Effect of variable relative permittivity on the thermodynamics of asymmetric valency aqueous salts
DOI:
https://doi.org/10.5488/cmp.28.13802Keywords:
primitive model electrolytes, osmotic and mean activity coefficients, Monte Carlo simulations, symmetric and modified Poisson-Boltzmann theoriesAbstract
Experimentally determined empirical formulae for the concentration dependent relative permittivity of aqueous solutions of MgCl2 and NiCl2 are utilized to calculate the osmotic coefficient and the mean activity coefficient of these salts for a range of concentrations. The systems are modelled using the primitive model of electrolytes and analyzed using the symmetric Poisson-Boltzmann theory, the modified Poisson-Boltzmann theory, the mean spherical approximation, and the Monte Carlo simulations. Generally, the mean spherical approximation and the modified Poisson-Boltzmann theory reproduce the benchmark simulation data well up to ∼1.6 mol/dm3 or more in many instances, while the symmetric Poisson-Boltzmann results show discrepancies starting from ∼0.25 mol/dm3. Both the simulations and the theories tend to deviate from the corresponding experimental results beyond ∼1 mol/kg.
References
Harned H. S., Owen B. B., The Physical Chemistry of Electrolyte Solutions, 3rd edn., Reinhold, New York, 1958.
Levin Y., Rep. Prog. Phys., 2002, 65, 1577. DOI: https://doi.org/10.1088/0034-4885/65/11/201
Henderson D., Holovko M., Trokhymchuk A. (Eds.), Ionic Soft Matter: Modern Trends in Theory and Applications, NATO Science Series II. Mathematics, Physics, and Chemistry Series, Vol. 206, Springer, Dordrecht, 2004. DOI: https://doi.org/10.1007/1-4020-3659-0
Chersty A. G., Phys. Chem. Chem. Phys., 2011, 13, 9942. DOI: https://doi.org/10.1039/c0cp02796k
Robinson R. A., Stokes R. H., Electrolyte Solutions, 2nd edn., Dover, New York, 2002.
Barthel J., Krienke H., Kunz W., Physical Chemistry of Electrolyte Solutions: Modern Aspects, Topics in Physical Chemistry, Vol. 5, Springer, New York, 1998.
Outhwaite C. W., In: Statistical Mechanics, Specialist Periodical Reports, Vol. 2, Singer K. (Ed.), The Royal Society of Chemistry, 1975, 188–255.
Hansen J.-P., McDonald I. R., Theory of Simple Liquids, 2nd edn., Academic Press, New York, 1990.
Vlachy V., Annu. Rev. Phys. Chem., 1999, 50, 145. DOI: https://doi.org/10.1146/annurev.physchem.50.1.145
McQuarrie D. A., Statistical Mechanics, University Science Books, Sausalito, 2000.
Friedman H. L., A Course in Statistical Mechanics, Prentice-Hall, New Jersey, 1985.
Blum L., Theoretical Chemistry, Advances and Perspectives, Vol. 5, Eyring H., Henderson D. (Eds.), Academic Press, New York, 1980, 1–66.
Bhuiyan L. B., Vlachy V., Outhwaite C.W., Int. Rev. Phys. Chem., 2002, 21, 1. DOI: https://doi.org/10.1080/01442350110078842
Debye P., Hückel E., Z. Phys., 1923, 24, 185.
Abbas Z., Ahlberg E., Nordholm S., Fluid Phase Equilib., 2007, 260, 233. DOI: https://doi.org/10.1016/j.fluid.2007.07.026
Abbas Z., Ahlberg E., Nordholm S., J. Phys. Chem. B, 2009, 113, 5905. DOI: https://doi.org/10.1021/jp808427f
Quiñones A. O., Bhuiyan L. B., Outhwaite C. W., Condens. Matter Phys., 2018, 21, 23802. DOI: https://doi.org/10.5488/CMP.21.23802
Outhwaite C. W., Bhuiyan L. B., Condens. Matter Phys., 2019, 22, 23801. DOI: https://doi.org/10.5488/CMP.22.23801
Outhwaite C. W., Bhuiyan L. B., Condens. Matter Phys., 2021, 24, 16801. DOI: https://doi.org/10.5488/CMP.24.16801
Bhuiyan L. B., Condens. Matter Phys., 2021, 24, 23801. DOI: https://doi.org/10.5488/CMP.24.23801
Hückel E., Z. Phys., 1925, 26, 93.
Shilov I. Y., Lyashchenko A. K., J. Phys. Chem. B, 2015, 119, 10087. DOI: https://doi.org/10.1021/acs.jpcb.5b04555
Triolo R., Blum L., Floriano M. A., J. Chem. Phys., 1978, 67, 5956. DOI: https://doi.org/10.1063/1.434805
Simonin J.-P., Blum L., Turq P., J. Phys. Chem., 1996, 100, 7704. DOI: https://doi.org/10.1021/jp953567o
Fawcett W. R., Tikanen A. C., J. Phys. Chem., 1996, 100, 4251. DOI: https://doi.org/10.1021/jp952379v
Tikanen A. C., Fawcett W. R., J. Electroanal. Chem., 1997, 439, 107. DOI: https://doi.org/10.1016/S0022-0728(97)00376-8
Abbas Z., Ahlberg E., J. Solution Chem., 2019, 48, 1222. DOI: https://doi.org/10.1007/s10953-019-00905-y
Quiñones A. O., Bhuiyan L. B., Abbas Z., Outhwaite C. W., J. Mol. Liq., 2023, 371, 12119. DOI: https://doi.org/10.1016/j.molliq.2022.121119
Friedman H. L., J. Chem. Phys., 1982, 76, 1092. DOI: https://doi.org/10.1063/1.443076
Levy A., Andelman D., Orland H., Phys. Rev. Lett., 2012, 108, 227801. DOI: https://doi.org/10.1103/PhysRevLett.108.227801
Valiskó M., Boda D., J. Chem. Phys., 2014, 140, 234508. DOI: https://doi.org/10.1063/1.4883742
Gavish N., Promislow K., Phys. Rev. E, 2016, 94, 012611. DOI: https://doi.org/10.1103/PhysRevE.94.012611
Adar R. M., Markovich T., Levy A., Orland H., Andelman D., J. Chem. Phys., 2018, 149, 054504. DOI: https://doi.org/10.1063/1.5042235
Hasted J. B., Ritson D. M., Collie C. H., J. Chem. Phys., 1948, 16, 1. DOI: https://doi.org/10.1063/1.1746645
Lobo H. M. M., Quaresma J. L., Handbook of Electrolyte Solutions, Part B, Elsevier, Amsterdam, 1989.
Stokes R. H., Trans. Faraday Soc., 1945, 41, 642. DOI: https://doi.org/10.1039/TF9454100642
Stokes R. H., Trans. Faraday Soc., 1948, 44, 295. DOI: https://doi.org/10.1039/TF9484400137
Stokes R. H., Robinson R. A., J. Am. Chem. Soc., 1948, 70, 1870. DOI: https://doi.org/10.1021/ja01185a065
Svensson Bo R., Woodward C. R., Mol. Phys., 1988, 64, 247. DOI: https://doi.org/10.1080/00268978800100203
Rasaiah J. C., Friedman H. L., J. Chem. Phys., 1968, 48, 2742. DOI: https://doi.org/10.1063/1.1669510
Outhwaite C. W., Molero M., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1991, 87, 3227. DOI: https://doi.org/10.1039/FT9918703227
Outhwaite C. W., Molero M., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1993, 89, 1315. DOI: https://doi.org/10.1039/FT9938901315
Outhwaite C. W., Molero M., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1994, 90, 2002.
Ulloa-Dávilla E. O., Bhuiyan L. B., Condens. Matter Phys., 2017, 20, 43801. DOI: https://doi.org/10.5488/CMP.20.43801
Leonard P. J., Henderson D., Barker J. A., Mol. Phys., 1971, 21, 107. DOI: https://doi.org/10.1080/00268977100101221
Grundke E. W., Henderson D., Mol. Phys., 1974, 24, 269. DOI: https://doi.org/10.1080/00268977200101431
Verlet L., Weis J. J., Phys. Rev. A, 1972, 5, 939. DOI: https://doi.org/10.1103/PhysRevA.5.939
Molero M., Outhwaite C. W., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1992, 88, 1541. DOI: https://doi.org/10.1039/FT9928801541
Ebeling W., Scherwinski K., Z. Phys. Chem. (Leipzig), 1983, 264, 1. DOI: https://doi.org/10.1515/zpch-1983-0102
Outhwaite C. W., Bhuiyan L. B., Vlachy V., Hribar-Lee B., J. Chem. Eng. Data, 2010, 55, 4248. DOI: https://doi.org/10.1021/je100394d
Blum L., Mol. Phys., 1975, 30, 1529.
Blum L., Hoye J. S., J. Phys. Chem., 1977, 30, 1529. DOI: https://doi.org/10.1080/00268977500103051
Sanchez-Castro C., Blum L., J. Phys. Chem., 1989, 93, 7478. DOI: https://doi.org/10.1021/j100358a043
Bellman R., Kalaba R., Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1965.
Martinez M. M., Bhuiyan L. B., Outhwaite C. W., J. Chem. Soc., Faraday Trans., 1990, 86, 3383. DOI: https://doi.org/10.1039/FT9908603383
Buchner R., Hefter G., Phys. Chem. Chem. Phys., 2009, 11, 8984. DOI: https://doi.org/10.1039/b906555p
Barthel J., Krienke H., Holovko M. F., Kapko V. I., Protsykevich I. A., Condens. Matter Phys., 2000, 23, 657. DOI: https://doi.org/10.5488/CMP.3.3.657
Outhwaite C. W., Bhuiyan L. B., J. Chem. Phys., 2021, 155, 014504. DOI: https://doi.org/10.1063/5.0054203
Dinpajooh M., Biasin E., Nienhuis E. T., Mergelsberg S. T., Benmore C. J., Schenter G. K., Fulton J. L., Kathmann S. M., Mundy C. J., J. Chem. Phys., 2024, 161, 151102. DOI: https://doi.org/10.1063/5.0234518
Thomlinson M. M., Outhwaite C. W., Mol. Phys., 1982, 47, 1113. DOI: https://doi.org/10.1080/00268978200100812
Kournopoulos S., Haslam A. J., Jackson G., Galindo A., Schöen M., J. Chem. Phys., 2022, 156, 154111. DOI: https://doi.org/10.1063/5.0079511
Downloads
Published
License
Copyright (c) 2025 Adriel O. Quinones Rivera, Zareen Abbas, Christopher W. Outhwaite, L. B. Bhuiyan

This work is licensed under a Creative Commons Attribution 4.0 International License.