Electron and hole energy spectrum of non-concentric spherical core-shell quantum dot under an externally applied electric field

Authors

  • R. Ya. Leshko Department of Physics and Information Systems, Drohobych Ivan Franko State Pedagogical University, 3 Stryiska Street, 82100 Drohobych, Ukraine https://orcid.org/0000-0002-9072-164X
  • I. V. Bilynskyi Department of Physics and Information Systems, Drohobych Ivan Franko State Pedagogical University, 3 Stryiska Street, 82100 Drohobych, Ukraine; Department of Physics, Kryvyi Rih State Pedagogical University, 54 Universytetska Street, 50086 Kryvyi Rih, Ukraine https://orcid.org/0000-0002-4221-9225
  • O. V. Leshko Department of Physics and Information Systems, Drohobych Ivan Franko State Pedagogical University, 3 Stryiska Street, 82100 Drohobych, Ukraine https://orcid.org/0000-0001-9646-3189
  • M. Yu. Popov Department of Physics, Kryvyi Rih State Pedagogical University, 54 Universytetska Street, 50086 Kryvyi Rih, Ukraine
  • A. O. Ocheretyanyi Department of Physics, Kryvyi Rih State Pedagogical University, 54 Universytetska Street, 50086 Kryvyi Rih, Ukraine

DOI:

https://doi.org/10.5488/cmp.27.43703

Keywords:

non-concentric spherical core–shell quantum dot, electric field

Abstract

A model of the non-concentric spherical core–shell quantum dot under the influence of an externally applied electric field was proposed. It was established that the energy spectrum of both the electron and the hole depends on the intensity of the electric field as well as on the specific location of the core within the quantum dot. The phenomenon of energy level splitting and degeneration was analyzed in detail. Additionally, the variations in the optical gap were determined and expressed as a function of the applied electric field strength and the position of the core in the quantum dot.

References

Reiss P., Protière M., Li L., Small, 2009, 5, 154–168. DOI: https://doi.org/10.1002/smll.200800841

Won Y. H., Cho O., Kim T., Chung D. Y., Kim T., Chung H., Jang H., Lee J., Kim D., Jang E., Nature, 2019, 575, 634–638. DOI: https://doi.org/10.1038/s41586-019-1771-5

Sahu A., Kumar D., J. Alloys Compd., 2022, 924, 166508. DOI: https://doi.org/10.1016/j.jallcom.2022.166508

Tong X., Wang Z. M. (Eds.), Core/Shell Quantum Dots. Lecture Notes in Nanoscale Science and Technology, Vol. 28, Springer, Cham, 2020. DOI: https://doi.org/10.1007/978-3-030-46596-4

Routzahn A. L., Jain P. K., Nano Lett., 2015, 15, 2504–2509. DOI: https://doi.org/10.1021/acs.nanolett.5b00068

Omogo B., Gao F., Bajwa P., Kaneko M., Heyes C. D., ACS Nano, 2016, 10, 4072–4082. DOI: https://doi.org/10.1021/acsnano.5b06994

Boichuk V. I., Bilynskyi I. V., Leshko R. Ya., J. Phys. Stud., 2010, 14, 3702 (in Ukrainian). DOI: https://doi.org/10.30970/jps.14.3702

Holovatsky V. A., Holovatskyi I. V., Yakhnevych M. Ya., Physica E, 2018, 104, 58–63. DOI: https://doi.org/10.1016/j.physe.2018.07.020

Holovatsky V., Chubrey M., Voitsekhivska O., Superlattices Microstruct., 2020, 145, 106642. DOI: https://doi.org/10.1016/j.spmi.2020.106642

Holovatsky V. A., Chubrei M. V., Duque C. A., Thin Solid Films, 2022, 747, 139142. DOI: https://doi.org/10.1016/j.tsf.2022.139142

Leshko R. Ya., Bilynskyi I. V., Physica E, 2019, 110, 10-14. DOI: https://doi.org/10.1016/j.physe.2019.01.024

Shi L., Yan Z. W., Phys. Lett. A, 2023, 466, 128725. DOI: https://doi.org/10.1016/j.physleta.2023.128725

Deyasi A., Bhattacharyya S., Das N. R., Superlattices Microstruct., 2013, 60, 414–425. DOI: https://doi.org/10.1016/j.spmi.2013.05.026

Brahim T., Bouazra A., Said M., Optik, 2021, 225, 165874. DOI: https://doi.org/10.1016/j.ijleo.2020.165874

Ramya E., Rao M. V., Rao D. N., Physica E, 2019, 107, 24–29. DOI: https://doi.org/10.1016/j.physe.2018.11.010

Kuzyk O., Dan’kiv O., Peleshchak R., Stolyarchuk I., Physica E, 2022, 143, 115381. DOI: https://doi.org/10.1016/j.physe.2022.115381

Krasselt C., von Borczyskowski C., J. Phys. Chem. C, 2021, 125, 15384–15395. DOI: https://doi.org/10.1021/acs.jpcc.1c01438

Wang R., Zhang Y., Gan C., Muhammad J., Xiao M., Appl. Phys. Lett., 2010, 96, 151107. DOI: https://doi.org/10.1063/1.3396985

Ran X., Chen C., Wei Z., Chi Z., Pan Y., Kuang Y., Wang X., Guo L., J. Lumin., 2022, 248, 118953. DOI: https://doi.org/10.1016/j.jlumin.2022.118953

Zaiats G., Yanover D., Vaxenburg R., Shapiro A., Safran A., Hesseg I., Sashchiuk A., Lifshitz E., Z. Phys. Chem.,2015, 229, 3–21. DOI: https://doi.org/10.1515/zpch-2014-0625

Leshko R. Ya., Bilynskyi I. V., Leshko O. V, Slusarenko M. A., Micro Nanostruct., 2023, 181, 207615. DOI: https://doi.org/10.1016/j.micrna.2023.207615

Bilynskyi I. V., Leshko R. Ya., Metsan H. O, Slusarenko M. A., Physica B, 2022, 642, 414106. DOI: https://doi.org/10.1016/j.physb.2022.414106

Li S. S., Xia J. B., Chin. Phys. Lett., 2006, 23, 1896. DOI: https://doi.org/10.1088/0256-307X/23/7/066

Li S. S., Xia J. B., J. Appl. Phys., 2007, 101, 093716.

Nasri D., Sekkal N., Physica E, 2010, 42, 2257. DOI: https://doi.org/10.1016/j.physe.2010.04.028

Published

2024-12-30

Issue

Section

Articles

Categories

How to Cite

[1]
R. Y. Leshko, I. V. Bilynskyi, O. V. Leshko, M. Y. Popov, and A. O. Ocheretyanyi, “Electron and hole energy spectrum of non-concentric spherical core-shell quantum dot under an externally applied electric field”, Condens. Matter Phys., vol. 27, no. 4, p. 43703, Dec. 2024, doi: 10.5488/cmp.27.43703.

Similar Articles

31-40 of 40

You may also start an advanced similarity search for this article.