Scaling properties of diblock copolymers: dynamic simulations study
DOI:
https://doi.org/10.5488/cmp.28.13301Keywords:
polymers, scaling, universal properties, numerical simulationsAbstract
The influence of monomer-monomer interactions on the scaling exponents and shape characteristics of a single polymer chain in a selective solvent is investigated using Langevin dynamics simulations. By systematically increasing the temperature of the solution, the effects of interactions between blocks on the conformational properties of the chain are explored. The results demonstrate that longer-range interactions cause a transition of a polymer similar to the transition for homopolymers; short-range repulsive interactions between different blocks have a negligible impact on the effective scaling exponents: they are the same regardless of the blocks being globule and coil or ideal and swollen coils.
References
Bates C. M., Bates F. S., Macromolecules, 2017, 50, No. 1, 3–22. DOI: https://doi.org/10.1021/acs.macromol.6b02355
Hadjichristidis N., Pispas S., Floudas G., Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley, 2003. DOI: https://doi.org/10.1002/0471269808
Sajjad H., Tolman W. B., Reineke T. M., ACS Appl. Polym. Mater., 2020, 2, No. 7, 2719–2728. DOI: https://doi.org/10.1021/acsapm.0c00317
Leonardi A., Zhang A. C., Düzen N., Aldred N., Finlay J. A., Clarke J. L., Clare A. S., Segalman R. A., Ober C. K., ACS Appl. Mater. Interfaces, 2021, 13, No. 24, 28790–28801. DOI: https://doi.org/10.1021/acsami.1c05266
Meng F., Zhong Z., Feijen J., Biomacromolecules, 2009, 10, No. 2, 197–209. DOI: https://doi.org/10.1021/bm801127d
Xu Q., Wang Y., Zheng Y., Zhu Y., Li Z., Liu Y., Ding M., Biomacromolecules, 2024, 25, No. 4, 2114–2135. DOI: https://doi.org/10.1021/acs.biomac.3c00903
Singh A. N., Thakre R. D., More J. C., Sharma P. K., Agrawal Y. K., Polym.-Plast. Technol. Eng., 2015, 54, No. 10, 1077–1095. DOI: https://doi.org/10.1080/03602559.2014.986811
Kutikov A. B., Song J.,ACS Biomater. Sci. Eng., 2015, 1,No. 7, 463–480. DOI: https://doi.org/10.1021/acsbiomaterials.5b00122
Malik S., Sundarrajan S., Hussain T., Nazir A., Ramakrishna S., Cells Tissues Organs, 2021, 211, No. 4, 492–505.
Schultz A. J., Hall C. K., Genzer J., Macromolecules, 2005, 38, No. 7, 3007–3016. DOI: https://doi.org/10.1021/ma0496910
Cummins C., Lundy R., Walsh J. J., Ponsinet V., Fleury G., Morris M. A., Nano Today, 2020, 35, 100936. DOI: https://doi.org/10.1016/j.nantod.2020.100936
Chen L., Wang S., Yu Q., Topham P. D., Chen C., Wang L., Soft Matter, 2019, 15, 2490–2510. DOI: https://doi.org/10.1039/C8SM02484G
Dami S., Abetz C., Fischer B., Radjabian M., Georgopanos P., Abetz V., Polymer, 2017, 126, 376–385. DOI: https://doi.org/10.1016/j.polymer.2017.05.024
Hamley I. W., Block Copolymers in Solution: Fundamentals and Applications, Wiley, first edn., 2005. DOI: https://doi.org/10.1002/9780470016985
Gromadzki D., Filippov S., Netopilík M., Makuška R., Jigounov A., Pleštil J., Horský J., Štěpánek P., Eur. Polym. J., 2009, 45, No. 6, 1748–1758. DOI: https://doi.org/10.1016/j.eurpolymj.2009.02.022
Kelly M. T., Kent E. W., Zhao B., Macromolecules, 2022, 55, No. 5, 1629–1641. DOI: https://doi.org/10.1021/acs.macromol.1c02662
Burchard W., Solution Properties of Branched Macromolecules, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, 113–194. DOI: https://doi.org/10.1007/3-540-49780-3_3
des Cloizeaux J., Jannink G., Polymers in Solution: their modelling and structure, Clarendon Press, Oxford, 1991. DOI: https://doi.org/10.1093/oso/9780198520368.001.0001
de Gennes P.-G., Scaling Concepts in Polymer Physics, University Press, Ithaca, 1979.
Guida R., Zinn-Justin J., J. Phys. A: Math. Gen., 1998, 31, No. 40, 8103. DOI: https://doi.org/10.1088/0305-4470/31/40/006
Clisby N., J. Stat. Phys., 2010, 140, No. 2, 349–392. DOI: https://doi.org/10.1007/s10955-010-9994-8
Fetters L. J., Hadjichristidis N., Lindner J. S., Mays J. W., J. Phys. Chem. Ref. Data, 1994, 23, No. 4, 619–640. DOI: https://doi.org/10.1063/1.555949
Ercolini E., Valle F., Adamcik J., Witz G., Metzler R., De Los Rios P., Roca J., Dietler G., Phys. Rev. Lett., 2007, 98, 058102. DOI: https://doi.org/10.1103/PhysRevLett.98.058102
von Ferber C., Holovatch Y., Phys. Rev. E, 1997, 56, 6370–6386. DOI: https://doi.org/10.1103/PhysRevE.56.6370
Tanaka T., Kotaka T., Inagaki H., Macromolecules, 1976, 9, No. 4, 561–568. DOI: https://doi.org/10.1021/ma60052a006
Olaj O. F., Neubauer B., Zifferer G., Macromol. Theory Simul., 1998, 7, No. 1, 181–188. DOI: https://doi.org/10.1002/(SICI)1521-3919(19980101)7:1<181::AID-MATS181>3.3.CO;2-H
Joanny J. F., Leibler L., Ball R., J. Chem. Phys., 1984, 81, No. 10, 4640–4656. DOI: https://doi.org/10.1063/1.447399
Bendler J., Solc K., Gobush W., Macromolecules, 1977, 10, No. 3, 635–646. DOI: https://doi.org/10.1021/ma60057a028
Douglas J. F., Freed K. F., J. Chem. Phys., 1987, 86, No. 7, 4280–4293. DOI: https://doi.org/10.1063/1.451888
Vlahos C. H., Horta A., Molina L. A., Freire J. J., Macromolecules, 1994, 27, No. 10, 2726–2731. DOI: https://doi.org/10.1021/ma00088a012
McMullen W. E., Freed K. F., Cherayil B. J., Macromolecules, 1989, 22, No. 4, 1853–1862. DOI: https://doi.org/10.1021/ma00194a057
Molina L. A., Rodriguez A. L., Freire J. J., Macromolecules, 1994, 27, No. 5, 1160–1165. DOI: https://doi.org/10.1021/ma00083a013
Haydukivska K., Blavatska V., J. Phys. A: Math. Theor., 2019, 52, No. 50, 505004. DOI: https://doi.org/10.1088/1751-8121/ab2660
Haydukivska K., Blavatska V., Condens. Matter Phys., 2024, 27, No. 1, 13301. DOI: https://doi.org/10.5488/cmp.27.13301
Tanaka T., Kotaka T., Ban K., Hattori M., Inagaki H., Macromolecules, 1977, 10, No. 5, 960–967. DOI: https://doi.org/10.1021/ma60059a014
Tanaka T., Omoto M., Inagaki H., Macromolecules, 1979, 12, No. 1, 146–152. DOI: https://doi.org/10.1021/ma60067a030
Zifferer G., Eggerstorfer D., Macromol. Theory Simul., 2010, 19, No. 8–9, 458–482. DOI: https://doi.org/10.1002/mats.201000027
Vlahos C. H., Horta A., Freire J. J., Macromolecules, 1992, 25, No. 22, 5974–5980. DOI: https://doi.org/10.1021/ma00048a018
Rubio A. M., Brea P., Freire J. J., Vlahos C., Macromolecules, 2000, 33, No. 1, 207–216. DOI: https://doi.org/10.1021/ma9913156
Kholodenko A. L., Freed K. F., J. Chem. Phys., 1984, 80, No. 2, 900–924. DOI: https://doi.org/10.1063/1.446748
Oono Y., Statistical Physics of Polymer Solutions: Conformation-Space Renormalization-Group Approach, John Wiley and Sons, Ltd, 1985, 301–437. DOI: https://doi.org/10.1002/9780470142851.ch5
van den Oever J. M. P., Leermakers F. A. M., Fleer G. J., Ivanov V. A., Shusharina N. P., Khokhlov A. R., Khalatur P. G., Phys. Rev. E, 2002, 65, 041708. DOI: https://doi.org/10.1103/PhysRevE.65.041708
Singh T. V., Shagolsem L. S., Macromolecules, 2022, 55, No. 23, 10457–10467. DOI: https://doi.org/10.1021/acs.macromol.2c01559
Theodorakis P. E., Fytas N. G., J. Chem. Phys., 2012, 136, No. 9, 094902. DOI: https://doi.org/10.1063/1.3689303
Aronovitz J., Nelson D., J. Phys., 1986, 47, No. 9, 1445–1456. DOI: https://doi.org/10.1051/jphys:019860047090144500
Bradford E., McKeever L., Prog. Polym. Sci., 1971, 3, 109–143. DOI: https://doi.org/10.1016/0079-6700(71)90003-7
Grest G. S., Kremer K.,Witten T. A., Macromolecules, 1987, 20, No. 6, 1376–1383. DOI: https://doi.org/10.1021/ma00172a035
Grest G. S., Kremer K., Phys. Rev. A, 1986, 33, 3628–3631. DOI: https://doi.org/10.1103/PhysRevA.33.3628
Plimpton S., J. Comput. Phys., 1995, 117, No. 1, 1–19. DOI: https://doi.org/10.1006/jcph.1995.1039
Downloads
Published
License
Copyright (c) 2025 K. Haydukivska

This work is licensed under a Creative Commons Attribution 4.0 International License.