Replica RISM molecular solvation theory for electric double layer in nanoporous materials

Authors

DOI:

https://doi.org/10.5488/cmp.28.23602

Keywords:

statistical mechanics, molecular solvation theory, replica RISM-KH-VM theory, electrolytes, nanoporous carbon supercapacitors, electrosorption cells

Abstract

Applications of 3D-RISM-KH molecular solvation theory range from solvation energy of small molecules to phase behavior of polymers and biomolecules. It predicts the molecular mechanisms of chemical and biomolecular systems. Replica RISM-KH-VM molecular solvation theory predicts and explains the structure, thermodynamics, and electrochemistry of electrolyte solutions sorbed in a nanoporous material. It was tested on nanoporous carbon supercapacitors with aqueous electrolyte and nanoporous electrosorption cells. The mechanisms in these systems are steered by the electric double layer potential drop across the Stern layer at the nanopores surface and the Gouy-Chapman layer averaged over the nanoporous material, the osmotic term due to the ionic concentrations difference in the two nanoporous electrodes and in the electrolyte solution outside, and the solvation chemical potentials of sorbed ions averaged over the nanoporous material. The latter strongly depends on chemical specificity of ions, solvent, surface functional groups, and steric effects for solvated ions confined in nanopores.

References

Zhang J., Zhang H., Wu T., Wang Q., van der Spoel D., J. Chem. Theory Comput., 2017, 13, 1034–1043. DOI: https://doi.org/10.1021/acs.jctc.7b00169

Gerez G., Di Remigio Eikås R., Rune Jensen S., Bjøorgve M., Frediani L., J. Chem. Theory Comput., 2023, 19, 1034–1043. DOI: https://doi.org/10.1021/acs.jctc.2c01098

Skyner R., McDonagh J., Groom C., van Mourik T., Mitchell J., Phys. Chem. Chem. Phys., 2015, 17, 6174–6191. DOI: https://doi.org/10.1039/C5CP00288E

Vyboishchikov S. F., Voityuk A. A., J. Chem. Inf. Model., 2021, 61, 4544–4553. DOI: https://doi.org/10.1021/acs.jcim.1c00885

Klamt A., Diedenhofen M., J. Phys. Chem. A, 2015, 119, 5439–5445. DOI: https://doi.org/10.1021/jp511158y

Chaudhari M. I., Vanegas J. M., Pratt L. R., Muralidharan A., Rempe S. B., Annu. Rev. Phys. Chem., 2020, 71, 461–84. DOI: https://doi.org/10.1146/annurev-physchem-012320-015457

Pratt L. R., Rempe S. B., AIP Conf. Proc., 1999, 492, 172–201. DOI: https://doi.org/10.1063/1.1301528

Asthagiri D., Dixit P., Merchant S., Paulaitis M., Pratt L., Rempe S. B., Varma S., Chem. Phys. Lett., 2010, 485, 1–7. DOI: https://doi.org/10.1016/j.cplett.2009.12.013

Rogers D. M., Rempe S. B., J. Phys. Chem. B, 2011, 115, 9116–9129. DOI: https://doi.org/10.1021/jp2012864

Rogers D. M., Jiao D., Pratt L. R., Rempe S. B., Annu. Rep. Comput. Chem., 2012, 8, 71–127. DOI: https://doi.org/10.1016/B978-0-444-59440-2.00004-1

Hirata F. (Ed.), Molecular Theory of Solvation, Understanding Chemical Reactivity, Vol. 24, Kluwer Academic Publishers, Dordrecht, 2003. DOI: https://doi.org/10.1007/1-4020-2590-4

Roy D., Kovalenko A., Int. J. Mol. Sci., 2021, 22, 5061. DOI: https://doi.org/10.3390/ijms22105061

Hansen J.-P., McDonald I. R., In: Theory of Simple Liquids, Academic Press, Oxford, 4th edn., 2013, 455–510. DOI: https://doi.org/10.1016/B978-0-12-387032-2.00011-8

Kovalenko A., Hirata F., Chem. Phys. Lett., 1998, 290, 237–244. DOI: https://doi.org/10.1016/S0009-2614(98)00471-0

Kovalenko A., Hirata F., J. Chem. Phys., 1999, 110, 10095–10112. DOI: https://doi.org/10.1063/1.478883

Kovalenko A., Hirata F., J. Chem. Phys., 2000, 112, 10391–10402. DOI: https://doi.org/10.1063/1.481676

Kovalenko A., Hirata F., J. Chem. Phys., 2000, 112, 10403–10417. DOI: https://doi.org/10.1063/1.481677

Kovalenko A., In: Molecular Theory of Solvation, Understanding Chemical Reactivity, Vol. 24, Hirata F. (Ed.), Kluwer Academic Publishers, Dordrecht, 2004, 169–275.

Chandler D., Acc. Chem. Res., 1974, 7, 246–251. DOI: https://doi.org/10.1021/ar50080a002

Lowden L. J., Chandler D., J. Chem. Phys., 1973, 59, 6587–6595. DOI: https://doi.org/10.1063/1.1680038

Chandler D., J. Chem. Phys., 1973, 59, 2742–2746. DOI: https://doi.org/10.1063/1.1680393

Johnson J., Case D. A., Yamazaki T., Gusarov S., Kovalenko A., Luchko T., J. Phys.: Condens. Matter, 2016, 28, 344002. DOI: https://doi.org/10.1088/0953-8984/28/34/344002

Kondratenko M., Stoyanov S. R., Gusarov S., Kovalenko A., McCreery R. L., J. Phys. Chem. C, 2015, 119, 11286–11295. DOI: https://doi.org/10.1021/jp5128332

Genheden S., Luchko T., Gusarov S., Kovalenko A., Ryde U., J. Phys. Chem. B, 2010, 114, 8505–8516. DOI: https://doi.org/10.1021/jp101461s

Stoyanov S. R., da Costa L. M., Gusarov S., Gray M. R., Stryker J. M., Tykwinski R. R., Tan X., Carneiro J. W. D. M., Seidl P. R., Kovalenko A., Spectroscopic characterization of the supramolecular aggregation interactions of petroleum asphaltenes in solution: A multiscale modeling investigation. In: Abstr. Papers Am. Chem. Soc., 2013, 245.

Stoyanov S. R., Gusarov S., Kuznicki S. M., Kovalenko A., J. Phys. Chem. C, 2008, 112, 6794–6810. DOI: https://doi.org/10.1021/jp075688h

Imai T., Hiraoka R., Kovalenko A., Hirata F., J. Am. Chem. Soc., 2005, 127, 15334–15335. DOI: https://doi.org/10.1021/ja054434b

Perkyns J. S., Pettitt B. M., J. Chem. Phys., 1992, 97, 7656–7666. DOI: https://doi.org/10.1063/1.463485

Percus J. K., Yevick G. J., Phys. Rev., 1958, 110, 1–13. DOI: https://doi.org/10.1103/PhysRev.110.1

Martynov G. A., Sarkisov G. N., Mol. Phys., 1983, 49, 1495–1504. DOI: https://doi.org/10.1080/00268978300102111

Ballone P., Pastore G., Galli G., Gazzillo D., Mol. Phys., 1986, 59, 275–290. DOI: https://doi.org/10.1080/00268978600102071

Kast S. M., Kloss T., J. Chem. Phys., 2008, 129, 236101. DOI: https://doi.org/10.1063/1.3041709

Perkyns J. S., Lynch G. C., Howard J. J., Pettitt B. M., J. Chem. Phys., 2010, 132, 064106. DOI: https://doi.org/10.1063/1.3299277

Stumpe M. C., Blinov N., Wishart D., Kovalenko A., Pande V. S., J. Phys. Chem. B, 2011, 115, 319–328. DOI: https://doi.org/10.1021/jp102587q

Kirkwood J. G., Buff F. P., J. Chem. Phys., 1951, 19, 774–777. DOI: https://doi.org/10.1063/1.1748352

Harano Y., Imai T., Kovalenko A., Kinoshita M., Hirata F., J. Chem. Phys., 2001, 114, 9506–9511. DOI: https://doi.org/10.1063/1.1369138

Imai T., Harano Y., Kovalenko A., Hirata F., Biopolymers, 2001, 59, 512–519. DOI: https://doi.org/10.1002/1097-0282(200112)59:7<512::AID-BIP1056>3.0.CO;2-C

Palmer D. S., Frolov A. I., Ratkova E. L., Fedorov M. V., J. Phys.: Condens. Matter, 2010, 22, 492101. DOI: https://doi.org/10.1088/0953-8984/22/49/492101

Luchko T., Blinov N., Limon G. C., Joyce K. P., Kovalenko A., J. Comput.-Aided Mol. Des., 2016, 30, 11151127. DOI: https://doi.org/10.1007/s10822-016-9947-7

Roy D., Blinov N., Kovalenko A., J. Phys. Chem. B, 2017, 121, 9268–9273. DOI: https://doi.org/10.1021/acs.jpcb.7b06375

Kovalenko A., Tenno S., Hirata F., J. Comput. Chem., 1999, 20, 928–936. DOI: https://doi.org/10.1002/(SICI)1096-987X(19990715)20:9<928::AID-JCC4>3.0.CO;2-X

Pulay P., Chem. Phys. Lett., 1980, 73, 393–398. DOI: https://doi.org/10.1016/0009-2614(80)80396-4

Saad Y., Schultz M. H., SIAM J. Sci. Stat. Comput., 1986, 7, No. 3, 856–869. DOI: https://doi.org/10.1137/0907058

Howard J. J., Perkyns J. S., Choudhury N., Pettitt B. M., J. Chem. Theory Comput., 2008, 4, 1928–1939. DOI: https://doi.org/10.1021/ct8002817

Minezawa N., Kato S., J. Chem. Phys., 2007, 126, 054511. DOI: https://doi.org/10.1063/1.2431809

Skinner B., Chen T., Loth M. S., Shklovskii B. I., Phys. Rev. E, 2011, 83, 056102–56111. DOI: https://doi.org/10.1103/PhysRevE.83.056102

Feng G., Jiang D., Cummings P. T., J. Chem. Theory Comput., 2012, 8, 1058–1063. DOI: https://doi.org/10.1021/ct200914j

Kovalenko A., Hirata F., J. Theor. Comput. Chem., 2002, 1, 381–406. DOI: https://doi.org/10.1142/S0219633602000282

Kovalenko A., Hirata F., J. Chem. Phys., 2001, 115, 8620–8633. DOI: https://doi.org/10.1063/1.1409954

Kovalenko A., Hirata F., Condens. Matter Phys., 2001, 4, 643–678. DOI: https://doi.org/10.5488/CMP.4.4.643

Tanimura A., Kovalenko A., Hirata F., Chem. Phys. Lett., 2003, 378, 638–646. DOI: https://doi.org/10.1016/S0009-2614(03)01336-8

Tanimura A., Kovalenko A., Hirata F., Langmuir, 2007, 23, 1507–1517. DOI: https://doi.org/10.1021/la061617i

Kovalenko A., J. Comput. Theor. Nanosci., 2004, 1, 398–411. DOI: https://doi.org/10.1166/jctn.2004.038

Kovalenko A., In: Springer Handbook of Electrochemical Energy, Breitkopf C., Swider-Lyons K. (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, 95–139. DOI: https://doi.org/10.1007/978-3-662-46657-5_5

Given J. A., Stell G., J. Chem. Phys., 1992, 7 4573. DOI: https://doi.org/10.1063/1.463883

Given J. A., Phys. Rev. A, 1992, 45, 816–824. DOI: https://doi.org/10.1103/PhysRevA.45.816

Given J. A., Stell G. R., Physica A, 1994, 209, 495–510. DOI: https://doi.org/10.1016/0378-4371(94)90200-3

Kovalenko A., Pure Appl. Chem., 2013, 85, 159–199. DOI: https://doi.org/10.1351/PAC-CON-12-06-03

Published

2025-06-25

How to Cite

[1]
A. Kovalenko, “Replica RISM molecular solvation theory for electric double layer in nanoporous materials”, Condens. Matter Phys., vol. 28, no. 2, p. 23602, Jun. 2025, doi: 10.5488/cmp.28.23602.

Similar Articles

1-10 of 63

You may also start an advanced similarity search for this article.