On the temperature, pressure and composition effects in the properties of water-methanol mixtures. I. Density, excess mixing volume and enthalpy, and self-diffusion coefficients from molecular dynamics simulations
DOI:
https://doi.org/10.5488/cmp.28.13602Keywords:
molecular dynamics simulation, water-methanol mixtures, partial molar volumes, excess enthalpy, self-diffusion coefiicientsAbstract
We report the temperature, pressure and composition dependence of some basic properties of model liquid water-methanol mixtures. For this purpose the isobaric-isothermal molecular dynamics computer simulations are employed. Our principal focus is on the united atom non-polarizable UAM-I-EW model for methanol which was recently parametrized the paper by Garcia-Melgarejo et al. [ J. Mol. Liq., 2021, 323, 114576], combined with the TIP4P/ε water model. In perspective, the methanol model permits a convenient extension for other monohydric alcohols mixed with water. The behavior of density, excess mixing volume and enthalpy are described. Partial mixing properties are interpreted. Besides, we explored the trends of behavior of self-diffusion coefficients of the species of a mixture. The quality of predictions of the model is critically evaluated by detailed comparisons with experimental results. Various results are novel and provide new insights into the behavior of the mixtures in question at different temperatues and at high pressures. An improvement of the modelling necessary for further research is discussed.
References
Galicia-Andrés E., Pusztai L., Temleitner L., Pizio O., J. Mol. Liq., 2015, 209, 586. DOI: https://doi.org/10.1016/j.molliq.2015.06.045
Galicia-Andres E., Dominguez H., Pusztai L., Pizio O., J. Mol. Liq., 2015, 212, 70. DOI: https://doi.org/10.1016/j.molliq.2015.08.061
Cruz Sanchez M., Dominguez H., Pizio O., Condens. Matter Phys., 2019, 22, 13602. DOI: https://doi.org/10.5488/CMP.22.13602
Cruz Sanchez M., Aguilar M., Pizio O., Condens. Matter Phys., 2020, 23, 34601. DOI: https://doi.org/10.5488/CMP.23.34601
Sun Q., Molecules, 2022, 27, 7009. DOI: https://doi.org/10.3390/molecules27207009
Grigera J. R., McCarthy A. N., Biophys. J., 2010, 98, 1626. DOI: https://doi.org/10.1016/j.bpj.2009.12.4298
Ghosh T., García A. E., Garde S., J. Am. Chem. Soc., 2001, 123, 44, 10997. DOI: https://doi.org/10.1021/ja010446v
Hummer G., Garde S., Garcia A. E., Pratt L. R., Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 15522. DOI: https://doi.org/10.1073/pnas.95.4.1552
Oakenfull D., Fenwick D. E., J. Chem. Soc., Faraday Trans. 1, 1979, 75, 636. DOI: https://doi.org/10.1039/f19797500636
Temleitner L., Hattori T., Abe J., Nakajima Y., Pusztai L., Molecules, 2021, 26, 1218. DOI: https://doi.org/10.3390/molecules26051218
Yamaguchi T., Benmore C. J., Soper A. K., J. Chem. Phys., 2000, 112, 8976. DOI: https://doi.org/10.1063/1.481530
Yoshida K., Ishida S., Yamaguchi T., Mol. Phys., 2019, 117, 3297. DOI: https://doi.org/10.1080/00268976.2019.1633481
Sato T., Chiba A., Nozaki R., J. Chem. Phys., 2000, 113, 9748. DOI: https://doi.org/10.1063/1.1321767
Kubota H., Tsuda S., Murata M., Yamamoto T., Tanaka Y., Makita T., Rev. Phys. Chem. Jpn., 1980, 49, 59.
Kubota H., Tanaka Y., Makita T., Int. J. Thermophys., 1987, 8, 47. DOI: https://doi.org/10.1007/BF00503224
Moghaddam M. S., Chan H. S., J. Chem. Phys., 2007, 126, 114507. DOI: https://doi.org/10.1063/1.2539179
Koga K., J. Chem. Phys., 2004, 121, 7304. DOI: https://doi.org/10.1063/1.1792571
Chau P.-L., Mancera R. L., Mol. Phys., 1999, 96, 109. DOI: https://doi.org/10.1080/002689799166043
Hernández-Cobos J., Ortega-Blake I., J. Chem. Phys., 1995, 103, 9261. DOI: https://doi.org/10.1063/1.469986
Durell S. W., Ben-Naim A., J. Phys. Chem. B, 2021, 125, 13137. DOI: https://doi.org/10.1021/acs.jpcb.1c07802
Abascal J. L. F., Vega C., J. Chem. Phys., 2005, 123, 234505. DOI: https://doi.org/10.1063/1.2121687
Gonzalez-Salgado D., Vega C., J. Chem. Phys., 2016, 145, 034508. DOI: https://doi.org/10.1063/1.4958320
Fuentes-Azcatl R., Alejandre J., J. Phys. Chem. B, 2014, 118, 1263. DOI: https://doi.org/10.1021/jp410865y
Chen B., Potoff J. J., Siepmann J. I., J. Phys. Chem. B, 2001, 105, 3093. DOI: https://doi.org/10.1021/jp003882x
García-Melgarejo V., Núñez-Rojas E., Alejandre J., J. Mol. Liq., 2021, 323, 114576. DOI: https://doi.org/10.1016/j.molliq.2020.114576
Méndez-Bermúdez J. G., Pizio O., J. Mol. Liq., 2025, 421, 126789. DOI: https://doi.org/10.1016/j.molliq.2024.126789
Spoel D., Lindahl E., Hess B., Groenhof B., Mark A. E., Berendsen H. J. C., J. Comput. Chem., 2005, 118, 1701.
Holten V., Sengers J. V., Anisimov M. A., J. Phys. Chem. Ref. Data, 2014, 43, 043101. DOI: https://doi.org/10.1063/1.4895593
Dzhavadov L. N., Brazhkin V. V., Fomin Yu. D., Ryzhov V. N., Tsiok E. N., J. Chem. Phys., 2020, 152, 154501. DOI: https://doi.org/10.1063/5.0002720
Pi H., Aragones J. L., Vega C., Noya E. G., Abascal J. L. F., Gonzalez M. A., McBride C., Mol. Phys., 2009, 107, 365. DOI: https://doi.org/10.1080/00268970902784926
Hare D. E., Sorensen C. M., J. Chem. Phys., 1987, 82, 4840. DOI: https://doi.org/10.1063/1.453710
Fine R. A., Millero F. J., J. Chem. Phys., 1973, 59, 5529. DOI: https://doi.org/10.1063/1.1679903
Linstrom P. J., Mallard W. G. (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database 69, National Institute of Standards and Technology, Gaithersburg MD, 2025.
Mikhail S. Z., Kimel W. R., J. Chem. Eng. Data, 1961, 6, 533. DOI: https://doi.org/10.1021/je60011a015
Easteal A. J., Woolf L. A., J. Chem. Thermodyn., 1985, 17, 49.
Sato M., Ike Y., Kano J., Kojima S., AIP Conf. Proc., 2006, 832 , 291. DOI: https://doi.org/10.1063/1.2204509
Jiménez-Ruiz M., Jiménez-Riobóo R. J., Tissen V., Ramos M. A., Schober H.,Phys. Status Solidi C, 2004, 1, 3178. DOI: https://doi.org/10.1002/pssc.200405281
Blaudez D., Mallamace F., Micali N., Trusso S., Vasi C., Il Nuovo Cimento D, 1994, 16, 923. DOI: https://doi.org/10.1007/BF02456743
Tomaszkiewicz I., Randzio S. L., Gierycz P., Thermochim. Acta, 1986, 103, 281.
Lama R. F., Lu B. C.-Y., J. Chem. Eng. Data, 1965, 10, 216. DOI: https://doi.org/10.1021/je60026a003
Simonson J. M., Bradley D. J., Busey R. H., J. Chem. Thermodyn., 1987, 19, 479. DOI: https://doi.org/10.1016/0021-9614(87)90145-5
Tôrres R. B., Marchiore A., Volpe P., J. Chem. Thermodyn., 2006, 38, 526. DOI: https://doi.org/10.1016/j.jct.2005.07.012
Benavides Bautista D., Aguilar M., Pizio O., Condens. Matter Phys., 2024, 27, 23201. DOI: https://doi.org/10.5488/cmp.27.23201
Dymond J. H., Malhotra R., Int. J. Thermophys., 1988, 9, 941. DOI: https://doi.org/10.1007/BF01133262
Krynicki K., Green C. D., Sawyer D. W., Faraday Discuss. Chem. Soc., 1978, 66, 199. DOI: https://doi.org/10.1039/dc9786600199
Mills R., J. Phys. Chem., 1973, 77, 685. DOI: https://doi.org/10.1002/bbpc.19730770907
Gillen K. T., Douglass D. C., Hoch M. J. R., J. Chem. Phys., 1972, 57, 5117. DOI: https://doi.org/10.1063/1.1678198
Rathbun R. E., Babb A. L., J. Phys. Chem., 1961, 65, 1072. DOI: https://doi.org/10.1021/j100824a520
Hiraoka H., Izui Y., Odugi J., Jono W., Rev. Phys. Chem. Japan, 1958, 28, 61.
Hurle R. L., Easteal A. J.,Woolf L. A., J. Chem. Soc. Faraday Trans. I, 1985, 81, 769. DOI: https://doi.org/10.1039/f19858100769
Asahi N., Nakamura Y., J. Chem. Phys., 1998, 109, 9879. DOI: https://doi.org/10.1063/1.477656
Derlacki Z. J., Easteal A. J., Edge A. V. J., Woolf L. A., Roksandic Z., J. Phys. Chem., 1985, 89, 5318. DOI: https://doi.org/10.1021/j100270a039
Downloads
Published
License
Copyright (c) 2025 M. Cruz Sanchez, V. Trejos Montoya, O. Pizio

This work is licensed under a Creative Commons Attribution 4.0 International License.