Excluded volume effect of surfactant ligands on the shape of nascent nanocrystal

Authors

DOI:

https://doi.org/10.5488/cmp.28.23801

Keywords:

nanocrystals, hard-sphere model, nanoplates, nanorods, Monte Carlo simulation

Abstract

We investigate the effect of the excluded volume of surfactant ligands on the shape of incipient quantum dots (QDs) to which they are attached. We consider a model in which ligands are represented by hard-sphere particles that are bound to the surface of a nanoparticle (NC) that is cast in the shape of a prism. It is found in Monte Carlo simulations that the ensemble of relevant NC conformations consists of a small number of specific states that take on the form of nanoplates and nanorods. The shape of these states can be well described by the derived theoretical models. At increasing ligand density, the free energy of different states is seen to be approximately the same, suggesting that excluded volume interactions among ligands acts to narrow down the conformational  space accessible to an NC without creating a statistical preference for any particular configuration.

References

Rainò G., Nedelcu G., Protesescu L., Bodnarchuk M. I., Kovalenko M. V., Mahrt R. F., Stöferle T., ACS Nano, 2016, 10, 2485–2490. DOI: https://doi.org/10.1021/acsnano.5b07328

Protesescu L., Yakunin S., Bodnarchuk M. I., Krieg, F., Caputo, R., Hendon C. H., Yang R. X., Walsh A., Kovalenko M. V., Nano Lett., 2015, 15, 3692–3696. DOI: https://doi.org/10.1021/nl5048779

Pan A., He B., Fan X., Liu Z., Urban J. J., Alivisatos A. P., He L., Liu Y., ACS Nano, 2016, 10, 7943–7954. DOI: https://doi.org/10.1021/acsnano.6b03863

Zhang B., Goldoni L., Zito J., Dang Z., Almeida G., Zaccaria F., de Wit J., Infante I., De Trizio L., Manna L., Chem. Mater., 2019, 31 (21), 9140–9147. DOI: https://doi.org/10.1021/acs.chemmater.9b03529

Akkerman Q. A., Nguyen T. P. T., Boehme S. C., Montanarella F., Dirin D. N., Wechsler P., Beiglböck F., Rainò G., Erni R., Katan C., Even J., Kovalenko M. V., Science, 2022, 377, 1406–1412. DOI: https://doi.org/10.1126/science.abq3616

Wang S., Yu J., Zhang M., Chen D., Li C., Chen R., Jia G., Rogach A. L., Yang X., Nano Lett., 2019, 19, 6315–6322. DOI: https://doi.org/10.1021/acs.nanolett.9b02436

Zhu H., Šverko T., Zhang J., Berkinsky D. B., Sun W., Krajewska C. J., Bawendi M. G., Nano Lett., 2022, 22, 8355–8362. DOI: https://doi.org/10.1021/acs.nanolett.2c03458

Scott R., Heckmann J., Prudnikau A. V., Antanovich A., Mikhailov A., Owschimikow N., Artemyev M., Climente J. I., Woggon U., Grosse N. B., Achtstein A. W., Nat. Nanotechnol., 2017, 12, 1155–1160. DOI: https://doi.org/10.1038/nnano.2017.177

Hikmet R. A. M., Chin P. T. K., Talapin D. V., Weller H., Adv. Mater., 2005, 17, 1436–1439. DOI: https://doi.org/10.1002/adma.200401763

Lhuillier E., Pedetti S., Ithurria S., Nadal B., Heuclin H., Dubertret B., Acc. Chem. Res., 2015, 48, 22–30. DOI: https://doi.org/10.1021/ar500326c

Yeltik A., Delikanli S., Olutas M., Kelestemur Y., Guzelturk B., Demir H. V., J. Phys. Chem. C, 2015, 119, 26768–26775. DOI: https://doi.org/10.1021/acs.jpcc.5b09275

Dede D., Taghipour N., Quliyeva U., Sak M., Kelestemur Y., Gungor K., Demir H. V., Chem. Mater., 2019, 31, 1818–1826. DOI: https://doi.org/10.1021/acs.chemmater.9b00136

Kelestemur Y., Shynkarenko Y., Anni M., Yakunin S., de Giorgi M. L., Kovalenko M. V., ACS Nano, 2019, 13, 13899–13909. DOI: https://doi.org/10.1021/acsnano.9b05313

Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Oxford University Press, Oxford, second edn., 2017. DOI: https://doi.org/10.1093/oso/9780198803195.001.0001

DeVries P. L., A First Course in Computational Physics, John Wiley & Sons, Inc., Oxford, 1993.

Qi W., Dijkstra M., Soft Matter, 2015, 11, 2852–2856. DOI: https://doi.org/10.1039/C4SM02876G

Published

2025-06-25

How to Cite

[1]
A. Baumketner, D. Anokhin, and Y. Patsahan, “Excluded volume effect of surfactant ligands on the shape of nascent nanocrystal”, Condens. Matter Phys., vol. 28, no. 2, p. 23801, Jun. 2025, doi: 10.5488/cmp.28.23801.

Similar Articles

1-10 of 62

You may also start an advanced similarity search for this article.