Description processes of the interaction of water and aqueous solutions with fuel-containing materials in the New Safe Confinement of the “Shelter” object
DOI:
https://doi.org/10.5488/cmp.28.11601Keywords:
diffusion, porous medium, hydrolysis, reactions, adsorptionAbstract
The main mechanisms and conditions of interaction of lava-like fuel-containing materials (LFCM) with the atmosphere, water and aqueous solutions are presented. The mechanisms of destruction of the LFCM surface, including ion-exchange processes, hydrolysis, dissolution, oxidation, etc., were analyzed. Inhomogeneous diffusion coefficients for UO22+, Cs+ ions at the interface “aqueous solution of radioactive elements – LFCM” were calculated. The interdiffusion processes and the rate of penetration into the porous medium of the reaction front of the internal hydrolysis of the silicon-oxygen network during interaction with an aqueous solution were analyzed, where the reaction and adsorption processes are hidden in the rate of internal hydrolysis.
References
Onishi Y., Voitsekhovich O. V., Zheleznyak M. J., Chernobyl - What Have We Learned? The Successes and Failures to Mitigate Water Contamination Over 20 Years, Springer Science & Business Media, Berlin, 2007. DOI: https://doi.org/10.1007/1-4020-5349-5
Steinhauser G., Brandl A., Johnson T. E., Sci. Total Environ., 2014, 470–471, 800–817. DOI: https://doi.org/10.1016/j.scitotenv.2013.10.029
Yao Y., Volchek K., Lambert P., Brown C. E., Environmental Impacts of the Fukushima and Chernobyl Accidents and their Remediation: A Review. Ottawa, Canada: Emergencies Science and Technology, Environment Canada. Atomic Energy of Canada Limited, International Safety Research Inc, 2014.
Onishi Y., Procedia IUTAM, 2014, 10, 372–381. DOI: https://doi.org/10.1016/j.piutam.2014.01.032
Konoplev A., Golosov V., Laptev G., Nanba K., Onda Y., Takase T., Wakiyama Y., Yoshimura K., J. Environ. Radioact., 2016, 151, 568–578. DOI: https://doi.org/10.1016/j.jenvrad.2015.06.019
Taniguchi K., Onda Y., Smith H. G., Blake W., Yoshimura K., Yamashiki Y., Kuramoto T., Saito K., Environ. Sci. Technol., 2019, 53, No. 21, 12339–12347. DOI: https://doi.org/10.1021/acs.est.9b02890
Panasiuk M. I., Stoyanov O. I., Lyushnia P. A., Levin G. V., Palamar L. A., Onyshchenko I. P., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2019, 32, 74–79. DOI: https://doi.org/10.31717/1813-3584.19.32.11
Konoplev A., Kato K., Kalmykov S. N. (Eds.), Behavior of Radionuclides in the Environment II. Chernobyl, Springer, Singapore, 2020. DOI: https://doi.org/10.1007/978-981-15-3568-0
Fukumoto M. (Ed.), Low-Dose Radiation Effects on Animals and Ecosystems. Long-Term Study on the Fukushima Nuclear Accident, Springer, Singapore, 2020. DOI: https://doi.org/10.1007/978-981-13-8218-5
Kovalenko I. O., Panasiuk M. I., Sosonna N. V., Levin G. V., Lushnia P. A., Roienko G. K., Palamar L. A., Buzynnyi M. G., Onyshchenko I. P., Nucl. Power Environ., 2023, 1, No. 26, 47–54, (in Ukrainian). DOI: https://doi.org/10.31717/2311-8253.23.1.5
Yukhnovskii I. R., Omelyan I. P., Zhelem R. I., Tokarchuk M. V., Preprint of the Institute for Condensed Matter Physics, ICMP-94-7E, Lviv, 1994 (in Ukrainian).
Yukhnovskii I. R., Tokarchuk M. V., Preprint of the Institute for Condensed Matter Physics, ICMP-95-3U, Lviv, 1995 (in Ukrainian).
Yukhnovskii I. R., Kobryn A. E., Tokarevskii V. V., Tokarchuk M. V., Preprint of the Institute for Condensed Matter Physics, ICMP-96-19U, Lviv, 1996 (in Ukrainian).
Klyuchnikov A. A., Chernobyl: ISTC “Shelter”, NAS of Ukraine, 1996, 22.
Yukhnovskii I. R., Kobryn A. E., Tokarevskii V. V., Tokarchuk M. V., J. Phys. Stud., 1997, 1, No. 2, 169–180, (in Ukrainian). DOI: https://doi.org/10.30970/jps.01.169
Yukhnovskii I. R., Tokarchuk M. V., Omelyan I. P., Sovyak E. M., Zhelem R. I., Condens. Matter Phys., 1997, 9, 153–166. DOI: https://doi.org/10.5488/CMP.9.153
Yukhnovskii I. R., Tokarchuk M. V., Ignatyuk V. V., Kobryn A. E., Omelyan I. P., Zhelem R. I., Condens. Matter Phys., 1997, 12, 63–96. DOI: https://doi.org/10.5488/CMP.12.63
Borovoy A., The Shelter’s Current Safety Analysis and Situation Development Forecasts, Updated version, Tacis, Brussels, 1998.
Bogatov S. A., Korneev A. A., Krinitsyn A. P., Simanovskaya I. Y., Strykhar O. L., Shcherbin V. N., Preprint of the ISTC “Shelter” of the Natl. Acad. Sci. of Ukraine, 99-5, 1999 (in Russian).
Yukhnovskii I. R., Tokarchuk M. V., Zhelem R. I., Condens. Matter Phys., 1999, 2, No. 18, 351–360. DOI: https://doi.org/10.5488/CMP.2.2.351
Yukhnovskii I. R., Tokarchuk M. V., Kobryn O. E., Dmytriv G. S., Humenyuk Y. A., J. Phys. Stud., 1999, 3, No. 2, 224–236. DOI: https://doi.org/10.30970/jps.03.224
Krinitsyn A. P., Simanovskaya I. Y., Strihar O. L., Probl. Chornobyl, 2000, 6, 21–24 (in Russian).
Yukhnovskii I. R., Tokarchuk M. V., Omelyan I. P., Zhelem R. I., Radiat. Phys. Chem., 2000, 59, No. 4, 361–375. DOI: https://doi.org/10.1016/S0969-806X(00)00278-4
Shcherbin V. N., Krinitsyn A. P., Strihar O. L., Radiochemistry, 2000, 42, No. 3, 281–283.
Yukhnovsky I. R., Glushak P. A., Zakharyash O. S., Tokarchuk M. V., Probl. Chornobyl, 2002, 11, 12–21 (in Ukrainian).
Odintsov A. A., Pazukhin E. M., Khan V. E., Radiochemistry, 2005, 47, No. 5, 510–515. DOI: https://doi.org/10.1007/s11137-005-0130-6
Odintsov O. O., Khan V. E., Palamar L. A., Sabenin P. V., Chikur L. B., Nucl. Power Environ., 2021, 2, No. 21, 95–107, (in Ukrainian). DOI: https://doi.org/10.31717/2311-8253.21.2.10
Tokarchuk M. V., Physical collection of the Shevchenko Scientific Society, 2006, 6, 319–322 (in Ukrainian).
Odintsov A. A., Khan V. E., Krasnov V. A., Pazukhin E. M., Radiochemistry, 2007, 49, No. 5, 534–540. DOI: https://doi.org/10.1134/S1066362207050165
Yukhnovsky I. R., Ivankiv O. L., Glushak P. A., Tokarchuk M. V., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2007, 8, 112–120, (in Ukrainian).
Control of Fugitive Emissions From the Shelter Object, Final report on research work, agreement No. 249/01, IPB NPP NAS of Ukraine, Chernobyl, 2007.
Glushak P. A., Zakharyash O. S., Mohnyak S. M., Sovyak E. M., Tokarchuk M. V., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2008, 9, 100–109, (in Ukrainian).
Panasiuk M. I., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2010, 13, 128–135 (in Russian).
Lagunenko O. S., Krasnov V. O., Dovyd’kov S. A., Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants’ Safety and of Chornobyl), 2015, 24, 51–61 (in Russian).
Vysotsky E. D., Godun R. L., Doroshenko A. O., Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants’ Safety and of Chornobyl), 2018, 30, 78–86, (in Russian). DOI: https://doi.org/10.31717/1813-3584.18.30.9
Krasnov V. A., Godun R. L., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2019, 32, 22–29 (in Ukrainian). DOI: https://doi.org/10.31717/1813-3584.19.32.3
Vysotskyi Y. D., Sushchenko K. O., Godun R. L., Nucl. Power Environ., 2020, 1, No. 16, 49–56,(in Russian). DOI: https://doi.org/10.31717/2311-8253.20.1.6
Odintsov O. O., Palamar L. A., Chikur L. B., Nucl. Power Environ., 2021, 3, No. 22, 58–65, (in Ukrainian).
Lagunenko O. S., Khan V. Y., Kalynovskyi O. K., Kashpur V. O., Kovalchuk V. P., Sabenin P. V., Svirid O. A., Tkach A. V., Yurchuk S. V., Nucl. Power Environ., 2020, 3, No. 18, 79–85, (in Ukrainian). DOI: https://doi.org/10.31717/2311-8253.20.3.9
Lagunenko O. S., KhanV.Y., Kalynovskyi O. K., BezmylovV. M., KashpurV. O.,KovalchukV. P., Sabenin P.V., Svirid O. A., Tkach A. V., Nucl. Power Environ., 2021, 2, No. 21, 99–95.
Khan V. Y., Lagunenko O. S., Krasnov V. O., Odintsov O. O., Kalynovskyi O. K., Bezmylov V. M., Kashpur V. O., Sabenin P. V., Svirid O. A., Tkach A. V., Kovalchuk V. P., Nucl. Power Environ., 2023, 1, No. 26, 35–46. DOI: https://doi.org/10.31717/2311-8253.23.1.4
Gabielkov S. V., Zhyganiuk I. V., Kudlai V. G., Parkhomchuk P. E., Chikolovets S. A., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2019, 32, 44–51, (in Ukrainian). DOI: https://doi.org/10.31717/1813-3584.19.32.6
Baryakhtar V., Gonchar V., Zhidkov A., Klyuchnikov A. A., Preprint of the ISTC “Shelter” of the Natl. Acad. Sci. of Ukraine, 97-10, 1997 (in Russian).
Baryakhtar V., Gonchar V., Zhidkov A., Zhydkov V., Condens. Matter Phys., 2002, 5, No. 3, 449–471. DOI: https://doi.org/10.5488/CMP.5.3.449
Anderson E. B., Bogatov S. A., Borovoi A. A., et al., Preprint of the ISTC “Shelter” of the Natl. Acad. Sci. of Ukraine, 93-17, 1993, 44.
Kiselev A. N., Surin A. I., Checherov K. P., Preprint of the Institute of Atomic Energy named after I. V. Kurchatov, IEA-5783/3, Moscov, 1994.
Baryakhtar V. G., Gonchar V. V., Zhidkov A. V., Klyuchnikov A. A., Preprint of the ISTC “Shelter” of the Natl. Acad. Sci. of Ukraine, 98-12, 1998, 18.
Kalynovskyi O. K., Krasnov V. O., Filippov O. V., Nucl. Power Environ., 2021, 3, No. 22, 78–84. DOI: https://doi.org/10.31717/2311-8253.21.3.9
Patsahan T., Taleb A., Stafiej J., Holovko M., Badiali J. P., Condens. Matter Phys., 2017, 20, 33003. DOI: https://doi.org/10.5488/CMP.20.33003
Gonchar V. V., Zhidkov A. V., Probl. Chornobyl, 2002, 9, 25–33 (in Russian).
Zhidkov A. V., Probl. Chornobyl, 2001, 7, 23–40. DOI: https://doi.org/10.1023/A:1017325803727
Zhidkov A. V., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2011, 16, 86–100, (in Ukrainian).
Zhydkov A. V., Electronic processes in radiation-exposed dielectrics and properties of nuclear fuel containing compositions, Dissertation for doctor of phys.-math. sciences degree, Lviv, 2007.
Krasnorutsky V. S., Yakovlev V. K., Danilov A. P., Evseev V. M., Matyushchenko R. V., Slabospitskaya E. A., Kushtym Y. A., Probl. At. Sci. Technol., 2010, 1, 60–67 (in Russian).
Pazukhin E. M., Radiochemistry, 1994, 36, No. 2, 97–142.
Bogatov S. A., Borovoy A. A., Lagunenko A. S., Pazukhin E. M., Strizhov V. F., Khvoshchinskii V. A., Radiochemistry, 2008, 50, No. 6, 650–654. DOI: https://doi.org/10.1134/S1066362208050131
Pazukhin E. M., Krasnov V. A., Probl. Chornobyl, 2004, 5, 93–102. DOI: https://doi.org/10.1023/B:RACH.0000024626.18850.22
Harutyunyan R. V., Bolshov L. A., Borovoi A. A., Velikhov E. P., Kliuchnikov A. A., Nuclear Fuel in the “Shelter” Object of the Chernobyl Nuclear Power Plant, Nauka, Moscow, 2010 (in Russian).
Novosel’skij O. J., Checherov K. P., Zhukov N. V., Specification of Quantity of the Nuclear Fuel Which is Taking Place Inside the 4-th Block of the Chornobyl Atomic Power Station, NIKIET, No. 27.110.001-4257, Moscow, 1992.
Kiselev A. N., At. Energy, 1995, 78, 252–255. DOI: https://doi.org/10.1007/BF02416427
Kiselev A. N., Checherov K. P., In: Proceedings of the Sixth Annual Scientific Technical Conference on the Nuclear Society “International Cooperation for Nuclear Development” (Kyiv, 3–7 July 2024), Kyiv, 2024, 306–314.
Checherov K. P., Kumshaev S. B., Tokarchuk M. V., Condens. Matter Phys., 2000, 3, No. 3, 597–606. DOI: https://doi.org/10.5488/CMP.3.3.597
Lewis H. W., Environ.: Sci. Policy Sustainable Dev., 1986, 28, No. 9, 25–27. DOI: https://doi.org/10.1080/00139157.1986.9928827
Mryglod I. M., Omelyan I. P., Yukhnovsky I. R., Ukr. J. Phys., 2005, 50, No. 8A, A52–A64.
Duviryak A. A., Yaremko Y. G., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2007, 8, 139–149 (in Ukrainian).
Pavlovskyi L. I., Gorodetskyi D. V., Menshenin Y. A., Odintsov O. O., Palamar L. A., Solonenko O. P., Nucl. Power Environ., 2022, 3, No. 25, 33–41, (in Ukrainian). DOI: https://doi.org/10.31717/2311-8253.22.3.4
Krukovskii P. G., Oliinyk V. S., Nucl. Power Environ., 2022, 3, No. 25, 42–50, (in Ukrainian). DOI: https://doi.org/10.31717/2311-8253.22.3.5
Patsagan T. M., Holovko M. F., Stafey Y., Badiali Z. P., Taleb A., Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants’ Safety and of Chornobyl), 2007, 8, 92–102 (in Ukrainian).
Verkholyak T. M., Ignatyuk V. V., Preprint of the Institute for Condensed Matter Physics, ICMP-05-16U, Lviv, 2005 (in Ukrainian).
Ignatyuk V., AIP Conf. Proc., 2009, 1198, No. 1, 64–71.
Levitskyi R. R., Voloshynovskyi A. S., Myagkota S. V., Vdovych A. S., Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants’ Safety and of Chornobyl), 2008, 9, 110–121 (in Ukrainian).
Available Porosity and Molecular Sieve Properties of Lava-Like Fuel-Containing Materials of the “Shelter” Object: (Report) / ISTC “Shelter” NAS of Ukraine, Arch. No. 3723, Chernobyl, 1998.
Patsahan T., Holovko M. F., Condens. Matter Phys., 2007, 10, 143–150. DOI: https://doi.org/10.5488/CMP.10.2.143
Davidov Y. P., States of Radionuclides in Solutions, Science and Technology, Minsk, 1978.
Tsushima S., Suzuki A., J. Mol. Struct.: THEOCHEM, 2000, 529, No. 1, 21–25. DOI: https://doi.org/10.1016/S0166-1280(00)00526-1
Stasyuk I. V., Velychko O. V., Phys. Chem. Liq., 2000, 38, No. 6, 743–757. DOI: https://doi.org/10.1080/00319100008030320
Tsushima S., Yang T., Suzuki A., Chem. Phys. Lett., 2001, 334, No. 4, 365–373. DOI: https://doi.org/10.1016/S0009-2614(00)01470-6
Mysakovych T. S., Probl. Chornobyl, 2002, 11, 111–116 (in Ukrainian).
Mysakovych T. S., Probl. Nucl. Power Plants’ Saf. Chornobyl, 2007, 8, 121–125 (in Ukrainian).
Druchok M., Bryk T., Holovko M., J. Mol. Liq., 2005, 120, No. 1, 11–14. DOI: https://doi.org/10.1016/j.molliq.2004.07.071
Druchok M. Y., Holovko M. F., Bryk T. M., Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants’ Safety and of Chornobyl), 2007, 8, 125–131 (in Ukrainian).
Sobolev I. A., Ozhovan M. I., Shcherbatov T. D., Batyukhnova O. G., Glasses for Radioactive Waste, Energoatomizdat, 1999.
Belustin A. A., Leaching, Composition and Structure of Surface Layers of Alkali Silicate Glasses Treated with Aqueous Solutions, and Diffusion of Cations in them. Glassy state, Nauka, Leningrad, 1983.
de Pablo J., Casas I., Giménez J., Molera M., Rovira M., Duro L., Bruno J., Geochim. Cosmochim. Acta, 1999, 63, No. 19, 3097–3103. DOI: https://doi.org/10.1016/S0016-7037(99)00237-9
Electrodispersive and Thermophysical Characteristics of LFCM of the “Shelter” Object and Possible Technologies for Controlled Destruction of Their Accumulations: (Report)/ISTC “Shelter” NAS of Ukraine, Arch. No. 3724, Chernobyl, 1998.
Gonchar V. V., Dvoeglazov A. M., Zhidkov A. V., et al., Chernobyl: ISTC “Shelter” NAS of Ukraine, 1996, 173–182.
Zhidkov A. V., Probl. Chornobyl, 2000, 6, 6–12.
Moina A. P., Preprint of the Institute for Condensed Matter Physics, ICMP-01-20U, Lviv, 2001 (in Ukrainian).
Stasyuk I. V., Mysakovich T. S., Stetsiv R. Y., Krasnov V. O., Problemy bezpeky atomnykh electrostantsiy i Chornobylya (Problems of Nuclear Power Plants’ Safety and of Chornobyl), 2007, 8, 132–138 (in Ukrainian).
Holovko M. F., Sovyak E. M., Preprint of the Institute for Condensed Matter Physics, ICMP-99-11U, Lviv, 1999 (in Ukrainian).
Holovko M. F., Sovyak E. M., J. Phys. Stud., 2000, 4, No. 4, 391–402. DOI: https://doi.org/10.30970/jps.04.391
Prokhorov V. M., Migration of Radioactive Contamination in Soils, Energoizdat, Moscow, 1981.
Ivanov I. A., Sedov V. M., Gulin A. N., Shatkov V. M., Shashukov E. A., J. Radioanal. Nucl. Chem., 1991, 147, 191–195. DOI: https://doi.org/10.1007/BF02039580
Ivanov I. A., Shatkov V. M., Gulin A. N., Florovsky N. G., Radiochemistry, 1986, 28, No. 3, 398–402.
Bellanger G., Rameau J. J., J. Nucl. Mater., 1997, 240, No. 2, 83–99. DOI: https://doi.org/10.1016/S0022-3115(96)00673-3
Kurylyak I. J., Hlushak P. A., Solodyak M. T., Tokarchuk M. V., Preprint of the Institute for Condensed Matter Physics, ICMP-02-29U, 2002 (in Ukrainian).
Obtaining Current New Data About the Characteristics of FCM Experimentally. Book 2, Tech. Rep., (SIP FCMP 02 1 AMI 02 01), Consortium ISTC “Shelter”, RNC “Kurchatov Institute”, Chernobyl, 2004.
Development of a Methodology and Assessment of the Contribution of (α,n) Reactions to the Intensity Generated in LFSM in the Room 304/4 of the “Shelter” Object. Technical information, NCP “Kamerton”, Minsk, 1995.
Assessment of the Contribution (α,n) of Reactions to the Intensity Generated in LFSM in Room 305/2 of the “Shelter” Object. Technical information, NCP “Kamerton”, Minsk, 1995.
Sahimi M., Phys. Rep., 1998, 306, No. 4–6, 213–395. DOI: https://doi.org/10.1016/S0370-1573(98)00024-6
Koro˘sak D., Cvikl B., Kramer J., Jecl R., Prapotnik A., J. Contam. Hydrol., 2007, 92, No. 1—2, 1–9. DOI: https://doi.org/10.1016/j.jconhyd.2006.11.005
Hobbie R. K., Roth B. J., Intermediate Physics for Medicine and Biology, 4 Edn., Springer-Verlag, New York, 2007.
Compte A., Metzler R., J. Phys. A: Math. Gen., 1997, 30, No. 21, 7277–7289. DOI: https://doi.org/10.1088/0305-4470/30/21/006
Metzler R., Klafter J., Phys. Rep., 2000, 339, No. 1, 1–77. DOI: https://doi.org/10.1016/S0370-1573(00)00070-3
Hilfer R., Chaos, Solitons Fractals, 1995, 5, No. 8, 1475–1484. DOI: https://doi.org/10.1016/0960-0779(95)00027-2
Hilfer R., J. Phys. Chem. B, 2000, 104, No. 16, 3914–3917. DOI: https://doi.org/10.1021/jp9936289
Hilfer R., In: Applications of Fractional Calculus in Physics, Hilfer R. (Ed.), World Scientific, 2000, 87–130. DOI: https://doi.org/10.1142/9789812817747_0002
Kosztołowicz T., Dworecki K., Mrówczyński S., Phys. Rev. E, 2005, 71, No. 4, 041105. DOI: https://doi.org/10.1103/PhysRevE.71.041105
Kosztołowicz T., J. Stat. Mech.: Theory Exp., 2015, 2015, No. 10, P10021. DOI: https://doi.org/10.1088/1742-5468/2015/10/P10021
Bisquert J., Garcia-Belmonte G., Fabregat-Santiago F., Ferriols N. S., Bogdanoff P., Pereira E. C., J. Phys. Chem. B, 2000, 104, No. 10, 2287–2298. DOI: https://doi.org/10.1021/jp993148h
Bisquert J., Compte A., J. Electroanal. Chem., 2001, 499, No. 1, 112–120. DOI: https://doi.org/10.1016/S0022-0728(00)00497-6
Kosztołowicz T., Lewandowska K. D., J. Phys. A: Math. Theor., 2009, 42, No. 5, 055004. DOI: https://doi.org/10.1088/1751-8113/42/5/055004
Tarasov V. E., Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Nonlinear Physical Science, Springer, Berlin, Heidelberg, 2010. DOI: https://doi.org/10.1007/978-3-642-14003-7
Pyanylo Y. D., Prytula M. G., Prytula N. M., Lopuh N. B., Math. Model. Comput., 2014, 1, No. 1, 84–96. DOI: https://doi.org/10.23939/mmc2014.01.084
Kostrobij P., Markovych B., Viznovych O., Tokarchuk M., Math. Model. Comput., 2016, 3, No. 2, 163–172. DOI: https://doi.org/10.23939/mmc2016.02.163
Kostrobij P. P., Markovych B. M., Viznovych O. V., Tokarchuk M. V., Physica A, 2019, 514, 63–70. DOI: https://doi.org/10.1016/j.physa.2018.09.051
Kostrobij P. P., Grygorchak I. I., Ivaschyshyn F. O., Markovych B. M., Viznovych O. V., Tokarchuk M. V., Math. Model. Comput., 2015, 2, No. 2, 154–159. DOI: https://doi.org/10.23939/mmc2015.02.154
Grygorchak I. I., Ivashchyshyn F. O., Tokarchuk M. V., Pokladok N. T., Viznovych O. V., J. Appl. Phys., 2017, 121, No. 18, 185501. DOI: https://doi.org/10.1063/1.4983097
Kostrobij P., Grygorchak I., Ivashchyshyn F., Markovych B., Viznovych O., Tokarchuk M., J. Phys. Chem. A, 2018, 122, No. 16, 4099–4110. DOI: https://doi.org/10.1021/acs.jpca.8b00188
Mainardi F., In: Fractals and Fractional Calculus in Continuum Mechanics, Vol. 378, Carpinteri A., Mainardi F. (Eds.), Springer, Vienna, 1997, 291–348. DOI: https://doi.org/10.1007/978-3-7091-2664-6_7
Caputo M., Mainardi F., Pure Appl. Geophys., 1971, 91, No. 1, 134–147. DOI: https://doi.org/10.1007/BF00879562
Oldham K. B., Spanier J., The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order, Dover Publications, 2006.
Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives: Theory and Applications, 1 Edn., Gordon and Breach Science Publishers, 1993.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 M. Tokarchuk, B. Markovych, O. Zakharyash, O. Ivankiv, S. Mokhniak

This work is licensed under a Creative Commons Attribution 4.0 International License.