On the temperature, pressure and composition effects in the properties of water-methanol mixtures. I. Density, excess mixing volume and enthalpy,  and self-diffusion coefficients from molecular dynamics simulations

Authors

DOI:

https://doi.org/10.5488/cmp.28.13602

Keywords:

molecular dynamics simulation, water-methanol mixtures, partial molar volumes, excess enthalpy, self-diffusion coefiicients

Abstract

We report the temperature, pressure and composition dependence of some basic properties of model liquid water-methanol mixtures. For this purpose the isobaric-isothermal molecular dynamics computer simulations are employed. Our principal focus is on the united atom non-polarizable UAM-I-EW model for methanol which was recently parametrized the paper by Garcia-Melgarejo et al. [ J. Mol. Liq., 2021, 323, 114576], combined with the TIP4P/ε water model. In perspective, the methanol model permits a convenient extension for other monohydric alcohols mixed with water. The behavior of density, excess mixing volume and enthalpy are described. Partial mixing properties are interpreted. Besides, we explored the trends of behavior of self-diffusion coefficients of the species of a mixture. The quality of predictions of the model is critically evaluated by detailed comparisons with experimental results. Various results are novel and provide new insights into the behavior of the mixtures in question at different temperatues and at high pressures. An improvement of the modelling necessary for further research is discussed.

References

Galicia-Andrés E., Pusztai L., Temleitner L., Pizio O., J. Mol. Liq., 2015, 209, 586. DOI: https://doi.org/10.1016/j.molliq.2015.06.045

Galicia-Andres E., Dominguez H., Pusztai L., Pizio O., J. Mol. Liq., 2015, 212, 70. DOI: https://doi.org/10.1016/j.molliq.2015.08.061

Cruz Sanchez M., Dominguez H., Pizio O., Condens. Matter Phys., 2019, 22, 13602. DOI: https://doi.org/10.5488/CMP.22.13602

Cruz Sanchez M., Aguilar M., Pizio O., Condens. Matter Phys., 2020, 23, 34601. DOI: https://doi.org/10.5488/CMP.23.34601

Sun Q., Molecules, 2022, 27, 7009. DOI: https://doi.org/10.3390/molecules27207009

Grigera J. R., McCarthy A. N., Biophys. J., 2010, 98, 1626. DOI: https://doi.org/10.1016/j.bpj.2009.12.4298

Ghosh T., García A. E., Garde S., J. Am. Chem. Soc., 2001, 123, 44, 10997. DOI: https://doi.org/10.1021/ja010446v

Hummer G., Garde S., Garcia A. E., Pratt L. R., Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 15522. DOI: https://doi.org/10.1073/pnas.95.4.1552

Oakenfull D., Fenwick D. E., J. Chem. Soc., Faraday Trans. 1, 1979, 75, 636. DOI: https://doi.org/10.1039/f19797500636

Temleitner L., Hattori T., Abe J., Nakajima Y., Pusztai L., Molecules, 2021, 26, 1218. DOI: https://doi.org/10.3390/molecules26051218

Yamaguchi T., Benmore C. J., Soper A. K., J. Chem. Phys., 2000, 112, 8976. DOI: https://doi.org/10.1063/1.481530

Yoshida K., Ishida S., Yamaguchi T., Mol. Phys., 2019, 117, 3297. DOI: https://doi.org/10.1080/00268976.2019.1633481

Sato T., Chiba A., Nozaki R., J. Chem. Phys., 2000, 113, 9748. DOI: https://doi.org/10.1063/1.1321767

Kubota H., Tsuda S., Murata M., Yamamoto T., Tanaka Y., Makita T., Rev. Phys. Chem. Jpn., 1980, 49, 59.

Kubota H., Tanaka Y., Makita T., Int. J. Thermophys., 1987, 8, 47. DOI: https://doi.org/10.1007/BF00503224

Moghaddam M. S., Chan H. S., J. Chem. Phys., 2007, 126, 114507. DOI: https://doi.org/10.1063/1.2539179

Koga K., J. Chem. Phys., 2004, 121, 7304. DOI: https://doi.org/10.1063/1.1792571

Chau P.-L., Mancera R. L., Mol. Phys., 1999, 96, 109. DOI: https://doi.org/10.1080/002689799166043

Hernández-Cobos J., Ortega-Blake I., J. Chem. Phys., 1995, 103, 9261. DOI: https://doi.org/10.1063/1.469986

Durell S. W., Ben-Naim A., J. Phys. Chem. B, 2021, 125, 13137. DOI: https://doi.org/10.1021/acs.jpcb.1c07802

Abascal J. L. F., Vega C., J. Chem. Phys., 2005, 123, 234505. DOI: https://doi.org/10.1063/1.2121687

Gonzalez-Salgado D., Vega C., J. Chem. Phys., 2016, 145, 034508. DOI: https://doi.org/10.1063/1.4958320

Fuentes-Azcatl R., Alejandre J., J. Phys. Chem. B, 2014, 118, 1263. DOI: https://doi.org/10.1021/jp410865y

Chen B., Potoff J. J., Siepmann J. I., J. Phys. Chem. B, 2001, 105, 3093. DOI: https://doi.org/10.1021/jp003882x

García-Melgarejo V., Núñez-Rojas E., Alejandre J., J. Mol. Liq., 2021, 323, 114576. DOI: https://doi.org/10.1016/j.molliq.2020.114576

Méndez-Bermúdez J. G., Pizio O., J. Mol. Liq., 2025, 421, 126789. DOI: https://doi.org/10.1016/j.molliq.2024.126789

Spoel D., Lindahl E., Hess B., Groenhof B., Mark A. E., Berendsen H. J. C., J. Comput. Chem., 2005, 118, 1701.

Holten V., Sengers J. V., Anisimov M. A., J. Phys. Chem. Ref. Data, 2014, 43, 043101. DOI: https://doi.org/10.1063/1.4895593

Dzhavadov L. N., Brazhkin V. V., Fomin Yu. D., Ryzhov V. N., Tsiok E. N., J. Chem. Phys., 2020, 152, 154501. DOI: https://doi.org/10.1063/5.0002720

Pi H., Aragones J. L., Vega C., Noya E. G., Abascal J. L. F., Gonzalez M. A., McBride C., Mol. Phys., 2009, 107, 365. DOI: https://doi.org/10.1080/00268970902784926

Hare D. E., Sorensen C. M., J. Chem. Phys., 1987, 82, 4840. DOI: https://doi.org/10.1063/1.453710

Fine R. A., Millero F. J., J. Chem. Phys., 1973, 59, 5529. DOI: https://doi.org/10.1063/1.1679903

Linstrom P. J., Mallard W. G. (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database 69, National Institute of Standards and Technology, Gaithersburg MD, 2025.

Mikhail S. Z., Kimel W. R., J. Chem. Eng. Data, 1961, 6, 533. DOI: https://doi.org/10.1021/je60011a015

Easteal A. J., Woolf L. A., J. Chem. Thermodyn., 1985, 17, 49.

Sato M., Ike Y., Kano J., Kojima S., AIP Conf. Proc., 2006, 832 , 291. DOI: https://doi.org/10.1063/1.2204509

Jiménez-Ruiz M., Jiménez-Riobóo R. J., Tissen V., Ramos M. A., Schober H.,Phys. Status Solidi C, 2004, 1, 3178. DOI: https://doi.org/10.1002/pssc.200405281

Blaudez D., Mallamace F., Micali N., Trusso S., Vasi C., Il Nuovo Cimento D, 1994, 16, 923. DOI: https://doi.org/10.1007/BF02456743

Tomaszkiewicz I., Randzio S. L., Gierycz P., Thermochim. Acta, 1986, 103, 281.

Lama R. F., Lu B. C.-Y., J. Chem. Eng. Data, 1965, 10, 216. DOI: https://doi.org/10.1021/je60026a003

Simonson J. M., Bradley D. J., Busey R. H., J. Chem. Thermodyn., 1987, 19, 479. DOI: https://doi.org/10.1016/0021-9614(87)90145-5

Tôrres R. B., Marchiore A., Volpe P., J. Chem. Thermodyn., 2006, 38, 526. DOI: https://doi.org/10.1016/j.jct.2005.07.012

Benavides Bautista D., Aguilar M., Pizio O., Condens. Matter Phys., 2024, 27, 23201. DOI: https://doi.org/10.5488/cmp.27.23201

Dymond J. H., Malhotra R., Int. J. Thermophys., 1988, 9, 941. DOI: https://doi.org/10.1007/BF01133262

Krynicki K., Green C. D., Sawyer D. W., Faraday Discuss. Chem. Soc., 1978, 66, 199. DOI: https://doi.org/10.1039/dc9786600199

Mills R., J. Phys. Chem., 1973, 77, 685. DOI: https://doi.org/10.1002/bbpc.19730770907

Gillen K. T., Douglass D. C., Hoch M. J. R., J. Chem. Phys., 1972, 57, 5117. DOI: https://doi.org/10.1063/1.1678198

Rathbun R. E., Babb A. L., J. Phys. Chem., 1961, 65, 1072. DOI: https://doi.org/10.1021/j100824a520

Hiraoka H., Izui Y., Odugi J., Jono W., Rev. Phys. Chem. Japan, 1958, 28, 61.

Hurle R. L., Easteal A. J.,Woolf L. A., J. Chem. Soc. Faraday Trans. I, 1985, 81, 769. DOI: https://doi.org/10.1039/f19858100769

Asahi N., Nakamura Y., J. Chem. Phys., 1998, 109, 9879. DOI: https://doi.org/10.1063/1.477656

Derlacki Z. J., Easteal A. J., Edge A. V. J., Woolf L. A., Roksandic Z., J. Phys. Chem., 1985, 89, 5318. DOI: https://doi.org/10.1021/j100270a039

Published

2025-03-28

Issue

Section

Articles

Categories

How to Cite

[1]
M. Cruz Sanchez, V. Trejos Montoya, and O. Pizio, “On the temperature, pressure and composition effects in the properties of water-methanol mixtures. I. Density, excess mixing volume and enthalpy,  and self-diffusion coefficients from molecular dynamics simulations”, Condens. Matter Phys., vol. 28, no. 1, p. 13602, Mar. 2025, doi: 10.5488/cmp.28.13602.

Similar Articles

1-10 of 42

You may also start an advanced similarity search for this article.