Hexagonal core-shell structure nanowire with high spins of spin-3/2 and spin-5/2
DOI:
https://doi.org/10.5488/cmp.27.23704Keywords:
mean field theory, Blume-Capel model, hysteresis loops, compensation temperature, magnetization, mixed-spin systemAbstract
The magnetic properties and hysteresis loops for the hexagonal Ising nanowire (HIN) with a core-shell structure consisting of mixed spins with the core spin being spin-5/2 and the shell spins being spin-3/2 are studied. The Blume-Capel model is considered by using the mean-field approximation (MFA) based on the Gibbs-Bogoliubov inequality for free energy. The impact of different bilinear interaction parameters (Jcc, Jss, Jcs) between the core, shell, and core and shell spins, respectively, including the crystal (Dc, Ds) and external magnetic fields (h = hc = hs) at the core and shell sites, are taken into consideration. In order to obtain phase diagrams on various planes, the thermal changes of the net, core, and shell magnetizations are investigated for various values of our system parameters. It is discovered that the model exhibits only second-order phase transitions when h = 0.0 for D greater or equal to zero, first- and second-order phase transitions for h ≠ 0.0 and compensation temperatures for all h.
References
Zhang Q., Wei G., Gu Y., Phys. Status Solidi B, 2005, 242, 924. DOI: https://doi.org/10.1002/pssb.200402123
Albayrak E., Yigit A., Phys. Lett. A, 2006, 353, 121. DOI: https://doi.org/10.3917/cis.121.0353
Yessoufou R. A., Amoussa S. H., Hontinfinde F., Cent. Eur. J. Phys., 2009, 7, 555. DOI: https://doi.org/10.2478/s11534-009-0016-x
Wei G., Hai-Ling M., Commun. Theor. Phys., 2009, 51, 756. DOI: https://doi.org/10.1088/0253-6102/51/3/16
Deviren B., Keskin M., J. Stat. Phys., 2010, 140, 934. DOI: https://doi.org/10.1007/s10955-010-0025-6
Ma B., Jiang W., IEEE Trans. Magn., 2011, 47, 3118. DOI: https://doi.org/10.1109/TMAG.2011.2149506
Mohamad H. K., J. Magn. Magn. Mater., 2011, 323, 61.
De La Espriella Velez N., Ortega Lopez C., Torres Hoyos F., Rev. Mex. Fis., 2013, 59, 95.
Reyes J. A., De La Espriella N., Buendìa G. M., Phys. Status Solidi B, 2015, 252, 2268. DOI: https://doi.org/10.1002/pssb.201552110
Alzate-Cardona J. D., Sabogal-Suárez D., Restrepo-Parra E., J. Magn. Magn. Mater., 2017, 429, 34. DOI: https://doi.org/10.1016/j.jmmm.2017.01.004
De La Espriella N., Madera J. C., Buendìa G. M., J. Magn. Magn. Mater., 2017, 442, 350 DOI: https://doi.org/10.1016/j.jmmm.2017.07.015
Keskin M., Ertaş M., Physica A, 2018, 496, 79. DOI: https://doi.org/10.1016/j.physa.2017.12.034
Ivanov Y. P., Alfadhel A., Alnassar M., Perez J. E., Vazquez M., Chuvilin A., Kosel J., Sci. Rep., 2016, 6, 24189. DOI: https://doi.org/10.1038/srep24189
Benhouria Y., Essaoudi I., Ainane A., Ahuja R., Dujardin F., Ferroelectrics, 2017, 507, 58. DOI: https://doi.org/10.1080/00150193.2017.1283170
Alzate-Cardona J. D., Barrero-Moreno M. C., Restrepo-Parra E., J. Phys.: Condens. Matter, 2017, 29, 445801. DOI: https://doi.org/10.1088/1361-648X/aa8a06
Aharrouch R., El Kihel K., Madani M., Hachem N., Lafhal A., El Bouziani M., Multidiscip. Model. Mater. Struct., 2020, 16, 1261. DOI: https://doi.org/10.1108/MMMS-11-2019-0194
Gao Z. Y., Wang W., Sun L., Yang L. M., Ma B. Y., Li P. S., J. Magn. Magn. Mater., 2022, 548, 168967. DOI: https://doi.org/10.1016/j.jmmm.2021.168967
Nmaila B., Kadiri A., Arbaoui A., Drissi L. B., Ahl Laamara R., Htoutou K., Chin. J. Phys., 2022, 79, 362–373. DOI: https://doi.org/10.1016/j.cjph.2022.07.019
Nmaila B., Htoutou K., Ahllaamara R., Drissi L. B., Indian J. Phys., 2023, 97, 429. DOI: https://doi.org/10.1007/s12648-022-02393-1
Karimou M., Oke T. D., Hontinfinde S. I. V., Kple J., Hontinfinde F., Physica B, 2023, 666, 415107. DOI: https://doi.org/10.1016/j.physb.2023.415107
Mendes R. G. B., Santos J. P., Sá Barreto F. C., Braz. J. Phys., 2021, 51, 1929. DOI: https://doi.org/10.1007/s13538-021-00982-9
Mendes R. G. B., Sá Barreto F. C., Santos J. P., Physica A, 2018, 505, 1186. DOI: https://doi.org/10.1016/j.physa.2018.03.094
Mendes R. G. B., Sá Barreto F. C., Santos J. P., Braz. J. Phys., 2018, 48, 137. DOI: https://doi.org/10.1007/s13538-018-0560-1
Bogoliubov N. N., J. Phys. (USSR), 1947, 11, 23.
Downloads
Published
License
Copyright (c) 2024 M. Karimou, R. A. Yessoufou, E. Albayrak
This work is licensed under a Creative Commons Attribution 4.0 International License.