Phase stability and structural properties of the KxCa1-xN novel ferromagnetic alloy from first-principles

Authors

  • K. Larbaoui Laboratoire de Microscopie, Microanalyse de la Matière et Spectroscopie Moleculaire, Université Djillali Liabès, 22000 Sidi-Bel-Abbès, Algeria https://orcid.org/0009-0002-0795-5275
  • A. Lakdja Laboratoire de Microscopie, Microanalyse de la Matière et Spectroscopie Moleculaire, Université Djillali Liabès, 22000 Sidi-Bel-Abbès, Algeria https://orcid.org/0000-0001-5403-5143
  • G. Bassou Laboratoire de Microscopie, Microanalyse de la Matière et Spectroscopie Moleculaire, Université Djillali Liabès, 22000 Sidi-Bel-Abbès, Algeria https://orcid.org/0000-0003-2985-2779

DOI:

https://doi.org/10.5488/cmp.28.33603

Keywords:

alkaline earth metals, first-principles calculations, phase diagrams

Abstract

We study the structural properties and phase stability of the KxCa1−xN alloy using the regular-solution model based on the total energy of the mixing. The pseudopotential approach was used along with PBE functional of Perdew, Burke, and Ernzerhof (PBE). We investigated the bond-lengths distribution as a function of composition x. We also predicted the phase separation of the two partially miscible components and calculated the enthalpy ∆H using the interaction parameter Ω. We observe an asymmetry about x = 0.46 in the phase diagram due to the x-dependant interaction parameter Ω = 12.69 − 1.32x kcal/mole. The equilibrium solubility limit, known as the miscibility gap is found to be around 3033 K.

References

Liu H. X., Stephen Y. W., Singh R. K., Lin G., David J. S., Newman N., Dilley N. R., Montes L., Simmonds M. B., Appl. Phys. Lett., 2004, 85, 4076. DOI: https://doi.org/10.1063/1.1812581

Gray A. X., Minár J., Ueda S., Stone P. R., Yamashita Y., Fujii J., Braun J., Plucinski L., Schneider C. M., Panaccione G., Ebert H., Dubon O. D., Kobayashi K., Fadley C. S., Nat. Mater., 2012, 11, 957. DOI: https://doi.org/10.1038/nmat3450

Sanvito S., Ordejón P., Hill N. A., Phys. Rev. B, 2001, 63, 165206. DOI: https://doi.org/10.1103/PhysRevB.63.165206

Katsnelson M. I., Irkhin V. Y., Chioncel L., Lichtenstein A. I., de Groot R. A., Rev. Mod. Phys., 2008, 80, 315. DOI: https://doi.org/10.1103/RevModPhys.80.315

de Groot R. A., Mueller F. M., van Engen P. G., Buschow K. H. J., Phys. Rev. Lett., 1983, 50, 2024–2027. DOI: https://doi.org/10.1103/PhysRevLett.50.2024

Sieberer M., Redinger J., Khmelevskyi S., Mohn P., Phys. Rev. B, 2006, 73, 024404. DOI: https://doi.org/10.1103/PhysRevB.73.024404

Yao K. L., Jiang J. L., Liu Z. L., Gao G. Y., Phys. Lett. A, 2006, 359, 326–329. DOI: https://doi.org/10.1016/j.physleta.2006.06.052

Volninanska O., Jakubas P., Boguslawski P., J. Alloys Compd., 2006, 423, 191–193. DOI: https://doi.org/10.1016/j.jallcom.2006.01.092

Gao G. Y., Yao K. L., Şaşioğlu E., Sandratskii L. M., Liu Z. L., Jiang J. L., Phys. Rev. B, 2007, 75, 174442.

Gao G. Y., Yao K. L., Appl. Phys. Lett., 2007, 91, 082512. DOI: https://doi.org/10.1063/1.2800308

Gao G. Y., Yao K. L., Liu Z. L., Jiang J. L., Yu L. H., Shi Y. L., J. Phys.: Condens. Matter, 2007, 19, No. 31, 315222. DOI: https://doi.org/10.1088/0953-8984/19/31/315222

Dong S., Zhao H., Appl. Phys. Lett., 2011, 98, 182501.

Zhang C. W., Yan S. S., Phys. Status Solidi B, 2008, 245, 201. DOI: https://doi.org/10.1002/pssb.200743333

Zhang C. W., J. Phys. D: Appl. Phys., 2008, 41, 085006. DOI: https://doi.org/10.1088/0022-3727/41/8/085006

Geshi M., Kusakabe K., Nagara H., Suzuki N., Phys. Rev. B, 2007, 76, 054433. DOI: https://doi.org/10.1103/PhysRevB.76.054433

Lakdja A., Rozale H., Chahed A., Comput. Mater. Sci., 2013, 67, 287–291. DOI: https://doi.org/10.1016/j.commatsci.2012.09.015

Lakdja A., Comput. Mater. Sci., 2014, 89, 1–5. DOI: https://doi.org/10.1016/j.commatsci.2014.03.027

Lakdja A., Benzaidi I., Mater. Sci.-Pol., 2017, 35, 463. DOI: https://doi.org/10.1515/msp-2017-0079

Berrezzoug D. B., Lakdja A., Condens. Matter Phys., 2020, 23, 13602. DOI: https://doi.org/10.5488/CMP.23.13602

Djebbar H., Lakdja A., J. Supercond. Novel Magn., 2019, 32, No. 12, 3965–3969. DOI: https://doi.org/10.1007/s10948-019-05191-9

Hohenberg P., Kohn W., Phys. Rev., 1964, 136, B864. DOI: https://doi.org/10.1103/PhysRev.136.B864

Giannozzi P., Andreussi O., Brumme T., Bunau O., Nardelli M. B., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., et al., J. Phys.: Condens. Matter, 2017, 29, No. 46, 465901. DOI: https://doi.org/10.1088/1361-648X/aa8f79

Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., Cococcioni M., Dabo I., et al., J. Phys.: Condens. Matter, 2009, 21, No. 39, 395502. DOI: https://doi.org/10.1088/0953-8984/21/39/395502

Perdew J. P., Wang Y., Phys. Rev. B, 1992, 45, 13244. DOI: https://doi.org/10.1103/PhysRevB.45.13244

Perdew J. P., Burke S., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865. DOI: https://doi.org/10.1103/PhysRevLett.77.3865

Kresse G., Joubert D., Phys. Rev. B, 1999, 59, 1758. DOI: https://doi.org/10.1103/PhysRevB.59.1758

Monkhorst H. J., Pack J., Phys. Rev. B, 1976, 13, 5188. DOI: https://doi.org/10.1103/PhysRevB.13.5188

Vegard L., Z. Phys., 1921, 5, 17. DOI: https://doi.org/10.1007/BF01349680

Swalin R. A., Thermodynamics of Solids, John Wiley and Sons, New York, 1961.

Ferreira L. G., Wei S.-H., Zunger A., Phys. Rev. B, 1989, 40, 3197. DOI: https://doi.org/10.1103/PhysRevB.40.3197

Teles L. K., Furthmüller J., Scolfaro L. M. R., Leite J. R., Bechstedt F., Phys. Rev. B, 2000, 62, 2475.

Stringfellow G. B., J. Cryst. Growth, 1974, 27, 21–34. DOI: https://doi.org/10.1016/0022-0248(74)90416-3

Saito T., Arakawa Y., Phys. Rev. B, 1999, 60, 1701. DOI: https://doi.org/10.1103/PhysRevB.60.1701

Published

2025-09-23

How to Cite

[1]
K. Larbaoui, A. Lakdja, and G. Bassou, “Phase stability and structural properties of the KxCa1-xN novel ferromagnetic alloy from first-principles”, Condens. Matter Phys., vol. 28, no. 3, p. 33603, Sep. 2025, doi: 10.5488/cmp.28.33603.

Similar Articles

11-20 of 66

You may also start an advanced similarity search for this article.