Scaling properties of diblock copolymers: dynamic simulations study

Authors

  • K. Haydukivska Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine; Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland https://orcid.org/0000-0002-3118-7010

DOI:

https://doi.org/10.5488/cmp.28.13301

Keywords:

polymers, scaling, universal properties, numerical simulations

Abstract

The influence of monomer-monomer interactions on the scaling exponents and shape characteristics of a single polymer chain in a selective solvent is investigated using Langevin dynamics simulations. By systematically increasing the temperature of the solution, the effects of interactions between blocks on the conformational properties of the chain are explored. The results demonstrate that longer-range interactions cause a transition of a polymer similar to the transition for homopolymers; short-range repulsive interactions between different blocks have a negligible impact on the effective scaling exponents: they are the same regardless of the blocks being globule and coil or ideal and swollen coils.

References

Bates C. M., Bates F. S., Macromolecules, 2017, 50, No. 1, 3–22. DOI: https://doi.org/10.1021/acs.macromol.6b02355

Hadjichristidis N., Pispas S., Floudas G., Block Copolymers: Synthetic Strategies, Physical Properties, and Applications, Wiley, 2003. DOI: https://doi.org/10.1002/0471269808

Sajjad H., Tolman W. B., Reineke T. M., ACS Appl. Polym. Mater., 2020, 2, No. 7, 2719–2728. DOI: https://doi.org/10.1021/acsapm.0c00317

Leonardi A., Zhang A. C., Düzen N., Aldred N., Finlay J. A., Clarke J. L., Clare A. S., Segalman R. A., Ober C. K., ACS Appl. Mater. Interfaces, 2021, 13, No. 24, 28790–28801. DOI: https://doi.org/10.1021/acsami.1c05266

Meng F., Zhong Z., Feijen J., Biomacromolecules, 2009, 10, No. 2, 197–209. DOI: https://doi.org/10.1021/bm801127d

Xu Q., Wang Y., Zheng Y., Zhu Y., Li Z., Liu Y., Ding M., Biomacromolecules, 2024, 25, No. 4, 2114–2135. DOI: https://doi.org/10.1021/acs.biomac.3c00903

Singh A. N., Thakre R. D., More J. C., Sharma P. K., Agrawal Y. K., Polym.-Plast. Technol. Eng., 2015, 54, No. 10, 1077–1095. DOI: https://doi.org/10.1080/03602559.2014.986811

Kutikov A. B., Song J.,ACS Biomater. Sci. Eng., 2015, 1,No. 7, 463–480. DOI: https://doi.org/10.1021/acsbiomaterials.5b00122

Malik S., Sundarrajan S., Hussain T., Nazir A., Ramakrishna S., Cells Tissues Organs, 2021, 211, No. 4, 492–505.

Schultz A. J., Hall C. K., Genzer J., Macromolecules, 2005, 38, No. 7, 3007–3016. DOI: https://doi.org/10.1021/ma0496910

Cummins C., Lundy R., Walsh J. J., Ponsinet V., Fleury G., Morris M. A., Nano Today, 2020, 35, 100936. DOI: https://doi.org/10.1016/j.nantod.2020.100936

Chen L., Wang S., Yu Q., Topham P. D., Chen C., Wang L., Soft Matter, 2019, 15, 2490–2510. DOI: https://doi.org/10.1039/C8SM02484G

Dami S., Abetz C., Fischer B., Radjabian M., Georgopanos P., Abetz V., Polymer, 2017, 126, 376–385. DOI: https://doi.org/10.1016/j.polymer.2017.05.024

Hamley I. W., Block Copolymers in Solution: Fundamentals and Applications, Wiley, first edn., 2005. DOI: https://doi.org/10.1002/9780470016985

Gromadzki D., Filippov S., Netopilík M., Makuška R., Jigounov A., Pleštil J., Horský J., Štěpánek P., Eur. Polym. J., 2009, 45, No. 6, 1748–1758. DOI: https://doi.org/10.1016/j.eurpolymj.2009.02.022

Kelly M. T., Kent E. W., Zhao B., Macromolecules, 2022, 55, No. 5, 1629–1641. DOI: https://doi.org/10.1021/acs.macromol.1c02662

Burchard W., Solution Properties of Branched Macromolecules, Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, 113–194. DOI: https://doi.org/10.1007/3-540-49780-3_3

des Cloizeaux J., Jannink G., Polymers in Solution: their modelling and structure, Clarendon Press, Oxford, 1991. DOI: https://doi.org/10.1093/oso/9780198520368.001.0001

de Gennes P.-G., Scaling Concepts in Polymer Physics, University Press, Ithaca, 1979.

Guida R., Zinn-Justin J., J. Phys. A: Math. Gen., 1998, 31, No. 40, 8103. DOI: https://doi.org/10.1088/0305-4470/31/40/006

Clisby N., J. Stat. Phys., 2010, 140, No. 2, 349–392. DOI: https://doi.org/10.1007/s10955-010-9994-8

Fetters L. J., Hadjichristidis N., Lindner J. S., Mays J. W., J. Phys. Chem. Ref. Data, 1994, 23, No. 4, 619–640. DOI: https://doi.org/10.1063/1.555949

Ercolini E., Valle F., Adamcik J., Witz G., Metzler R., De Los Rios P., Roca J., Dietler G., Phys. Rev. Lett., 2007, 98, 058102. DOI: https://doi.org/10.1103/PhysRevLett.98.058102

von Ferber C., Holovatch Y., Phys. Rev. E, 1997, 56, 6370–6386. DOI: https://doi.org/10.1103/PhysRevE.56.6370

Tanaka T., Kotaka T., Inagaki H., Macromolecules, 1976, 9, No. 4, 561–568. DOI: https://doi.org/10.1021/ma60052a006

Olaj O. F., Neubauer B., Zifferer G., Macromol. Theory Simul., 1998, 7, No. 1, 181–188. DOI: https://doi.org/10.1002/(SICI)1521-3919(19980101)7:1<181::AID-MATS181>3.3.CO;2-H

Joanny J. F., Leibler L., Ball R., J. Chem. Phys., 1984, 81, No. 10, 4640–4656. DOI: https://doi.org/10.1063/1.447399

Bendler J., Solc K., Gobush W., Macromolecules, 1977, 10, No. 3, 635–646. DOI: https://doi.org/10.1021/ma60057a028

Douglas J. F., Freed K. F., J. Chem. Phys., 1987, 86, No. 7, 4280–4293. DOI: https://doi.org/10.1063/1.451888

Vlahos C. H., Horta A., Molina L. A., Freire J. J., Macromolecules, 1994, 27, No. 10, 2726–2731. DOI: https://doi.org/10.1021/ma00088a012

McMullen W. E., Freed K. F., Cherayil B. J., Macromolecules, 1989, 22, No. 4, 1853–1862. DOI: https://doi.org/10.1021/ma00194a057

Molina L. A., Rodriguez A. L., Freire J. J., Macromolecules, 1994, 27, No. 5, 1160–1165. DOI: https://doi.org/10.1021/ma00083a013

Haydukivska K., Blavatska V., J. Phys. A: Math. Theor., 2019, 52, No. 50, 505004. DOI: https://doi.org/10.1088/1751-8121/ab2660

Haydukivska K., Blavatska V., Condens. Matter Phys., 2024, 27, No. 1, 13301. DOI: https://doi.org/10.5488/cmp.27.13301

Tanaka T., Kotaka T., Ban K., Hattori M., Inagaki H., Macromolecules, 1977, 10, No. 5, 960–967. DOI: https://doi.org/10.1021/ma60059a014

Tanaka T., Omoto M., Inagaki H., Macromolecules, 1979, 12, No. 1, 146–152. DOI: https://doi.org/10.1021/ma60067a030

Zifferer G., Eggerstorfer D., Macromol. Theory Simul., 2010, 19, No. 8–9, 458–482. DOI: https://doi.org/10.1002/mats.201000027

Vlahos C. H., Horta A., Freire J. J., Macromolecules, 1992, 25, No. 22, 5974–5980. DOI: https://doi.org/10.1021/ma00048a018

Rubio A. M., Brea P., Freire J. J., Vlahos C., Macromolecules, 2000, 33, No. 1, 207–216. DOI: https://doi.org/10.1021/ma9913156

Kholodenko A. L., Freed K. F., J. Chem. Phys., 1984, 80, No. 2, 900–924. DOI: https://doi.org/10.1063/1.446748

Oono Y., Statistical Physics of Polymer Solutions: Conformation-Space Renormalization-Group Approach, John Wiley and Sons, Ltd, 1985, 301–437. DOI: https://doi.org/10.1002/9780470142851.ch5

van den Oever J. M. P., Leermakers F. A. M., Fleer G. J., Ivanov V. A., Shusharina N. P., Khokhlov A. R., Khalatur P. G., Phys. Rev. E, 2002, 65, 041708. DOI: https://doi.org/10.1103/PhysRevE.65.041708

Singh T. V., Shagolsem L. S., Macromolecules, 2022, 55, No. 23, 10457–10467. DOI: https://doi.org/10.1021/acs.macromol.2c01559

Theodorakis P. E., Fytas N. G., J. Chem. Phys., 2012, 136, No. 9, 094902. DOI: https://doi.org/10.1063/1.3689303

Aronovitz J., Nelson D., J. Phys., 1986, 47, No. 9, 1445–1456. DOI: https://doi.org/10.1051/jphys:019860047090144500

Bradford E., McKeever L., Prog. Polym. Sci., 1971, 3, 109–143. DOI: https://doi.org/10.1016/0079-6700(71)90003-7

Grest G. S., Kremer K.,Witten T. A., Macromolecules, 1987, 20, No. 6, 1376–1383. DOI: https://doi.org/10.1021/ma00172a035

Grest G. S., Kremer K., Phys. Rev. A, 1986, 33, 3628–3631. DOI: https://doi.org/10.1103/PhysRevA.33.3628

Plimpton S., J. Comput. Phys., 1995, 117, No. 1, 1–19. DOI: https://doi.org/10.1006/jcph.1995.1039

Published

2025-03-28

Issue

Section

Articles

Categories

How to Cite

[1]
K. Haydukivska, “Scaling properties of diblock copolymers: dynamic simulations study”, Condens. Matter Phys., vol. 28, no. 1, p. 13301, Mar. 2025, doi: 10.5488/cmp.28.13301.

Similar Articles

1-10 of 50

You may also start an advanced similarity search for this article.