Effect of variable relative permittivity on the thermodynamics of asymmetric valency aqueous salts

Authors

DOI:

https://doi.org/10.5488/cmp.28.13802

Keywords:

primitive model electrolytes, osmotic and mean activity coefficients, Monte Carlo simulations, symmetric and modified Poisson-Boltzmann theories

Abstract

Experimentally determined empirical formulae for the concentration dependent relative permittivity of aqueous solutions of MgCl2 and NiCl2 are utilized to calculate the osmotic coefficient and the mean activity coefficient of these salts for a range of concentrations. The systems are modelled using the primitive model of electrolytes and analyzed using the symmetric Poisson-Boltzmann theory, the modified Poisson-Boltzmann theory, the mean spherical approximation, and the Monte Carlo simulations. Generally, the mean spherical approximation and the modified Poisson-Boltzmann theory reproduce the benchmark simulation data well up to ∼1.6 mol/dm3 or more in many instances, while the symmetric Poisson-Boltzmann results show discrepancies starting from ∼0.25 mol/dm3. Both the simulations and the theories tend to deviate from the corresponding experimental results beyond ∼1 mol/kg.

Author Biographies

  • Adriel O. Quinones Rivera, Laboratory of Theoretical Physics, Department of Physics, University of Puerto Rico, 17 Avenida Universidad, STE 1701, San Juan, Puerto Rico 00925-2537, USA

    Graduate student in the Chemical Physics doctoral programme of the Department of Physics, University of Puerto Rico - Rio Piedras Campus.

  • Zareen Abbas, Department of Chemistry and Molecular Biology, University of Gothenburg, Keningården 4, SE-41296, Gothenburg, Sweden

    Professor, Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden

  • Christopher W. Outhwaite, School of Mathematical and Physical Sciences, University of Sheffield, Sheffield S3 7RH, UK

    Professor (retired), School of Mathematics and Physical Sciences, University of Sheffield, Sheffield, UK

References

Harned H. S., Owen B. B., The Physical Chemistry of Electrolyte Solutions, 3rd edn., Reinhold, New York, 1958.

Levin Y., Rep. Prog. Phys., 2002, 65, 1577. DOI: https://doi.org/10.1088/0034-4885/65/11/201

Henderson D., Holovko M., Trokhymchuk A. (Eds.), Ionic Soft Matter: Modern Trends in Theory and Applications, NATO Science Series II. Mathematics, Physics, and Chemistry Series, Vol. 206, Springer, Dordrecht, 2004. DOI: https://doi.org/10.1007/1-4020-3659-0

Chersty A. G., Phys. Chem. Chem. Phys., 2011, 13, 9942. DOI: https://doi.org/10.1039/c0cp02796k

Robinson R. A., Stokes R. H., Electrolyte Solutions, 2nd edn., Dover, New York, 2002.

Barthel J., Krienke H., Kunz W., Physical Chemistry of Electrolyte Solutions: Modern Aspects, Topics in Physical Chemistry, Vol. 5, Springer, New York, 1998.

Outhwaite C. W., In: Statistical Mechanics, Specialist Periodical Reports, Vol. 2, Singer K. (Ed.), The Royal Society of Chemistry, 1975, 188–255.

Hansen J.-P., McDonald I. R., Theory of Simple Liquids, 2nd edn., Academic Press, New York, 1990.

Vlachy V., Annu. Rev. Phys. Chem., 1999, 50, 145. DOI: https://doi.org/10.1146/annurev.physchem.50.1.145

McQuarrie D. A., Statistical Mechanics, University Science Books, Sausalito, 2000.

Friedman H. L., A Course in Statistical Mechanics, Prentice-Hall, New Jersey, 1985.

Blum L., Theoretical Chemistry, Advances and Perspectives, Vol. 5, Eyring H., Henderson D. (Eds.), Academic Press, New York, 1980, 1–66.

Bhuiyan L. B., Vlachy V., Outhwaite C.W., Int. Rev. Phys. Chem., 2002, 21, 1. DOI: https://doi.org/10.1080/01442350110078842

Debye P., Hückel E., Z. Phys., 1923, 24, 185.

Abbas Z., Ahlberg E., Nordholm S., Fluid Phase Equilib., 2007, 260, 233. DOI: https://doi.org/10.1016/j.fluid.2007.07.026

Abbas Z., Ahlberg E., Nordholm S., J. Phys. Chem. B, 2009, 113, 5905. DOI: https://doi.org/10.1021/jp808427f

Quiñones A. O., Bhuiyan L. B., Outhwaite C. W., Condens. Matter Phys., 2018, 21, 23802. DOI: https://doi.org/10.5488/CMP.21.23802

Outhwaite C. W., Bhuiyan L. B., Condens. Matter Phys., 2019, 22, 23801. DOI: https://doi.org/10.5488/CMP.22.23801

Outhwaite C. W., Bhuiyan L. B., Condens. Matter Phys., 2021, 24, 16801. DOI: https://doi.org/10.5488/CMP.24.16801

Bhuiyan L. B., Condens. Matter Phys., 2021, 24, 23801. DOI: https://doi.org/10.5488/CMP.24.23801

Hückel E., Z. Phys., 1925, 26, 93.

Shilov I. Y., Lyashchenko A. K., J. Phys. Chem. B, 2015, 119, 10087. DOI: https://doi.org/10.1021/acs.jpcb.5b04555

Triolo R., Blum L., Floriano M. A., J. Chem. Phys., 1978, 67, 5956. DOI: https://doi.org/10.1063/1.434805

Simonin J.-P., Blum L., Turq P., J. Phys. Chem., 1996, 100, 7704. DOI: https://doi.org/10.1021/jp953567o

Fawcett W. R., Tikanen A. C., J. Phys. Chem., 1996, 100, 4251. DOI: https://doi.org/10.1021/jp952379v

Tikanen A. C., Fawcett W. R., J. Electroanal. Chem., 1997, 439, 107. DOI: https://doi.org/10.1016/S0022-0728(97)00376-8

Abbas Z., Ahlberg E., J. Solution Chem., 2019, 48, 1222. DOI: https://doi.org/10.1007/s10953-019-00905-y

Quiñones A. O., Bhuiyan L. B., Abbas Z., Outhwaite C. W., J. Mol. Liq., 2023, 371, 12119. DOI: https://doi.org/10.1016/j.molliq.2022.121119

Friedman H. L., J. Chem. Phys., 1982, 76, 1092. DOI: https://doi.org/10.1063/1.443076

Levy A., Andelman D., Orland H., Phys. Rev. Lett., 2012, 108, 227801. DOI: https://doi.org/10.1103/PhysRevLett.108.227801

Valiskó M., Boda D., J. Chem. Phys., 2014, 140, 234508. DOI: https://doi.org/10.1063/1.4883742

Gavish N., Promislow K., Phys. Rev. E, 2016, 94, 012611. DOI: https://doi.org/10.1103/PhysRevE.94.012611

Adar R. M., Markovich T., Levy A., Orland H., Andelman D., J. Chem. Phys., 2018, 149, 054504. DOI: https://doi.org/10.1063/1.5042235

Hasted J. B., Ritson D. M., Collie C. H., J. Chem. Phys., 1948, 16, 1. DOI: https://doi.org/10.1063/1.1746645

Lobo H. M. M., Quaresma J. L., Handbook of Electrolyte Solutions, Part B, Elsevier, Amsterdam, 1989.

Stokes R. H., Trans. Faraday Soc., 1945, 41, 642. DOI: https://doi.org/10.1039/TF9454100642

Stokes R. H., Trans. Faraday Soc., 1948, 44, 295. DOI: https://doi.org/10.1039/TF9484400137

Stokes R. H., Robinson R. A., J. Am. Chem. Soc., 1948, 70, 1870. DOI: https://doi.org/10.1021/ja01185a065

Svensson Bo R., Woodward C. R., Mol. Phys., 1988, 64, 247. DOI: https://doi.org/10.1080/00268978800100203

Rasaiah J. C., Friedman H. L., J. Chem. Phys., 1968, 48, 2742. DOI: https://doi.org/10.1063/1.1669510

Outhwaite C. W., Molero M., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1991, 87, 3227. DOI: https://doi.org/10.1039/FT9918703227

Outhwaite C. W., Molero M., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1993, 89, 1315. DOI: https://doi.org/10.1039/FT9938901315

Outhwaite C. W., Molero M., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1994, 90, 2002.

Ulloa-Dávilla E. O., Bhuiyan L. B., Condens. Matter Phys., 2017, 20, 43801. DOI: https://doi.org/10.5488/CMP.20.43801

Leonard P. J., Henderson D., Barker J. A., Mol. Phys., 1971, 21, 107. DOI: https://doi.org/10.1080/00268977100101221

Grundke E. W., Henderson D., Mol. Phys., 1974, 24, 269. DOI: https://doi.org/10.1080/00268977200101431

Verlet L., Weis J. J., Phys. Rev. A, 1972, 5, 939. DOI: https://doi.org/10.1103/PhysRevA.5.939

Molero M., Outhwaite C. W., Bhuiyan L. B., J. Chem. Soc., Faraday Trans., 1992, 88, 1541. DOI: https://doi.org/10.1039/FT9928801541

Ebeling W., Scherwinski K., Z. Phys. Chem. (Leipzig), 1983, 264, 1. DOI: https://doi.org/10.1515/zpch-1983-0102

Outhwaite C. W., Bhuiyan L. B., Vlachy V., Hribar-Lee B., J. Chem. Eng. Data, 2010, 55, 4248. DOI: https://doi.org/10.1021/je100394d

Blum L., Mol. Phys., 1975, 30, 1529.

Blum L., Hoye J. S., J. Phys. Chem., 1977, 30, 1529. DOI: https://doi.org/10.1080/00268977500103051

Sanchez-Castro C., Blum L., J. Phys. Chem., 1989, 93, 7478. DOI: https://doi.org/10.1021/j100358a043

Bellman R., Kalaba R., Quasilinearization and Nonlinear Boundary Value Problems, Elsevier, New York, 1965.

Martinez M. M., Bhuiyan L. B., Outhwaite C. W., J. Chem. Soc., Faraday Trans., 1990, 86, 3383. DOI: https://doi.org/10.1039/FT9908603383

Buchner R., Hefter G., Phys. Chem. Chem. Phys., 2009, 11, 8984. DOI: https://doi.org/10.1039/b906555p

Barthel J., Krienke H., Holovko M. F., Kapko V. I., Protsykevich I. A., Condens. Matter Phys., 2000, 23, 657. DOI: https://doi.org/10.5488/CMP.3.3.657

Outhwaite C. W., Bhuiyan L. B., J. Chem. Phys., 2021, 155, 014504. DOI: https://doi.org/10.1063/5.0054203

Dinpajooh M., Biasin E., Nienhuis E. T., Mergelsberg S. T., Benmore C. J., Schenter G. K., Fulton J. L., Kathmann S. M., Mundy C. J., J. Chem. Phys., 2024, 161, 151102. DOI: https://doi.org/10.1063/5.0234518

Thomlinson M. M., Outhwaite C. W., Mol. Phys., 1982, 47, 1113. DOI: https://doi.org/10.1080/00268978200100812

Kournopoulos S., Haslam A. J., Jackson G., Galindo A., Schöen M., J. Chem. Phys., 2022, 156, 154111. DOI: https://doi.org/10.1063/5.0079511

Published

2025-03-28

Issue

Section

Articles

Categories

How to Cite

[1]
A. Quinones Rivera, Z. Abbas, C. Outhwaite, and L. B. Bhuiyan, “Effect of variable relative permittivity on the thermodynamics of asymmetric valency aqueous salts”, Condens. Matter Phys., vol. 28, no. 1, p. 13802, Mar. 2025, doi: 10.5488/cmp.28.13802.

Most read articles by the same author(s)

Similar Articles

1-10 of 48

You may also start an advanced similarity search for this article.