer J. C., Poole P. H., Debenedetti P. G., Anisimov M. A., J. Chem. Phys., 2014, 140, 104502. DOI: https://doi.org/10.1063/1.4867287

Gallo P., Amann-Winkel K., Angell C. A., Anisimov M. A., Caupin F., Chakravarty C., Lascaris E., Loerting T., Panagiotopoulos A. Z., Russo J., Sellberg J. A., Stanley H. E., Tanaka H., Vega C., Xu L., Pettersson L. G. M., Chem. Rev., 2016, 116, 7463–7500. DOI: https://doi.org/10.1021/acs.chemrev.5b00750

Biddle J. W., Singh R. S., Sparano E. M., Ricci F., González M. A., Valeriani C., Abascal J. L. F., Debenedetti P. G., Anisimov M. A., Caupin F., J. Chem. Phys., 2017, 146, 034502. DOI: https://doi.org/10.1063/1.4973546

Caupin F., Anisimov M. A., J. Chem. Phys., 2019, 151, 034503. DOI: https://doi.org/10.1063/1.5100228

Duška M., J. Chem. Phys., 2020, 152, 174501. DOI: https://doi.org/10.1063/5.0006431

Cummings P. T., Stell G., Mol. Phys., 1984, 51, No. 2, 253–287. DOI: https://doi.org/10.1080/00268978400100191

Kalyuzhnyi Yu. V., Stell G., Mol. Phys., 1993, 78, No. 5, 1247–1258. DOI: https://doi.org/10.1080/00268979300100821

Speedy R. J., Debenedetti P. G., Mol. Phys., 1994, 81, No. 1, 237–249. DOI: https://doi.org/10.1080/00268979400100161

Speedy R. J., Debenedetti P. G., Mol. Phys., 1996, 88, No. 5, 1293–1316. DOI: https://doi.org/10.1080/00268979609484512

Zaccarelli E., Buldyrev S.V., LaNave E., Moreno A. J., Saika-Voivod I., Sciortino F., Tartaglia P., Phys.Rev. Lett., 2005, 94, 218301. DOI: https://doi.org/10.1103/PhysRevLett.94.218301

Moreno A. J., Buldyrev S.V., LaNave E., Saika-Voivod I., Sciortino F., Tartaglia P., Zaccarelli E., Phys.Rev. Lett., 2005, 95, 157802. DOI: https://doi.org/10.1103/PhysRevLett.95.157802

Zaccarelli E., Saika-Voivod I., Buldyrev S. V., Moreno A. J., Tartaglia P., Sciortino F., J. Chem. Phys., 2006, 124, 124908. DOI: https://doi.org/10.1063/1.2177241

Kalyuzhnyi Yu. V., Protsykevytch I. A., Cummings P. T., Europhys. Lett., 2007, 80, No. 5, 56002. DOI: https://doi.org/10.1209/0295-5075/80/56002

Kalyuzhnyi Yu. V., Protsykevitch I. A., Cummings P. T., Condens. Matter Phys., 2007, 10, 553. DOI: https://doi.org/10.5488/CMP.10.4.553

Smallenburg F., Sciortino F., Nat. Phys., 2013, 9, 554–558. DOI: https://doi.org/10.1038/nphys2693

Reščič J., Kalyuzhnyi Yu. V., Cummings P. T., J. Phys.: Condens. Matter, 2016, 28, 414011. DOI: https://doi.org/10.1088/0953-8984/28/41/414011

Kalyuzhnyi Yu. V., Jamnik A., J. Mol. Liq., 2017, 228, 133–142. DOI: https://doi.org/10.1016/j.molliq.2016.09.121

Kalyuzhnyi Yu. V., Jamnik A., Cummings P. T., Soft Matter, 2017, 13, 1156. DOI: https://doi.org/10.1039/C6SM02572B

Stepanenko O. O., Jamnik A., Reščič J., Kalyuzhnyi Yu. V., Mol. Phys., 2019, 117, 3695–3702. DOI: https://doi.org/10.1080/00268976.2019.1662124

Kalyuzhnyi Yu. V., Jamnik A., Cummings P. T., J. Mol. Liq., 2023, 317, 121073. DOI: https://doi.org/10.1016/j.molliq.2022.121073

Shumovskyi N. A., Longo T. J., Buldyrev S. V., Anisimov M. A., Phys Rev. E, 2022, 106, 015305. DOI: https://doi.org/10.1103/PhysRevE.106.015305

Shumovskyi N. A., Buldyrev S. V., Phys. Rev. E, 2023, 107, 024140. DOI: https://doi.org/10.1103/PhysRevE.107.024140

Behler J., Chem. Rev., 2021, 121, 10037–10072. DOI: https://doi.org/10.1021/acs.chemrev.0c00868

Wigner E., Huntington H. B., J. Chem. Phys., 1935, 3, 764–770. DOI: https://doi.org/10.1063/1.1749590

Giguere P. A., J. Raman Spectrosc., 1984, 15, 354. DOI: https://doi.org/10.1002/jrs.1250150513

Buldyrev S. V., In: Aspects of Physical Biology, Lecture Notes in Physics, Vol. 752, Franzese G., Rubi M. (Eds.), Springer, Berlin, Heidelberg, 2008, 97–132.

Alder B. J., Wainwright T. E., J. Phys. Chem., 1959, 31, 459. DOI: https://doi.org/10.1063/1.1730376

Xu L.,Kumar P., Buldyrev S.V., Chen S. H., Poole P. H., Sciortino F., Stanley H. E., Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 16558–16562. DOI: https://doi.org/10.1073/pnas.0507870102

Xu L., Buldyrev S. V., Angell C. A., Stanley H. E., Phys. Rev. E, 2006, 74, 031108. DOI: https://doi.org/10.1103/PhysRevE.74.031108

Sun G., Wang Y., Lomakin A., Benedek G. B., Stanley H. E., Xu L., Buldyrev S. V., J. Chem. Phys., 2016, 145, 194901. DOI: https://doi.org/10.1063/1.4966972

Berendsen H. J. C., Postma J. P. M., van Gunsteren W. F., DiNola A., Haak J. R., J. Chem. Phys., 1984, 81, 3684. DOI: https://doi.org/10.1063/1.448118

Xu L., Buldyrev S. V., Stanley H. E., Franzese G., Phys. Rev. Lett., 2012, 109, 095702. DOI: https://doi.org/10.1103/PhysRevLett.109.095702

Kincaid J. M., Stell G., Goldmark E., J. Chem. Phys., 1976, 65, 2172–2179. DOI: https://doi.org/10.1063/1.433373

Bolhuis P., Frenkel D., In: Frontiers in Materials Modelling and Design, Kumar V., Sengupta S., Raj B. (Eds.), Springer, Berlin, Heidelberg, 1998, 315–324. DOI: https://doi.org/10.1007/978-3-642-80478-6_36

Franzese G., Malescio G., Skibinsky A., Buldyrev S. V., Stanley H. E., Nature, 2001, 409, 692–695. DOI: https://doi.org/10.1038/35055514

Caupin F., Herbert E., C. R. Phys., 2006, 7, 1000–1017. DOI: https://doi.org/10.1016/j.crhy.2006.10.015

Poole P. H., Saika-Voivod I., Sciortino F., J. Phys.: Condens. Matter., 2005, 17, L431. DOI: https://doi.org/10.1088/0953-8984/17/43/L01

Espinosa J. R., Abascal J. L. F., Sedano L. F., Sanz E., Vega C., J. Chem. Phys., 2023, 158, 204505. DOI: https://doi.org/10.1063/5.0147345

Sastry S., Debenedetti P. G., Sciortino F., Stanley H. E., Phys. Rev. E, 1996, 53, 6144–6154. DOI: https://doi.org/10.1103/PhysRevE.53.6144

Wagner W., Pruß A., J. Phys. Chem. Ref. Data, 1999, 31, 387–535. DOI: https://doi.org/10.1063/1.1461829

Lide D. R. (Ed.), CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, CRC Press, Boca Raton, 85 edn., 2004.

Published

2024-06-28

Issue

Section

Articles

Categories

How to Cite

[1]
S. V. Buldyrev, “Hamiltonian limited valence model for liquid polyamorphism”, Condens. Matter Phys., vol. 27, no. 2, p. 23601, Jun. 2024, doi: 10.5488/cmp.27.23601.

Similar Articles

1-10 of 23

You may also start an advanced similarity search for this article.