Ising model with varying spin strength on a scale-free network: scaling functions and critical amplitude ratios
DOI:
https://doi.org/10.5488/cmp.27.33603Keywords:
phase transitions, Ising model, universality, scaling functions, critical amplitude ratios, complex networkAbstract
Recently, a novel model to describe ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of “+” or “–”, “up” or “down”, “yes” or “no”), still differing in their strength was suggested [Krasnytska et al., J. Phys. Complex., 2020, 1, 035008]. The model was analyzed for a particular case when agents are located on sites of a scale-free network and agent strength is a random variable governed by a power-law decaying distribution. For the annealed network, the exact solution shows a rich phase diagram with different types of critical behavior and new universality classes. This paper continues the above studies and addresses the analysis of scaling functions and universal critical amplitude ratios for the model on a scale-free network.
References
Krasnytska M., Berche B., Holovatch Yu., Kenna R., J. Phys. Complex., 2020, 1, No. 3, 035008. DOI: https://doi.org/10.1088/2632-072X/abb654
Krasnytska M., Berche B., Holovatch Yu., Kenna R., Entropy, 2021, 23, No. 9. DOI: https://doi.org/10.3390/e23091175
Mattis D., Phys. Lett. A, 1976, 56, No. 5, 421–422. DOI: https://doi.org/10.1016/0375-9601(76)90396-0
Bianconi G., Phys. Lett. A, 2002, 303, No. 2, 166–168. DOI: https://doi.org/10.1016/S0375-9601(02)01232-X
Pastur L., Figotin A., Theor. Math. Phys., 1978, 35, 403–414. DOI: https://doi.org/10.1007/BF01039111
Hopfield J., PNAS, 1982, 79, 2554–2558. DOI: https://doi.org/10.1073/pnas.79.8.2554
Mezard M., Parisi G., Virasoro M., Spin Glass Theory and Beyond. An Introduction to the Replica Method and Its Applications, Vol. 9, World Scientific, Singapore, 1986. DOI: https://doi.org/10.1142/0271
Dotsenko V., An Introduction to the Theory of Spin Glasses and Neural Networks, World Scientific, Singapore, 1994. DOI: https://doi.org/10.1142/9789812798985
Folk R., Holovatch Yu., Yavors’kii T., Physics-Uspiekhi, 2003, 46, 169–191. DOI: https://doi.org/10.1070/PU2003v046n02ABEH001077
Holovatch Yu., Kenna R., Thurner S., Eur. J. Phys., 2017, 38, No. 2, 023002. DOI: https://doi.org/10.1088/1361-6404/aa5a87
Dorogovtsev S., Goltsev A. V., Mendes J., Rev. Mod. Phys., 2008, 80, 1275–1335. DOI: https://doi.org/10.1103/RevModPhys.80.1275
Lynn C., Bassett D., Nat. Rev. Phys., 2019, 1, 318–332. DOI: https://doi.org/10.1038/s42254-019-0040-8
Seguin C., van den Heuvel M., Zalesky A., PNAS, 2018, 115, No. 24, 6297–6302. DOI: https://doi.org/10.1073/pnas.1801351115
Betzel R. F., Bassett D. S., J. R. Soc. Interface, 2017.
Stanley M., Moussa M., Paolini B., Lyday R., Burdette J., Laurienti P., Front. Comput. Neurosci., 2013, 7. DOI: https://doi.org/10.3389/fncom.2013.00169
Park H. J., Friston K., Science, 2013, 342, No. 6158, 1238411. DOI: https://doi.org/10.1126/science.1238411
Bagarinao E., Watanabe H., Maesawa S., Sci. Rep., 2019, 9, 11352. DOI: https://doi.org/10.1038/s41598-019-47922-x
Tadić B., Malarz K., Kułakowski K., Phys. Rev. Lett., 2005, 94, 137204. DOI: https://doi.org/10.1103/PhysRevLett.94.137204
Tadić B., Gupte N., EPL, 2020, 132, No. 6, 60008. DOI: https://doi.org/10.1209/0295-5075/132/60008
Dudka M., Krasnytska M., Ruiz-Lorenzo J. J., Holovatch Yu., J. Magn. Magn. Mater., 2023, 575, 170718. DOI: https://doi.org/10.1016/j.jmmm.2023.170718
Privman V., Hohenberg P. C., Aharony A., Phase Transitions and Critical Phenomena, Vol. 14, Domb C., Lebowitz J. L. (Eds.), Academic Press, New York, 1991.
Hankey A., Stanley H. E., Phys. Rev. B, 1972, 6, 3515–3542. DOI: https://doi.org/10.1103/PhysRevB.6.3515
Stanley H. E., Rev. Mod. Phys., 1999, 71, S358–S366. DOI: https://doi.org/10.1103/RevModPhys.71.S358
Delfino G., Phys. Lett. B, 1998, 419, No. 1, 291–295. DOI: https://doi.org/10.1016/S0370-2693(97)01457-3
Caselle M., Hasenbusch M., Nucl. Phys. B Proc. Suppl., 1998, 63, No. 1, 613–615. DOI: https://doi.org/10.1016/S0920-5632(97)00848-7
Engels J., Fromme L., Seniuch M., Nucl. Phys. B, 2003, 655, No. 3, 277–299. DOI: https://doi.org/10.1016/S0550-3213(03)00085-3
Gordillo-Guerrero A., Kenna R., Ruiz-Lorenzo J. J., J. Stat. Mech., 2011, 2011, No. 09, P09019. DOI: https://doi.org/10.1088/1742-5468/2011/09/P09019
Davies R. A., Pepper M., Kaveh M., J. Phys. C, 1983, 16, No. 10, L285. DOI: https://doi.org/10.1088/0022-3719/16/10/006
Stoop R., Peinke J., Parisi J., Physica D, 1991, 50, No. 3, 405–411. DOI: https://doi.org/10.1016/0167-2789(91)90007-V
McLachlan D. S., Heiss W. D., Chiteme C., Wu J., Phys. Rev. B, 1998, 58, 13558–13564. DOI: https://doi.org/10.1103/PhysRevB.58.13558
Walsh D. J., Guironnet D., PNAS, 2019, 116, No. 5, 1538–1542. DOI: https://doi.org/10.1073/pnas.1817745116
Krummenacher M., Steinhauser M. O., J. Chem. Phys., 2022, 157, No. 15, 154904. DOI: https://doi.org/10.1063/5.0108479
von Ferber C., Folk R., Holovatch Yu., Kenna R., Palchykov V., Phys. Rev. E, 2011, 83, 061114. DOI: https://doi.org/10.1103/PhysRevE.83.061114
Krasnytska M., Berche B., Holovatch Yu., Kenna R., J. Phys. A: Math. Theor., 2016, 49, No. 13, 135001. DOI: https://doi.org/10.1088/1751-8113/49/13/135001
Karsch F., Schmidt C., Singh S., Phys. Rev. D, 2024, 109, 014508. DOI: https://doi.org/10.1103/PhysRevD.109.014508
Berlin T. H., Kac M., Phys. Rev., 1952, 86, 821–835. DOI: https://doi.org/10.1103/PhysRev.86.821
Leone M., Vázquez A., Vespignani A., Zecchina R., Eur. Phys. J. B, 2002, 28, 191–197. DOI: https://doi.org/10.1140/epjb/e2002-00220-0
Iglói F., Turban L., Phys. Rev. E, 2002, 66, 036140. DOI: https://doi.org/10.1103/PhysRevE.66.036140
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 M. Krasnytska
This work is licensed under a Creative Commons Attribution 4.0 International License.