Shape changes of a single hairy particle with mobile ligands at a liquid-liquid interface

Authors

  • T. Staszewski Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Poland https://orcid.org/0000-0002-0284-4253
  • M. Borówko Department of Theoretical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University in Lublin, Poland https://orcid.org/0000-0003-1461-249X

DOI:

https://doi.org/10.5488/cmp.27.13602

Keywords:

hairy particles, particle-laden layers, molecular dynamics

Abstract

We investigate rearrangements of a single hairy particle at a liquid-liquid interface using coarse-grained molecular dynamics simulations. We consider the particles with the same (symmetrical interactions) and different (asymmetrical interactions) affinity to the liquids. We show how ligand mobility affects the behavior of the hairy particle at the liquid-liquid interface. We found that such a hairy particle can take various shapes at the interface. For example, a Janus-like snowman consisting of a segment cluster and a bare part of the core, Saturn-like structures, and the core with a wide “plume” on one side. A configuration of the particle at the interface is characterized by the vertical displacement distance and the orientation of the particle relative to the phase boundary. The selected descriptors are used to characterize the shape of the segment cloud. We found that the shape of a particle and its localization at the interface can be determined by tuning the interactions with the liquids.

References

Moffitt M. G., J. Phys. Chem. Lett., 2013, 4, No. 21, 3654–3666, https://doi.org/10.1021/jz401814s. DOI: https://doi.org/10.1021/jz401814s

Pengo P., Şologan M., Pasquato L., Guida F., Pacor S., Tossi A., Stellacci F., Marson D., Boccardo S., Pricl S., Posocco P., Eur. Biophys. J., 2017, 46, No. 8, 749–771, https://doi.org/10.1007/s00249-017-1250-6. DOI: https://doi.org/10.1007/s00249-017-1250-6

Borówko M., Staszewski T., Int. J. Mol. Sci., 2023, 24, No. 5, https://doi.org/10.3390/ijms24054564. DOI: https://doi.org/10.3390/ijms24054564

Ohno K., Morinaga T., Takeno S., Tsujii Y., Fukuda T., Macromolecules, 2006, 39, No. 3, 1245–1249, https://doi.org/10.1021/ma0521708. DOI: https://doi.org/10.1021/ma0521708

Daoud M., Cotton J. P., J. Phys. France, 1982, 43, No. 3, 531–538, https://doi.org/10.1051/jphys:01982004303053100. DOI: https://doi.org/10.1051/jphys:01982004303053100

Dan N., Tirrell M., Macromolecules, 1992, 25, No. 11, 2890–2895, https://doi.org/10.1021/ma00037a016. DOI: https://doi.org/10.1021/ma00037a016

Wijmans C. M., Zhulina E. B., Macromolecules, 1993, 26, No. 26, 7214–7224, https://doi.org/10.1021/ma00078a016. DOI: https://doi.org/10.1021/ma00078a016

Lo Verso F., Egorov S. A., Milchev A., Binder K., J. Chem. Phys., 2010, 133, No. 18, 184901, https://doi.org/10.1063/1.3494902. DOI: https://doi.org/10.1063/1.3494902

Ginzburg V. V., Macromolecules, 2017, 50, No. 23, 9445–9455, https://doi.org/10.1021/acs.macromol.7b01922. DOI: https://doi.org/10.1021/acs.macromol.7b01922

Dong J., Zhou J., Macromol. Theory Simul., 2013, 22, No. 3, 174–186, https://doi.org/10.1002/mats.201200078. DOI: https://doi.org/10.1002/mats.201370007

Salerno K. M., Ismail A. E., Lane J. M. D., Grest G. S., J. Chem. Phys., 2014, 140, No. 19, 194904, https://doi.org/10.1063/1.4874638. DOI: https://doi.org/10.1063/1.4874638

Bolintineanu D. S., Lane J. M. D., Grest G. S., Langmuir, 2014, 30, No. 37, 11075–11085, https://doi.org/10.1021/la502795z. DOI: https://doi.org/10.1021/la502795z

Giri A. K., Spohr E., J. Phys. Chem. C, 2018, 122, No. 46, 26739–26747, https://doi.org/10.1021/acs.jpcc.8b08590. DOI: https://doi.org/10.1021/acs.jpcc.8b08590

Choueiri R. M., Galati E., Thérien-Aubin H., Klinkova A., Larin E. M., Querejeta-Fernández A., Han L., Xin H. L., Gang O., Zhulina E. B., Rubinstein M., Kumacheva E., Nature, 2016, 538, No. 7623, 79–83, https://doi.org/10.1038/nature19089. DOI: https://doi.org/10.1038/nature19089

Staszewski T., J. Phys. Chem. C, 2020, 124, No. 49, 27118–27129, https://doi.org/10.1021/acs.jpcc.0c07775. DOI: https://doi.org/10.1021/acs.jpcc.0c07775

Staszewski T., Borówko M., Phys. Chem. Chem. Phys., 2020, 22, 8757–8767, https://doi.org/10.1039/C9CP06854F. DOI: https://doi.org/10.1039/C9CP06854F

Borówko M., Staszewski T., Int. J. Mol. Sci., 2021, 22, No. 16, 8810, https://doi.org/10.3390/ijms22168810. DOI: https://doi.org/10.3390/ijms22168810

Borówko M., Rżysko W., Sokołowski S., Staszewski T., Soft Matter, 2018, 14, 3115–3126, https://doi.org/10.1039/C8SM00213D. DOI: https://doi.org/10.1039/C8SM00213D

Rżysko W., Staszewski T., Borówko M., Colloids Surf., 2019, 570, 499–509, https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.03.046. DOI: https://doi.org/10.1016/j.colsurfa.2019.03.046

Ilnytskyi J. M., Slyusarchuk A., Saphiannikova M., Macromolecules, 2016, 49, No. 23, 9272–9282, https://doi.org/10.1021/acs.macromol.6b01871. DOI: https://doi.org/10.1021/acs.macromol.6b01871

Ilnytskyi J. M., Slyusarchuk A., Sokołowski S., Soft Matter, 2018, 14, 3799–3810, https://doi.org/10.1039/C8SM00356D. DOI: https://doi.org/10.1039/C8SM00356D

Slyusarchuk A., Yaremchuk D., Lintuvuori J.,Wilson M. R., Grenzer M., Sokołowski S., Ilnytskyi J., Liq. Cryst., 2023, 50, No. 1, 74–97, https://doi.org/10.1080/02678292.2023.2169872. DOI: https://doi.org/10.1080/02678292.2023.2169872

Ventura Rosales I. E., Rovigatti L., Bianchi E., Likos C. N., Locatelli E., Nanoscale, 2020, 12, 21188–21197, https://doi.org/10.1039/D0NR05058J. DOI: https://doi.org/10.1039/D0NR05058J

Che J., Park K., Grabowski C. A., Jawaid A., Kelley J., Koerner H., Vaia R. A., Macromolecules, 2016, 49, No. 5, 1834–1847, https://doi.org/10.1021/acs.macromol.5b02722. DOI: https://doi.org/10.1021/acs.macromol.5b02722

Staszewski T., Borówko M., Boguta P., J. Phys. Chem. B, 2022, 126, No. 6, 1341–1351, https://doi.org/10.1021/acs.jpcb.1c10418. DOI: https://doi.org/10.1021/acs.jpcb.1c10418

Borówko M., Staszewski T., Int. J. Mol. Sci., 2022, 23, No. 14, 7919, https://doi.org/10.3390/ijms23147919. DOI: https://doi.org/10.3390/ijms23147919

Staszewski T., Borówko M., Condens. Matter Phys., 2022, 25, No. 3, 33604, https://doi.org/10.5488/cmp.25.33604. DOI: https://doi.org/10.5488/CMP.25.33604

Guzmán E., Martínez-Pedrero F., Calero C., Maestro A., Ortega F., Rubio R. G., Adv. Colloid Interface Sci., 2022, 302, 102620, https://doi.org/10.1016/j.cis.2022.102620. DOI: https://doi.org/10.1016/j.cis.2022.102620

Garbin V., Crocker J. C., Stebe K. J., J. Colloid Interface Sci., 2012, 387, No. 1, 1–11, https://doi.org/10.1016/j.jcis.2012.07.047. DOI: https://doi.org/10.1016/j.jcis.2012.07.047

Tay K. A., Bresme F., J. Am. Chem. Soc., 2006, 128, No. 43, 14166–14175, https://doi.org/10.1021/ja061901w. DOI: https://doi.org/10.1021/ja061901w

Lane J. M. D., Grest G. S., Phys. Rev. Lett., 2010, 104, 235501, https://doi.org/10.1103/PhysRevLett.104.235501. DOI: https://doi.org/10.1103/PhysRevLett.104.235501

Quan X., Peng C., Dong J., Zhou J., Soft Matter, 2016, 12, 3352–3359, https://doi.org/10.1039/C5SM02721G. DOI: https://doi.org/10.1039/C5SM02721G

Tang T.-Y., Zhou Y., Arya G., ACS Nano, 2019, 13, No. 4, 4111–4123, https://doi.org/10.1021/acsnano.8b08733. DOI: https://doi.org/10.1021/acsnano.8b08733

Wang D., Zhu Y.-L., Zhao Y., Li C. Y., Mukhopadhyay A., Sun Z.-Y., Koynov K., Butt H.-J., ACS Nano, 2020, 14, No. 8, 10095–10103, https://doi.org/10.1021/acsnano.0c03291. DOI: https://doi.org/10.1021/acsnano.0c03291

Maestro A., Guzmán E., Ortega F., Rubio R. G., Curr. Opin. Colloid Interface Sci., 2014, 19, No. 4, 355–367, https://doi.org/10.1016/j.cocis.2014.04.008. DOI: https://doi.org/10.1016/j.cocis.2014.04.008

Low L. E., Siva S. P., Ho Y. K., Chan E. S., Tey B. T., Adv. Colloid Interface Sci., 2020, 277, 102117, https://doi.org/10.1016/j.cis.2020.102117. DOI: https://doi.org/10.1016/j.cis.2020.102117

Menath J., Eatson J., Brilmayer R., Andrieu-Brunsen A., Buzza D. M. A., Vogel N., PNAS, 2021, 118, No. 52, e2113394118, https://doi.org/10.1073/pnas.2113394118. DOI: https://doi.org/10.1073/pnas.2113394118

Kremer K., Grest G. S., J. Chem. Phys., 1990, 92, No. 8, 5057–5086, https://doi.org/10.1063/1.458541. DOI: https://doi.org/10.1063/1.458541

Borówko M., Sokołowski S., Staszewski T., Pizio O., J. Chem. Phys., 2018, 148, No. 4, 044705, https://doi.org/10.1063/1.5010687. DOI: https://doi.org/10.1063/1.5010687

Toxvaerd S., Dyre J. C., J. Chem. Phys., 2011, 134, No. 8, 081102, https://doi.org/10.1063/1.3558787. DOI: https://doi.org/10.1063/1.3558787

Thompson A. P., Aktulga H. M., Berger R., Bolintineanu D. S., Brown W. M., Crozier P. S., in ’t Veld P. J., Kohlmeyer A., Moore S. G., Nguyen T. D., Shan R., Stevens M. J., Tranchida J., Trott C., Plimpton S. J., Comput. Phys. Commun., 2022, 271, 108171, https://doi.org/10.1016/j.cpc.2021.108171. DOI: https://doi.org/10.1016/j.cpc.2021.108171

Plimpton S., J. Comput. Phys., 1995, 117, No. 1, 1–19, https://doi.org/10.1006/jcph.1995.1039. DOI: https://doi.org/10.1006/jcph.1995.1039

Theodorou D. N., Suter U. W., Macromolecules, 1985, 18, No. 6, 1206–1214, https://doi.org/10.1021/ma00148a028. DOI: https://doi.org/10.1021/ma00148a028

Borówko M., Staszewski T., Tomasik J., J. Phys. Chem. B, 2023, 127, No. 22, 5150–5161, https://doi.org/10.1021/acs.jpcb.3c01943. DOI: https://doi.org/10.1021/acs.jpcb.3c01943

Stukowski A., Modell. Simul. Mater. Sci. Eng., 2009, 18, No. 1, 015012, https://doi.org/10.1088/0965-0393/18/1/015012. DOI: https://doi.org/10.1088/0965-0393/18/1/015012

Kang C., Honciuc A., ACS Nano, 2018, 12, No. 4, 3741–3750, https://doi.org/10.1021/acsnano.8b00960. DOI: https://doi.org/10.1021/acsnano.8b00960

Published

2024-03-28

How to Cite

[1]
T. Staszewski and M. Borówko, “Shape changes of a single hairy particle with mobile ligands at a liquid-liquid interface”, Condens. Matter Phys., vol. 27, no. 1, p. 13602, Mar. 2024, doi: 10.5488/cmp.27.13602.

Similar Articles

1-10 of 11

You may also start an advanced similarity search for this article.