Effects of charge and size on the coadsorption of counterionic colloids in Gibbs monolayers

Authors

  • J. M. Gómez-Verdú Center for Nanoscience and Sustainable Technologies (CNATS), and Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Sevilla, Spain https://orcid.org/0009-0004-3938-8126
  • B. Martínez-Haya Center for Nanoscience and Sustainable Technologies (CNATS), and Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Sevilla, Spain https://orcid.org/0000-0003-2682-3286
  • A. Cuetos Center for Nanoscience and Sustainable Technologies (CNATS), and Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, Sevilla, Spain https://orcid.org/0000-0003-2170-0535

DOI:

https://doi.org/10.5488/cmp.27.13601

Keywords:

Gibbs monolayers, Monte Carlo, equations of state, aggregation

Abstract

This study uses a coarse-grained Monte Carlo algorithm to model and simulate the coadsorption of a binary mixture of counterionic colloids in Gibbs monolayers. These monolayers form at a idealized air-water interface, with one non-soluble species confined at the interface and the second one partially soluble in the aqueous phase. The investigation focuses on the effect of colloidal size and charge on the thermodynamics and microstructure of the monolayer. We find that the composition of the monolayer evolves non-trivially with surface coverage, depending on the balance of steric and electrostatic forces. When the electrostatic interactions are weak, the soluble species is expelled from the monolayer upon compression, yielding a phase behaviour particularly sensitive to the relative size of the soluble and non-soluble colloids. By contrast, strong electrostatic interactions favour the stabilization of the soluble particles in the monolayer and the formation of quasi-equimolar fluids, with only a weak dependence on particle size. The combination of these phenomena results in the formation of a number of two-dimensional mesoscopic arrangements in the monolayer, ranging from diluted gas-phase behaviour to domains of aggregates and percolates, and to incipient crystalline structures.

References

Ilnytskyi J., Wilson M. R., Comput. Phys. Commun., 2001, 134, No. 1, 23–32, https://doi.org/10.1016/S0010-4655(00)00187-9. DOI: https://doi.org/10.1016/S0010-4655(00)00187-9

Hughes Z. E., Stimson L. M., Slim H., Lintuvuori J. S., Ilnytskyi J. M.,Wilson M. R., Comput. Phys. Commun., 2008, 178, No. 10, 724–731, https://doi.org/10.1016/j.cpc.2008.01.047. DOI: https://doi.org/10.1016/j.cpc.2008.01.047

Myers D., Surfaces, Interfaces, and Colloids, John Wiley & Sons, Ltd, 1999, https://doi.org/10.1002/0471234990.fmatter_indsub. DOI: https://doi.org/10.1002/0471234990.fmatter_indsub

Binks B. P., Langmuir, 2017, 33, No. 28, 6947–6963, https://doi.org/10.1021/acs.langmuir.7b00860. DOI: https://doi.org/10.1021/acs.langmuir.7b00860

Tanford C., Ben Franklin Stilled the Waves : An Informal History of Pouring Oil on Water With Reflections on the Ups and Downs of Scientific Life in General, Duke University Press, Durham, NC, 1989.

Rayleigh, Nature, 1891, 43, No. 1115, 437–439, https://doi.org/10.1038/043437c0. DOI: https://doi.org/10.1038/043437c0

Poskels A., Nature, 1892, 46, 418–419, https://doi.org/10.1038/046418e0. DOI: https://doi.org/10.1038/046418e0

Langmuir I., Trans. Faraday Soc., 1920, 15, 62–74, https://doi.org/10.1039/TF9201500062. DOI: https://doi.org/10.1039/tf9201500062

Melzer V., Vollhardt D., Brezesinski G., Möhwald H., J. Phys. Chem. B, 1998, 102, No. 3, 591–597, https://doi.org/10.1021/jp972860g. DOI: https://doi.org/10.1021/jp972860g

Ariga K., Yamauchi Y., Mori T., Hill J. P., Adv. Mater., 2013, 25, No. 45, 6477–6512, https://doi.org/10.1002/adma.201302283. DOI: https://doi.org/10.1002/adma.201302283

Chen Q., Kang X., Li R., Du X., Shang Y., Liu H., Hu Y., Langmuir, 2012, 28, No. 7, 3429–3438, https://doi.org/10.1021/la204089u. DOI: https://doi.org/10.1021/la204089u

Du X., Wang Y., Ding Y., Guo R., Langmuir, 2007, 23, No. 15, 8142–8149, https://doi.org/10.1021/la700955f. DOI: https://doi.org/10.1021/la700955f

Giner Casares J. J., Camacho L., Martín-Romero M. T., López Cascales J. J., ChemPhysChem, 2010, 11, No. 10, 2241–2247, https://doi.org/10.1002/cphc.201000048. DOI: https://doi.org/10.1002/cphc.201000048

Wang D., de Jong D. H., Rühling A., Lesch V., Shimizu K.,Wulff S., Heuer A., Glorius F., Galla H.-J., Langmuir, 2016, 32, No. 48, 12579–12592, https://doi.org/10.1021/acs.langmuir.6b02496. DOI: https://doi.org/10.1021/acs.langmuir.6b02496

Bai Y., Wen W., Gao Y., Cui W., Sun Y., Yan P., J. Mol. Liq., 2022, 368, 120804, https://doi.org/10.1016/j.molliq.2022.120804. DOI: https://doi.org/10.1016/j.molliq.2022.120804

Düchs D., Schmid F., J. Phys.: Condens. Matter, 2001, 13, No. 21, 4853, https://doi.org/10.1088/0953-8984/13/21/313. DOI: https://doi.org/10.1088/0953-8984/13/21/313

González-Castro C. A., Ramírez-Santiago G., Phys. Rev. E, 2015, 91, 032409, https://doi.org/10.1103/PhysRevE.91.032409. DOI: https://doi.org/10.1103/PhysRevE.91.032409

Cuetos A., Morillo N., Martínez-Haya B., Langmuir, 2020, 36, No. 11, 2877–2885, https://doi.org/10.1021/acs.langmuir.9b03886. DOI: https://doi.org/10.1021/acs.langmuir.9b03886

Hurd A. J., J. Phys. A: Math. Gen., 1985, 18, No. 16, L1055, https://doi.org/10.1088/0305-4470/18/16/011. DOI: https://doi.org/10.1088/0305-4470/18/16/011

Bleibel J., Domínguez A., Oettel M., Eur. Phys. J. Spec. Top., 2013, 222, 3071–3087, https://doi.org/10.1140/epjst/e2013-02076-9. DOI: https://doi.org/10.1140/epjst/e2013-02076-9

Frenkel D., Smit B.,Understanding Molecular Simulation,Academic Press, San Diego, 2002, https://doi.org/10.1016/B978-012267351-1/50008-0. DOI: https://doi.org/10.1016/B978-012267351-1/50008-0

Majee A., Schmetzer T., Bier M., Phys. Rev. E, 2018, 97, 042611, https://doi.org/10.1103/PhysRevE.97.042611. DOI: https://doi.org/10.1103/PhysRevE.97.042611

Chen W., Tan S., Zhou Y., Ng T.-K., Ford W. T., Tong P., Phys. Rev. E, 2009, 79, 041403, https://doi.org/10.1103/PhysRevE.79.041403. DOI: https://doi.org/10.1103/PhysRevE.79.041403

Lian Z., J. Chem. Phys., 2016, 145, No. 1, https://doi.org/10.1063/1.4954913. DOI: https://doi.org/10.1063/1.4954913

Suzuki D., Horigome K., J. Phys. Chem. B, 2013, 117, No. 30, 9073–9082, https://doi.org/10.1021/jp4035166. DOI: https://doi.org/10.1021/jp4035166

Nallamilli T., Ragothaman S., Basavaraj M. G., J. Colloid Interface Sci., 2017, 486, 325–336, https://doi.org/10.1016/j.jcis.2016.10.009. DOI: https://doi.org/10.1016/j.jcis.2016.10.009

Published

2024-03-28

How to Cite

[1]
J. M. Gómez-Verdú, B. Martínez-Haya, and A. Cuetos, “Effects of charge and size on the coadsorption of counterionic colloids in Gibbs monolayers”, Condens. Matter Phys., vol. 27, no. 1, p. 13601, Mar. 2024, doi: 10.5488/cmp.27.13601.

Similar Articles

You may also start an advanced similarity search for this article.