Shape changes of a single hairy particle with mobile ligands at a liquid-liquid interface
DOI:
https://doi.org/10.5488/cmp.27.13602Keywords:
hairy particles, particle-laden layers, molecular dynamicsAbstract
We investigate rearrangements of a single hairy particle at a liquid-liquid interface using coarse-grained molecular dynamics simulations. We consider the particles with the same (symmetrical interactions) and different (asymmetrical interactions) affinity to the liquids. We show how ligand mobility affects the behavior of the hairy particle at the liquid-liquid interface. We found that such a hairy particle can take various shapes at the interface. For example, a Janus-like snowman consisting of a segment cluster and a bare part of the core, Saturn-like structures, and the core with a wide “plume” on one side. A configuration of the particle at the interface is characterized by the vertical displacement distance and the orientation of the particle relative to the phase boundary. The selected descriptors are used to characterize the shape of the segment cloud. We found that the shape of a particle and its localization at the interface can be determined by tuning the interactions with the liquids.
References
Moffitt M. G., J. Phys. Chem. Lett., 2013, 4, No. 21, 3654–3666, https://doi.org/10.1021/jz401814s. DOI: https://doi.org/10.1021/jz401814s
Pengo P., Şologan M., Pasquato L., Guida F., Pacor S., Tossi A., Stellacci F., Marson D., Boccardo S., Pricl S., Posocco P., Eur. Biophys. J., 2017, 46, No. 8, 749–771, https://doi.org/10.1007/s00249-017-1250-6. DOI: https://doi.org/10.1007/s00249-017-1250-6
Borówko M., Staszewski T., Int. J. Mol. Sci., 2023, 24, No. 5, https://doi.org/10.3390/ijms24054564. DOI: https://doi.org/10.3390/ijms24054564
Ohno K., Morinaga T., Takeno S., Tsujii Y., Fukuda T., Macromolecules, 2006, 39, No. 3, 1245–1249, https://doi.org/10.1021/ma0521708. DOI: https://doi.org/10.1021/ma0521708
Daoud M., Cotton J. P., J. Phys. France, 1982, 43, No. 3, 531–538, https://doi.org/10.1051/jphys:01982004303053100. DOI: https://doi.org/10.1051/jphys:01982004303053100
Dan N., Tirrell M., Macromolecules, 1992, 25, No. 11, 2890–2895, https://doi.org/10.1021/ma00037a016. DOI: https://doi.org/10.1021/ma00037a016
Wijmans C. M., Zhulina E. B., Macromolecules, 1993, 26, No. 26, 7214–7224, https://doi.org/10.1021/ma00078a016. DOI: https://doi.org/10.1021/ma00078a016
Lo Verso F., Egorov S. A., Milchev A., Binder K., J. Chem. Phys., 2010, 133, No. 18, 184901, https://doi.org/10.1063/1.3494902. DOI: https://doi.org/10.1063/1.3494902
Ginzburg V. V., Macromolecules, 2017, 50, No. 23, 9445–9455, https://doi.org/10.1021/acs.macromol.7b01922. DOI: https://doi.org/10.1021/acs.macromol.7b01922
Dong J., Zhou J., Macromol. Theory Simul., 2013, 22, No. 3, 174–186, https://doi.org/10.1002/mats.201200078. DOI: https://doi.org/10.1002/mats.201370007
Salerno K. M., Ismail A. E., Lane J. M. D., Grest G. S., J. Chem. Phys., 2014, 140, No. 19, 194904, https://doi.org/10.1063/1.4874638. DOI: https://doi.org/10.1063/1.4874638
Bolintineanu D. S., Lane J. M. D., Grest G. S., Langmuir, 2014, 30, No. 37, 11075–11085, https://doi.org/10.1021/la502795z. DOI: https://doi.org/10.1021/la502795z
Giri A. K., Spohr E., J. Phys. Chem. C, 2018, 122, No. 46, 26739–26747, https://doi.org/10.1021/acs.jpcc.8b08590. DOI: https://doi.org/10.1021/acs.jpcc.8b08590
Choueiri R. M., Galati E., Thérien-Aubin H., Klinkova A., Larin E. M., Querejeta-Fernández A., Han L., Xin H. L., Gang O., Zhulina E. B., Rubinstein M., Kumacheva E., Nature, 2016, 538, No. 7623, 79–83, https://doi.org/10.1038/nature19089. DOI: https://doi.org/10.1038/nature19089
Staszewski T., J. Phys. Chem. C, 2020, 124, No. 49, 27118–27129, https://doi.org/10.1021/acs.jpcc.0c07775. DOI: https://doi.org/10.1021/acs.jpcc.0c07775
Staszewski T., Borówko M., Phys. Chem. Chem. Phys., 2020, 22, 8757–8767, https://doi.org/10.1039/C9CP06854F. DOI: https://doi.org/10.1039/C9CP06854F
Borówko M., Staszewski T., Int. J. Mol. Sci., 2021, 22, No. 16, 8810, https://doi.org/10.3390/ijms22168810. DOI: https://doi.org/10.3390/ijms22168810
Borówko M., Rżysko W., Sokołowski S., Staszewski T., Soft Matter, 2018, 14, 3115–3126, https://doi.org/10.1039/C8SM00213D. DOI: https://doi.org/10.1039/C8SM00213D
Rżysko W., Staszewski T., Borówko M., Colloids Surf., 2019, 570, 499–509, https://doi.org/https://doi.org/10.1016/j.colsurfa.2019.03.046. DOI: https://doi.org/10.1016/j.colsurfa.2019.03.046
Ilnytskyi J. M., Slyusarchuk A., Saphiannikova M., Macromolecules, 2016, 49, No. 23, 9272–9282, https://doi.org/10.1021/acs.macromol.6b01871. DOI: https://doi.org/10.1021/acs.macromol.6b01871
Ilnytskyi J. M., Slyusarchuk A., Sokołowski S., Soft Matter, 2018, 14, 3799–3810, https://doi.org/10.1039/C8SM00356D. DOI: https://doi.org/10.1039/C8SM00356D
Slyusarchuk A., Yaremchuk D., Lintuvuori J.,Wilson M. R., Grenzer M., Sokołowski S., Ilnytskyi J., Liq. Cryst., 2023, 50, No. 1, 74–97, https://doi.org/10.1080/02678292.2023.2169872. DOI: https://doi.org/10.1080/02678292.2023.2169872
Ventura Rosales I. E., Rovigatti L., Bianchi E., Likos C. N., Locatelli E., Nanoscale, 2020, 12, 21188–21197, https://doi.org/10.1039/D0NR05058J. DOI: https://doi.org/10.1039/D0NR05058J
Che J., Park K., Grabowski C. A., Jawaid A., Kelley J., Koerner H., Vaia R. A., Macromolecules, 2016, 49, No. 5, 1834–1847, https://doi.org/10.1021/acs.macromol.5b02722. DOI: https://doi.org/10.1021/acs.macromol.5b02722
Staszewski T., Borówko M., Boguta P., J. Phys. Chem. B, 2022, 126, No. 6, 1341–1351, https://doi.org/10.1021/acs.jpcb.1c10418. DOI: https://doi.org/10.1021/acs.jpcb.1c10418
Borówko M., Staszewski T., Int. J. Mol. Sci., 2022, 23, No. 14, 7919, https://doi.org/10.3390/ijms23147919. DOI: https://doi.org/10.3390/ijms23147919
Staszewski T., Borówko M., Condens. Matter Phys., 2022, 25, No. 3, 33604, https://doi.org/10.5488/cmp.25.33604. DOI: https://doi.org/10.5488/CMP.25.33604
Guzmán E., Martínez-Pedrero F., Calero C., Maestro A., Ortega F., Rubio R. G., Adv. Colloid Interface Sci., 2022, 302, 102620, https://doi.org/10.1016/j.cis.2022.102620. DOI: https://doi.org/10.1016/j.cis.2022.102620
Garbin V., Crocker J. C., Stebe K. J., J. Colloid Interface Sci., 2012, 387, No. 1, 1–11, https://doi.org/10.1016/j.jcis.2012.07.047. DOI: https://doi.org/10.1016/j.jcis.2012.07.047
Tay K. A., Bresme F., J. Am. Chem. Soc., 2006, 128, No. 43, 14166–14175, https://doi.org/10.1021/ja061901w. DOI: https://doi.org/10.1021/ja061901w
Lane J. M. D., Grest G. S., Phys. Rev. Lett., 2010, 104, 235501, https://doi.org/10.1103/PhysRevLett.104.235501. DOI: https://doi.org/10.1103/PhysRevLett.104.235501
Quan X., Peng C., Dong J., Zhou J., Soft Matter, 2016, 12, 3352–3359, https://doi.org/10.1039/C5SM02721G. DOI: https://doi.org/10.1039/C5SM02721G
Tang T.-Y., Zhou Y., Arya G., ACS Nano, 2019, 13, No. 4, 4111–4123, https://doi.org/10.1021/acsnano.8b08733. DOI: https://doi.org/10.1021/acsnano.8b08733
Wang D., Zhu Y.-L., Zhao Y., Li C. Y., Mukhopadhyay A., Sun Z.-Y., Koynov K., Butt H.-J., ACS Nano, 2020, 14, No. 8, 10095–10103, https://doi.org/10.1021/acsnano.0c03291. DOI: https://doi.org/10.1021/acsnano.0c03291
Maestro A., Guzmán E., Ortega F., Rubio R. G., Curr. Opin. Colloid Interface Sci., 2014, 19, No. 4, 355–367, https://doi.org/10.1016/j.cocis.2014.04.008. DOI: https://doi.org/10.1016/j.cocis.2014.04.008
Low L. E., Siva S. P., Ho Y. K., Chan E. S., Tey B. T., Adv. Colloid Interface Sci., 2020, 277, 102117, https://doi.org/10.1016/j.cis.2020.102117. DOI: https://doi.org/10.1016/j.cis.2020.102117
Menath J., Eatson J., Brilmayer R., Andrieu-Brunsen A., Buzza D. M. A., Vogel N., PNAS, 2021, 118, No. 52, e2113394118, https://doi.org/10.1073/pnas.2113394118. DOI: https://doi.org/10.1073/pnas.2113394118
Kremer K., Grest G. S., J. Chem. Phys., 1990, 92, No. 8, 5057–5086, https://doi.org/10.1063/1.458541. DOI: https://doi.org/10.1063/1.458541
Borówko M., Sokołowski S., Staszewski T., Pizio O., J. Chem. Phys., 2018, 148, No. 4, 044705, https://doi.org/10.1063/1.5010687. DOI: https://doi.org/10.1063/1.5010687
Toxvaerd S., Dyre J. C., J. Chem. Phys., 2011, 134, No. 8, 081102, https://doi.org/10.1063/1.3558787. DOI: https://doi.org/10.1063/1.3558787
Thompson A. P., Aktulga H. M., Berger R., Bolintineanu D. S., Brown W. M., Crozier P. S., in ’t Veld P. J., Kohlmeyer A., Moore S. G., Nguyen T. D., Shan R., Stevens M. J., Tranchida J., Trott C., Plimpton S. J., Comput. Phys. Commun., 2022, 271, 108171, https://doi.org/10.1016/j.cpc.2021.108171. DOI: https://doi.org/10.1016/j.cpc.2021.108171
Plimpton S., J. Comput. Phys., 1995, 117, No. 1, 1–19, https://doi.org/10.1006/jcph.1995.1039. DOI: https://doi.org/10.1006/jcph.1995.1039
Theodorou D. N., Suter U. W., Macromolecules, 1985, 18, No. 6, 1206–1214, https://doi.org/10.1021/ma00148a028. DOI: https://doi.org/10.1021/ma00148a028
Borówko M., Staszewski T., Tomasik J., J. Phys. Chem. B, 2023, 127, No. 22, 5150–5161, https://doi.org/10.1021/acs.jpcb.3c01943. DOI: https://doi.org/10.1021/acs.jpcb.3c01943
Stukowski A., Modell. Simul. Mater. Sci. Eng., 2009, 18, No. 1, 015012, https://doi.org/10.1088/0965-0393/18/1/015012. DOI: https://doi.org/10.1088/0965-0393/18/1/015012
Kang C., Honciuc A., ACS Nano, 2018, 12, No. 4, 3741–3750, https://doi.org/10.1021/acsnano.8b00960. DOI: https://doi.org/10.1021/acsnano.8b00960
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 T. Staszewski, M. Borówko
This work is licensed under a Creative Commons Attribution 4.0 International License.