Cahn-Hilliard model with Schlögl Reactions: interplay of equilibrium and non-equilibrium phase transitions. II. Memory effects

Authors

  • P. Mchedlov-Petrosyan A. I. Akhiezer Institute for Theoretical Physics, National Science Center “Kharkiv Institite of Physics & Technology”, 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine https://orcid.org/0000-0002-2362-9077
  • L. Davydov A. I. Akhiezer Institute for Theoretical Physics, National Science Center “Kharkiv Institite of Physics & Technology”, 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine https://orcid.org/0000-0002-0031-2536

DOI:

https://doi.org/10.5488/cmp.28.13601

Keywords:

phase transition, nonequilibrium phase transition, Cahn–Hilliard equation, Schlögl reactions, memory effect, travelling wave

Abstract

The present work is a continuation of our previous paper [Condens. Matter Phys., 2020, 23, 33602: 1–17]. It is devoted to the modelling of the interplay of equilibrium and non-equilibrium phase transitions. The modelling of equilibrium phase transition is based on the modified Cahn–Hilliard equation. The non-equilibrium phase transition is modeled by the Second Schlögl reaction system. We consider the advancing front, which combines these both transitions. Different from the first article, we consider here the memory effects, i.e., the effects of non-Fickian diffusion. The traveling wave solution is obtained, and its dependence on the model parameters is studied in detail. The relative importance of memory effects for different process regimes is estimated.

References

Mchedlov-Petrosyan P. O., Davydov L. N., Condens. Matter Phys., 2020, 23, No. 3, 33602. DOI: https://doi.org/10.5488/CMP.23.33602

Witelski T. P., Stud. Appl. Math., 1996, 97, 277-300. DOI: https://doi.org/10.1002/sapm1996973277

Mchedlov-Petrosyan P. O., Eur. J. Appl. Math., 2016, 27, 42–65. DOI: https://doi.org/10.1017/S0956792515000285

Schlögl F., Z. Phys., 1972, 253, 147–161. DOI: https://doi.org/10.1007/BF01379769

Cahn J. W., Hilliard J. E., J. Chem. Phys., 1958, 28, 258–267. DOI: https://doi.org/10.1063/1.1744102

Cahn J. W., Acta Metall., 1961, 9, 795–801. DOI: https://doi.org/10.1016/0001-6160(61)90182-1

Novick-Cohen A., In: Handbook of Differential Equations: Evolutionary Equations, Vol. 4, Dafermos C. M., Feireisl E. (Eds.), North-Holland, 2008, 201–228. DOI: https://doi.org/10.1016/S1874-5717(08)00004-2

Miranville A., AIMS Math., 2017, 2, No. 3, 479–544. DOI: https://doi.org/10.3934/Math.2017.2.479

De Groot S. R., Mazur P., Non-Equilibrium Thermodynamics, Dover, New York, 1984.

Leung K., J. Stat. Phys., 1990, 61, 345–364. DOI: https://doi.org/10.1007/BF01013969

Witelski T. P., Appl. Math. Lett., 1995, 8, 27–32. DOI: https://doi.org/10.1016/0893-9659(95)00062-U

Emmott C. L., Bray A. J., Phys. Rev. E, 1996, 54, No. 5, 4568–4575. DOI: https://doi.org/10.1103/PhysRevE.54.4568

Novick-Cohen A., In: Material Instabilities in Continuum Mechanics and Related Mathematical Problems, Ball J. M. (Ed.), Oxford University Press, Oxford, 1988, 329–342.

Huberman B. A., J. Chem. Phys., 1976, 65, No. 5, 2013–2019. DOI: https://doi.org/10.1063/1.433272

Cohen D. S., Murray J. D., J. Math. Biol., 1981, 12, 237–249. DOI: https://doi.org/10.1007/BF00276132

Puri S., Frisch H. L., J. Phys. A: Math. Gen., 1994, 27, 6027–6038. DOI: https://doi.org/10.1088/0305-4470/27/18/013

Verdasca J., Borckmans P., Dewel G., Phys. Rev. E, 1995, 52, R4616–R4619. DOI: https://doi.org/10.1103/PhysRevE.52.R4616

Khain E., Sander L. M., Phys. Rev. E, 2008, 77, 051129. DOI: https://doi.org/10.1103/PhysRevE.77.051129

Miranville A., Appl. Anal., 2013, 92, No. 6, 1308–1321. DOI: https://doi.org/10.1080/00036811.2012.671301

Cherfils L., Miranville A., Zelik S., Discrete Contin. Dyn. Syst. - Ser. B, 2014, 19, 2013–2026. DOI: https://doi.org/10.3934/dcdsb.2014.19.2013

Miranville A., J. Differ. Equations, 2021, 294, 88–117. DOI: https://doi.org/10.1016/j.jde.2021.05.045

Fort J., Méndez V., Rep. Prog. Phys., 2002, 65, 895–954. DOI: https://doi.org/10.1088/0034-4885/65/6/201

Galenko P., Phys. Lett. A, 2001, 287, 190–197. DOI: https://doi.org/10.1016/S0375-9601(01)00489-3

Debussche A., Asymptot. Anal., 1991, 4, No. 2, 161–185. DOI: https://doi.org/10.3233/ASY-1991-4202

Galenko P., Jou D., Phys. Rev. E, 2005, 71, 046125. DOI: https://doi.org/10.1103/PhysRevE.71.046125

Galenko P., Lebedev V., Phys. Lett. A, 2008, 372, No. 7, 985–989. DOI: https://doi.org/10.1016/j.physleta.2007.08.070

Gatti S., Grasselli M., Miranville A., Pata V., J. Math. Anal. Appl., 2005, 312, No. 1, 230–247. DOI: https://doi.org/10.1016/j.jmaa.2005.03.029

Gatti S., Grasselli M., Pata V., Miranville A., Math. Models Methods Appl. Sci., 2005, 15, No. 2, 165–198. DOI: https://doi.org/10.1142/S0218202505000327

Folino R., Lattanzio C., Mascia C., Math. Methods Appl. Sci., 2019, 42, No. 8, 2492–2512. DOI: https://doi.org/10.1002/mma.5525

Gilding B. H., Kersner R. (Eds.), Progress in Nonlinear Differential Equations and Their Applications, Vol. 60, Springer Basel AG, 2004.

Gilding B. H., Kersner R., J. Differ. Equations, 2013, 254, 599–636. DOI: https://doi.org/10.1016/j.jde.2012.09.007

Published

2025-03-28

Issue

Section

Articles

Categories

How to Cite

[1]
P. Mchedlov-Petrosyan and L. Davydov, “Cahn-Hilliard model with Schlögl Reactions: interplay of equilibrium and non-equilibrium phase transitions. II. Memory effects”, Condens. Matter Phys., vol. 28, no. 1, p. 13601, Mar. 2025, doi: 10.5488/cmp.28.13601.

Similar Articles

1-10 of 50

You may also start an advanced similarity search for this article.