Consensus decision making on a complete graph: complex behaviour from simple assumptions
DOI:
https://doi.org/10.5488/cmp.27.33801Keywords:
collective decision making, spin models, bias, conformityAbstract
In this paper we investigate a model of consensus decision making [Hartnett A. T., et al., Phys. Rev. Lett., 2016, 116, 038701] following a statistical physics approach presented in [Sarkanych P., et al., Phys. Biol., 2023, 20, 045005]. Within this approach, the temperature serves as a measure of fluctuations, not considered before in the original model. Here, we discuss the model on a complete graph. The main goal of this paper is to show that an analytical description may lead to a very rich phase behaviour, which is usually not expected for a complete graph. However, the variety of individual agent (spin) features - their inhomogeneity and bias strength - taken into account by the model leads to rather non-trivial collective effects. We show that the latter may emerge in a form of continuous or abrupt phase transitions sometimes accompanied by re-entrant and order-parameter flipping behaviour. In turn, this may lead to appealing interpretations in terms of social decision making. We support analytical predictions by numerical simulation. Moreover, while analytical calculations are performed within an equilibrium statistical physics formalism, the numerical simulations add yet another dynamical feature - local non-linearity or conformity of the individual to the opinion of its surroundings. This feature appears to have a strong impact both on the way in which an equilibrium state is approached as well as on its characteristics.
References
Bonabeau E., Theraulaz G., Deneubourg J.-L., Aron S., Camazine S., Trends Ecol. Evol., 1997, 12, No. 5, 188–193. DOI: https://doi.org/10.1016/S0169-5347(97)01048-3
Buhl J., Sumpter D. J., Couzin I. D., Hale J. J., Despland E., Miller E. R., Simpson S. J., Science, 2006, 312, No. 5778, 1402–1406. DOI: https://doi.org/10.1126/science.1125142
Faria J. J., Krause S., Krause J., Behav. Ecol., 2010, 21, No. 6, 1236–1242. DOI: https://doi.org/10.1093/beheco/arq141
Krause J., Ruxton G. D., Living in Groups, Oxford University Press, Oxford, 2002. DOI: https://doi.org/10.1093/oso/9780198508175.001.0001
Sumpter D. J., Collective animal behavior, Princeton University Press, 2010. DOI: https://doi.org/10.1515/9781400837106
Couzin I. D., Krause J., Franks N. R., Levin S. A., Nature, 2005, 433, No. 7025, 513–516. DOI: https://doi.org/10.1038/nature03236
Couzin I. D., Ioannou C. C., Demirel G., Gross T., Torney C. J., Hartnett A., Conradt L., Levin S. A., Leonard N. E., Science, 2011, 334, No. 6062, 1578–1580. DOI: https://doi.org/10.1126/science.1210280
Winklmayr C., Kao A. B., Bak-Coleman J. B., Romanczuk P., Proc. R. Soc. B, 2020, 287, No. 1938, 20201802. DOI: https://doi.org/10.1098/rspb.2020.1802
Winklmayr C., Kao A. B., Bak-Coleman J. B., Romanczuk P., Collect. Intell., 2023, 2, No. 1, 26339137221148675. DOI: https://doi.org/10.1177/26339137221148675
Romanczuk P., Daniels B. C., In: Order, Disorder and Criticality: Advanced Problems of Phase Transition Theory, Vol. 7, Holovatch Yu. (Ed.), World Scientific, Singapore, 2023, 179–208. DOI: https://doi.org/10.1142/9789811260438_0004
Castellano C., Fortunato S., Loreto V., Rev. Mod. Phys., 2009, 81, No. 2, 591. DOI: https://doi.org/10.1103/RevModPhys.81.591
Pinkoviezky I., Couzin I. D., Gov N. S., Phys. Rev. E, 2018, 97, No. 3, 032304. DOI: https://doi.org/10.1103/PhysRevE.97.032304
Hartnett A. T., Schertzer E., Levin S. A., Couzin I. D., Phys. Rev. Lett., 2016, 116, 038701. DOI: https://doi.org/10.1103/PhysRevLett.116.038701
Sarkanych P., Krasnytska M., Gómez-Nava L., Romanczuk P., Holovatch Yu., Phys. Biol., 2023, 20, No. 4, 045005. DOI: https://doi.org/10.1088/1478-3975/acd6ce
Klayman J., Psychology of Learning and Motivation, 1995, 32, 385–418. DOI: https://doi.org/10.1016/S0079-7421(08)60315-1
Nickerson R. S., Rev. Gen. Psychol., 1998, 2, No. 2, 175–220. DOI: https://doi.org/10.1037//1089-2680.2.2.175
Clifford P., Sudbury A., Biometrika, 1973, 60, No. 3, 581–588. DOI: https://doi.org/10.1093/biomet/60.3.581
Redner S., C. R. Phys., 2019, 20, No. 4, 275–292. DOI: https://doi.org/10.1016/j.crhy.2019.05.004
Krapivsky P. L., Redner S., Phys. Rev. Lett., 2003, 90, 238701. DOI: https://doi.org/10.1103/PhysRevLett.90.238701
Riedel L., Herdeanu B., Mack H., Sevinchan Y., Weninger J., J. Open Source Softw., 2020, 5, 2165. DOI: https://doi.org/10.21105/joss.02165
Sevinchan Y., Herdeanu B., Traub J., J. Open Source Softw., 2020, 5, 2316. DOI: https://doi.org/10.21105/joss.02316
Sevinchan Y., Herdeanu B., Mack H., Riedel L., Roth K., In: Computational Science – ICCS 2020, Lecture Notes in Computer Science, Vol. 12143, Krzhizhanovskaya V. V., Závodszky G., Lees M. H., Dongarra J. J., Sloot P. M. A., Brissos S., Teixeira J. (Eds.), Springer International Publishing, Cham, Switzerland, 442–456.
Sevinchan Y., SocialSpinModel C++ implementation in Utopia, git repository, https://gitlab.com/utopia-project/models/SocialSpinModels, 2024.
Kenna R., Mac Carron P., EPL, 2012, 99, No. 2, 28002. DOI: https://doi.org/10.1209/0295-5075/99/28002
Kenna R., Mac Carron M., Mac Carron P. (Eds.), Maths Meets Myths: Quantitative Approaches to Ancient Narratives, Understanding Complex Systems, Springer International Publishing Switzerland, 2017. DOI: https://doi.org/10.1007/978-3-319-39445-9
Sarkanych P., Fedorak N., Holovatch Yu., Mac Carron P., Yose J., Kenna R., Adv. Complex Syst., 2022, 25, No.5&6, 2240007. DOI: https://doi.org/10.1142/S0219525922400070
L4 International Collaboration on Statistical Physics of Complex Systems, https://sites.google.com/view/l4doctoralcollege/home, accessed: 2024-02-02.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 P. Sarkanych, Yu. Sevinchan, M. Krasnytska, P. Romanczuk, Yu. Holovatch
This work is licensed under a Creative Commons Attribution 4.0 International License.