Phase stability and structural properties of the KxCa1-xN novel ferromagnetic alloy from first-principles
DOI:
https://doi.org/10.5488/cmp.28.33603Keywords:
alkaline earth metals, first-principles calculations, phase diagramsAbstract
We study the structural properties and phase stability of the KxCa1−xN alloy using the regular-solution model based on the total energy of the mixing. The pseudopotential approach was used along with PBE functional of Perdew, Burke, and Ernzerhof (PBE). We investigated the bond-lengths distribution as a function of composition x. We also predicted the phase separation of the two partially miscible components and calculated the enthalpy ∆H using the interaction parameter Ω. We observe an asymmetry about x = 0.46 in the phase diagram due to the x-dependant interaction parameter Ω = 12.69 − 1.32x kcal/mole. The equilibrium solubility limit, known as the miscibility gap is found to be around 3033 K.
References
Liu H. X., Stephen Y. W., Singh R. K., Lin G., David J. S., Newman N., Dilley N. R., Montes L., Simmonds M. B., Appl. Phys. Lett., 2004, 85, 4076. DOI: https://doi.org/10.1063/1.1812581
Gray A. X., Minár J., Ueda S., Stone P. R., Yamashita Y., Fujii J., Braun J., Plucinski L., Schneider C. M., Panaccione G., Ebert H., Dubon O. D., Kobayashi K., Fadley C. S., Nat. Mater., 2012, 11, 957. DOI: https://doi.org/10.1038/nmat3450
Sanvito S., Ordejón P., Hill N. A., Phys. Rev. B, 2001, 63, 165206. DOI: https://doi.org/10.1103/PhysRevB.63.165206
Katsnelson M. I., Irkhin V. Y., Chioncel L., Lichtenstein A. I., de Groot R. A., Rev. Mod. Phys., 2008, 80, 315. DOI: https://doi.org/10.1103/RevModPhys.80.315
de Groot R. A., Mueller F. M., van Engen P. G., Buschow K. H. J., Phys. Rev. Lett., 1983, 50, 2024–2027. DOI: https://doi.org/10.1103/PhysRevLett.50.2024
Sieberer M., Redinger J., Khmelevskyi S., Mohn P., Phys. Rev. B, 2006, 73, 024404. DOI: https://doi.org/10.1103/PhysRevB.73.024404
Yao K. L., Jiang J. L., Liu Z. L., Gao G. Y., Phys. Lett. A, 2006, 359, 326–329. DOI: https://doi.org/10.1016/j.physleta.2006.06.052
Volninanska O., Jakubas P., Boguslawski P., J. Alloys Compd., 2006, 423, 191–193. DOI: https://doi.org/10.1016/j.jallcom.2006.01.092
Gao G. Y., Yao K. L., Şaşioğlu E., Sandratskii L. M., Liu Z. L., Jiang J. L., Phys. Rev. B, 2007, 75, 174442.
Gao G. Y., Yao K. L., Appl. Phys. Lett., 2007, 91, 082512. DOI: https://doi.org/10.1063/1.2800308
Gao G. Y., Yao K. L., Liu Z. L., Jiang J. L., Yu L. H., Shi Y. L., J. Phys.: Condens. Matter, 2007, 19, No. 31, 315222. DOI: https://doi.org/10.1088/0953-8984/19/31/315222
Dong S., Zhao H., Appl. Phys. Lett., 2011, 98, 182501.
Zhang C. W., Yan S. S., Phys. Status Solidi B, 2008, 245, 201. DOI: https://doi.org/10.1002/pssb.200743333
Zhang C. W., J. Phys. D: Appl. Phys., 2008, 41, 085006. DOI: https://doi.org/10.1088/0022-3727/41/8/085006
Geshi M., Kusakabe K., Nagara H., Suzuki N., Phys. Rev. B, 2007, 76, 054433. DOI: https://doi.org/10.1103/PhysRevB.76.054433
Lakdja A., Rozale H., Chahed A., Comput. Mater. Sci., 2013, 67, 287–291. DOI: https://doi.org/10.1016/j.commatsci.2012.09.015
Lakdja A., Comput. Mater. Sci., 2014, 89, 1–5. DOI: https://doi.org/10.1016/j.commatsci.2014.03.027
Lakdja A., Benzaidi I., Mater. Sci.-Pol., 2017, 35, 463. DOI: https://doi.org/10.1515/msp-2017-0079
Berrezzoug D. B., Lakdja A., Condens. Matter Phys., 2020, 23, 13602. DOI: https://doi.org/10.5488/CMP.23.13602
Djebbar H., Lakdja A., J. Supercond. Novel Magn., 2019, 32, No. 12, 3965–3969. DOI: https://doi.org/10.1007/s10948-019-05191-9
Hohenberg P., Kohn W., Phys. Rev., 1964, 136, B864. DOI: https://doi.org/10.1103/PhysRev.136.B864
Giannozzi P., Andreussi O., Brumme T., Bunau O., Nardelli M. B., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., et al., J. Phys.: Condens. Matter, 2017, 29, No. 46, 465901. DOI: https://doi.org/10.1088/1361-648X/aa8f79
Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., Cococcioni M., Dabo I., et al., J. Phys.: Condens. Matter, 2009, 21, No. 39, 395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502
Perdew J. P., Wang Y., Phys. Rev. B, 1992, 45, 13244. DOI: https://doi.org/10.1103/PhysRevB.45.13244
Perdew J. P., Burke S., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865
Kresse G., Joubert D., Phys. Rev. B, 1999, 59, 1758. DOI: https://doi.org/10.1103/PhysRevB.59.1758
Monkhorst H. J., Pack J., Phys. Rev. B, 1976, 13, 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188
Vegard L., Z. Phys., 1921, 5, 17. DOI: https://doi.org/10.1007/BF01349680
Swalin R. A., Thermodynamics of Solids, John Wiley and Sons, New York, 1961.
Ferreira L. G., Wei S.-H., Zunger A., Phys. Rev. B, 1989, 40, 3197. DOI: https://doi.org/10.1103/PhysRevB.40.3197
Teles L. K., Furthmüller J., Scolfaro L. M. R., Leite J. R., Bechstedt F., Phys. Rev. B, 2000, 62, 2475.
Stringfellow G. B., J. Cryst. Growth, 1974, 27, 21–34. DOI: https://doi.org/10.1016/0022-0248(74)90416-3
Saito T., Arakawa Y., Phys. Rev. B, 1999, 60, 1701. DOI: https://doi.org/10.1103/PhysRevB.60.1701
Downloads
Published
License
Copyright (c) 2025 K. Larbaoui, A. Lakdja, G. Bassou

This work is licensed under a Creative Commons Attribution 4.0 International License.