Cahn-Hilliard model with Schlögl Reactions: interplay of equilibrium and non-equilibrium phase transitions. II. Memory effects
DOI:
https://doi.org/10.5488/cmp.28.13601Keywords:
phase transition, nonequilibrium phase transition, Cahn–Hilliard equation, Schlögl reactions, memory effect, travelling waveAbstract
The present work is a continuation of our previous paper [Condens. Matter Phys., 2020, 23, 33602: 1–17]. It is devoted to the modelling of the interplay of equilibrium and non-equilibrium phase transitions. The modelling of equilibrium phase transition is based on the modified Cahn–Hilliard equation. The non-equilibrium phase transition is modeled by the Second Schlögl reaction system. We consider the advancing front, which combines these both transitions. Different from the first article, we consider here the memory effects, i.e., the effects of non-Fickian diffusion. The traveling wave solution is obtained, and its dependence on the model parameters is studied in detail. The relative importance of memory effects for different process regimes is estimated.
References
Mchedlov-Petrosyan P. O., Davydov L. N., Condens. Matter Phys., 2020, 23, No. 3, 33602. DOI: https://doi.org/10.5488/CMP.23.33602
Witelski T. P., Stud. Appl. Math., 1996, 97, 277-300. DOI: https://doi.org/10.1002/sapm1996973277
Mchedlov-Petrosyan P. O., Eur. J. Appl. Math., 2016, 27, 42–65. DOI: https://doi.org/10.1017/S0956792515000285
Schlögl F., Z. Phys., 1972, 253, 147–161. DOI: https://doi.org/10.1007/BF01379769
Cahn J. W., Hilliard J. E., J. Chem. Phys., 1958, 28, 258–267. DOI: https://doi.org/10.1063/1.1744102
Cahn J. W., Acta Metall., 1961, 9, 795–801. DOI: https://doi.org/10.1016/0001-6160(61)90182-1
Novick-Cohen A., In: Handbook of Differential Equations: Evolutionary Equations, Vol. 4, Dafermos C. M., Feireisl E. (Eds.), North-Holland, 2008, 201–228. DOI: https://doi.org/10.1016/S1874-5717(08)00004-2
Miranville A., AIMS Math., 2017, 2, No. 3, 479–544. DOI: https://doi.org/10.3934/Math.2017.2.479
De Groot S. R., Mazur P., Non-Equilibrium Thermodynamics, Dover, New York, 1984.
Leung K., J. Stat. Phys., 1990, 61, 345–364. DOI: https://doi.org/10.1007/BF01013969
Witelski T. P., Appl. Math. Lett., 1995, 8, 27–32. DOI: https://doi.org/10.1016/0893-9659(95)00062-U
Emmott C. L., Bray A. J., Phys. Rev. E, 1996, 54, No. 5, 4568–4575. DOI: https://doi.org/10.1103/PhysRevE.54.4568
Novick-Cohen A., In: Material Instabilities in Continuum Mechanics and Related Mathematical Problems, Ball J. M. (Ed.), Oxford University Press, Oxford, 1988, 329–342.
Huberman B. A., J. Chem. Phys., 1976, 65, No. 5, 2013–2019. DOI: https://doi.org/10.1063/1.433272
Cohen D. S., Murray J. D., J. Math. Biol., 1981, 12, 237–249. DOI: https://doi.org/10.1007/BF00276132
Puri S., Frisch H. L., J. Phys. A: Math. Gen., 1994, 27, 6027–6038. DOI: https://doi.org/10.1088/0305-4470/27/18/013
Verdasca J., Borckmans P., Dewel G., Phys. Rev. E, 1995, 52, R4616–R4619. DOI: https://doi.org/10.1103/PhysRevE.52.R4616
Khain E., Sander L. M., Phys. Rev. E, 2008, 77, 051129. DOI: https://doi.org/10.1103/PhysRevE.77.051129
Miranville A., Appl. Anal., 2013, 92, No. 6, 1308–1321. DOI: https://doi.org/10.1080/00036811.2012.671301
Cherfils L., Miranville A., Zelik S., Discrete Contin. Dyn. Syst. - Ser. B, 2014, 19, 2013–2026. DOI: https://doi.org/10.3934/dcdsb.2014.19.2013
Miranville A., J. Differ. Equations, 2021, 294, 88–117. DOI: https://doi.org/10.1016/j.jde.2021.05.045
Fort J., Méndez V., Rep. Prog. Phys., 2002, 65, 895–954. DOI: https://doi.org/10.1088/0034-4885/65/6/201
Galenko P., Phys. Lett. A, 2001, 287, 190–197. DOI: https://doi.org/10.1016/S0375-9601(01)00489-3
Debussche A., Asymptot. Anal., 1991, 4, No. 2, 161–185. DOI: https://doi.org/10.3233/ASY-1991-4202
Galenko P., Jou D., Phys. Rev. E, 2005, 71, 046125. DOI: https://doi.org/10.1103/PhysRevE.71.046125
Galenko P., Lebedev V., Phys. Lett. A, 2008, 372, No. 7, 985–989. DOI: https://doi.org/10.1016/j.physleta.2007.08.070
Gatti S., Grasselli M., Miranville A., Pata V., J. Math. Anal. Appl., 2005, 312, No. 1, 230–247. DOI: https://doi.org/10.1016/j.jmaa.2005.03.029
Gatti S., Grasselli M., Pata V., Miranville A., Math. Models Methods Appl. Sci., 2005, 15, No. 2, 165–198. DOI: https://doi.org/10.1142/S0218202505000327
Folino R., Lattanzio C., Mascia C., Math. Methods Appl. Sci., 2019, 42, No. 8, 2492–2512. DOI: https://doi.org/10.1002/mma.5525
Gilding B. H., Kersner R. (Eds.), Progress in Nonlinear Differential Equations and Their Applications, Vol. 60, Springer Basel AG, 2004.
Gilding B. H., Kersner R., J. Differ. Equations, 2013, 254, 599–636. DOI: https://doi.org/10.1016/j.jde.2012.09.007
Downloads
Published
License
Copyright (c) 2025 P. Mchedlov-Petrosyan, L. Davydov

This work is licensed under a Creative Commons Attribution 4.0 International License.