Ising model with varying spin strength on a scale-free network: scaling functions and critical amplitude ratios

Authors

  • M. Krasnytska Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011, Lviv, Ukraine; L4 Collaboration & Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-Coventry, Europe; Haiqu, Inc., Shevchenka Str., 120 G, 79039, Lviv, Ukraine https://orcid.org/0000-0002-0464-5741

DOI:

https://doi.org/10.5488/cmp.27.33603

Keywords:

phase transitions, Ising model, universality, scaling functions, critical amplitude ratios, complex network

Abstract

Recently, a novel model to describe ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of “+” or “–”, “up” or “down”, “yes” or “no”), still differing in their strength was suggested [Krasnytska et al., J. Phys. Complex., 2020, 1, 035008]. The model was analyzed for a particular case when agents are located on sites of a scale-free network and agent strength is a random variable governed by a power-law decaying distribution. For the annealed network, the exact solution shows a rich phase diagram with different types of critical behavior and new universality classes. This paper continues the above studies and addresses the analysis of scaling functions and universal critical amplitude ratios for the model on a scale-free network.

References

Krasnytska M., Berche B., Holovatch Yu., Kenna R., J. Phys. Complex., 2020, 1, No. 3, 035008. DOI: https://doi.org/10.1088/2632-072X/abb654

Krasnytska M., Berche B., Holovatch Yu., Kenna R., Entropy, 2021, 23, No. 9. DOI: https://doi.org/10.3390/e23091175

Mattis D., Phys. Lett. A, 1976, 56, No. 5, 421–422. DOI: https://doi.org/10.1016/0375-9601(76)90396-0

Bianconi G., Phys. Lett. A, 2002, 303, No. 2, 166–168. DOI: https://doi.org/10.1016/S0375-9601(02)01232-X

Pastur L., Figotin A., Theor. Math. Phys., 1978, 35, 403–414. DOI: https://doi.org/10.1007/BF01039111

Hopfield J., PNAS, 1982, 79, 2554–2558. DOI: https://doi.org/10.1073/pnas.79.8.2554

Mezard M., Parisi G., Virasoro M., Spin Glass Theory and Beyond. An Introduction to the Replica Method and Its Applications, Vol. 9, World Scientific, Singapore, 1986. DOI: https://doi.org/10.1142/0271

Dotsenko V., An Introduction to the Theory of Spin Glasses and Neural Networks, World Scientific, Singapore, 1994. DOI: https://doi.org/10.1142/9789812798985

Folk R., Holovatch Yu., Yavors’kii T., Physics-Uspiekhi, 2003, 46, 169–191. DOI: https://doi.org/10.1070/PU2003v046n02ABEH001077

Holovatch Yu., Kenna R., Thurner S., Eur. J. Phys., 2017, 38, No. 2, 023002. DOI: https://doi.org/10.1088/1361-6404/aa5a87

Dorogovtsev S., Goltsev A. V., Mendes J., Rev. Mod. Phys., 2008, 80, 1275–1335. DOI: https://doi.org/10.1103/RevModPhys.80.1275

Lynn C., Bassett D., Nat. Rev. Phys., 2019, 1, 318–332. DOI: https://doi.org/10.1038/s42254-019-0040-8

Seguin C., van den Heuvel M., Zalesky A., PNAS, 2018, 115, No. 24, 6297–6302. DOI: https://doi.org/10.1073/pnas.1801351115

Betzel R. F., Bassett D. S., J. R. Soc. Interface, 2017.

Stanley M., Moussa M., Paolini B., Lyday R., Burdette J., Laurienti P., Front. Comput. Neurosci., 2013, 7. DOI: https://doi.org/10.3389/fncom.2013.00169

Park H. J., Friston K., Science, 2013, 342, No. 6158, 1238411. DOI: https://doi.org/10.1126/science.1238411

Bagarinao E., Watanabe H., Maesawa S., Sci. Rep., 2019, 9, 11352. DOI: https://doi.org/10.1038/s41598-019-47922-x

Tadić B., Malarz K., Kułakowski K., Phys. Rev. Lett., 2005, 94, 137204. DOI: https://doi.org/10.1103/PhysRevLett.94.137204

Tadić B., Gupte N., EPL, 2020, 132, No. 6, 60008. DOI: https://doi.org/10.1209/0295-5075/132/60008

Dudka M., Krasnytska M., Ruiz-Lorenzo J. J., Holovatch Yu., J. Magn. Magn. Mater., 2023, 575, 170718. DOI: https://doi.org/10.1016/j.jmmm.2023.170718

Privman V., Hohenberg P. C., Aharony A., Phase Transitions and Critical Phenomena, Vol. 14, Domb C., Lebowitz J. L. (Eds.), Academic Press, New York, 1991.

Hankey A., Stanley H. E., Phys. Rev. B, 1972, 6, 3515–3542. DOI: https://doi.org/10.1103/PhysRevB.6.3515

Stanley H. E., Rev. Mod. Phys., 1999, 71, S358–S366. DOI: https://doi.org/10.1103/RevModPhys.71.S358

Delfino G., Phys. Lett. B, 1998, 419, No. 1, 291–295. DOI: https://doi.org/10.1016/S0370-2693(97)01457-3

Caselle M., Hasenbusch M., Nucl. Phys. B Proc. Suppl., 1998, 63, No. 1, 613–615. DOI: https://doi.org/10.1016/S0920-5632(97)00848-7

Engels J., Fromme L., Seniuch M., Nucl. Phys. B, 2003, 655, No. 3, 277–299. DOI: https://doi.org/10.1016/S0550-3213(03)00085-3

Gordillo-Guerrero A., Kenna R., Ruiz-Lorenzo J. J., J. Stat. Mech., 2011, 2011, No. 09, P09019. DOI: https://doi.org/10.1088/1742-5468/2011/09/P09019

Davies R. A., Pepper M., Kaveh M., J. Phys. C, 1983, 16, No. 10, L285. DOI: https://doi.org/10.1088/0022-3719/16/10/006

Stoop R., Peinke J., Parisi J., Physica D, 1991, 50, No. 3, 405–411. DOI: https://doi.org/10.1016/0167-2789(91)90007-V

McLachlan D. S., Heiss W. D., Chiteme C., Wu J., Phys. Rev. B, 1998, 58, 13558–13564. DOI: https://doi.org/10.1103/PhysRevB.58.13558

Walsh D. J., Guironnet D., PNAS, 2019, 116, No. 5, 1538–1542. DOI: https://doi.org/10.1073/pnas.1817745116

Krummenacher M., Steinhauser M. O., J. Chem. Phys., 2022, 157, No. 15, 154904. DOI: https://doi.org/10.1063/5.0108479

von Ferber C., Folk R., Holovatch Yu., Kenna R., Palchykov V., Phys. Rev. E, 2011, 83, 061114. DOI: https://doi.org/10.1103/PhysRevE.83.061114

Krasnytska M., Berche B., Holovatch Yu., Kenna R., J. Phys. A: Math. Theor., 2016, 49, No. 13, 135001. DOI: https://doi.org/10.1088/1751-8113/49/13/135001

Karsch F., Schmidt C., Singh S., Phys. Rev. D, 2024, 109, 014508. DOI: https://doi.org/10.1103/PhysRevD.109.014508

Berlin T. H., Kac M., Phys. Rev., 1952, 86, 821–835. DOI: https://doi.org/10.1103/PhysRev.86.821

Leone M., Vázquez A., Vespignani A., Zecchina R., Eur. Phys. J. B, 2002, 28, 191–197. DOI: https://doi.org/10.1140/epjb/e2002-00220-0

Iglói F., Turban L., Phys. Rev. E, 2002, 66, 036140. DOI: https://doi.org/10.1103/PhysRevE.66.036140

Published

2024-09-24

How to Cite

[1]
M. Krasnytska, “Ising model with varying spin strength on a scale-free network: scaling functions and critical amplitude ratios”, Condens. Matter Phys., vol. 27, no. 3, p. 33603, Sep. 2024, doi: 10.5488/cmp.27.33603.

Similar Articles

1-10 of 34

You may also start an advanced similarity search for this article.