Replica RISM molecular solvation theory for electric double layer in nanoporous materials
DOI:
https://doi.org/10.5488/cmp.28.23602Keywords:
statistical mechanics, molecular solvation theory, replica RISM-KH-VM theory, electrolytes, nanoporous carbon supercapacitors, electrosorption cellsAbstract
Applications of 3D-RISM-KH molecular solvation theory range from solvation energy of small molecules to phase behavior of polymers and biomolecules. It predicts the molecular mechanisms of chemical and biomolecular systems. Replica RISM-KH-VM molecular solvation theory predicts and explains the structure, thermodynamics, and electrochemistry of electrolyte solutions sorbed in a nanoporous material. It was tested on nanoporous carbon supercapacitors with aqueous electrolyte and nanoporous electrosorption cells. The mechanisms in these systems are steered by the electric double layer potential drop across the Stern layer at the nanopores surface and the Gouy-Chapman layer averaged over the nanoporous material, the osmotic term due to the ionic concentrations difference in the two nanoporous electrodes and in the electrolyte solution outside, and the solvation chemical potentials of sorbed ions averaged over the nanoporous material. The latter strongly depends on chemical specificity of ions, solvent, surface functional groups, and steric effects for solvated ions confined in nanopores.
References
Zhang J., Zhang H., Wu T., Wang Q., van der Spoel D., J. Chem. Theory Comput., 2017, 13, 1034–1043. DOI: https://doi.org/10.1021/acs.jctc.7b00169
Gerez G., Di Remigio Eikås R., Rune Jensen S., Bjøorgve M., Frediani L., J. Chem. Theory Comput., 2023, 19, 1034–1043. DOI: https://doi.org/10.1021/acs.jctc.2c01098
Skyner R., McDonagh J., Groom C., van Mourik T., Mitchell J., Phys. Chem. Chem. Phys., 2015, 17, 6174–6191. DOI: https://doi.org/10.1039/C5CP00288E
Vyboishchikov S. F., Voityuk A. A., J. Chem. Inf. Model., 2021, 61, 4544–4553. DOI: https://doi.org/10.1021/acs.jcim.1c00885
Klamt A., Diedenhofen M., J. Phys. Chem. A, 2015, 119, 5439–5445. DOI: https://doi.org/10.1021/jp511158y
Chaudhari M. I., Vanegas J. M., Pratt L. R., Muralidharan A., Rempe S. B., Annu. Rev. Phys. Chem., 2020, 71, 461–84. DOI: https://doi.org/10.1146/annurev-physchem-012320-015457
Pratt L. R., Rempe S. B., AIP Conf. Proc., 1999, 492, 172–201. DOI: https://doi.org/10.1063/1.1301528
Asthagiri D., Dixit P., Merchant S., Paulaitis M., Pratt L., Rempe S. B., Varma S., Chem. Phys. Lett., 2010, 485, 1–7. DOI: https://doi.org/10.1016/j.cplett.2009.12.013
Rogers D. M., Rempe S. B., J. Phys. Chem. B, 2011, 115, 9116–9129. DOI: https://doi.org/10.1021/jp2012864
Rogers D. M., Jiao D., Pratt L. R., Rempe S. B., Annu. Rep. Comput. Chem., 2012, 8, 71–127. DOI: https://doi.org/10.1016/B978-0-444-59440-2.00004-1
Hirata F. (Ed.), Molecular Theory of Solvation, Understanding Chemical Reactivity, Vol. 24, Kluwer Academic Publishers, Dordrecht, 2003. DOI: https://doi.org/10.1007/1-4020-2590-4
Roy D., Kovalenko A., Int. J. Mol. Sci., 2021, 22, 5061. DOI: https://doi.org/10.3390/ijms22105061
Hansen J.-P., McDonald I. R., In: Theory of Simple Liquids, Academic Press, Oxford, 4th edn., 2013, 455–510. DOI: https://doi.org/10.1016/B978-0-12-387032-2.00011-8
Kovalenko A., Hirata F., Chem. Phys. Lett., 1998, 290, 237–244. DOI: https://doi.org/10.1016/S0009-2614(98)00471-0
Kovalenko A., Hirata F., J. Chem. Phys., 1999, 110, 10095–10112. DOI: https://doi.org/10.1063/1.478883
Kovalenko A., Hirata F., J. Chem. Phys., 2000, 112, 10391–10402. DOI: https://doi.org/10.1063/1.481676
Kovalenko A., Hirata F., J. Chem. Phys., 2000, 112, 10403–10417. DOI: https://doi.org/10.1063/1.481677
Kovalenko A., In: Molecular Theory of Solvation, Understanding Chemical Reactivity, Vol. 24, Hirata F. (Ed.), Kluwer Academic Publishers, Dordrecht, 2004, 169–275.
Chandler D., Acc. Chem. Res., 1974, 7, 246–251. DOI: https://doi.org/10.1021/ar50080a002
Lowden L. J., Chandler D., J. Chem. Phys., 1973, 59, 6587–6595. DOI: https://doi.org/10.1063/1.1680038
Chandler D., J. Chem. Phys., 1973, 59, 2742–2746. DOI: https://doi.org/10.1063/1.1680393
Johnson J., Case D. A., Yamazaki T., Gusarov S., Kovalenko A., Luchko T., J. Phys.: Condens. Matter, 2016, 28, 344002. DOI: https://doi.org/10.1088/0953-8984/28/34/344002
Kondratenko M., Stoyanov S. R., Gusarov S., Kovalenko A., McCreery R. L., J. Phys. Chem. C, 2015, 119, 11286–11295. DOI: https://doi.org/10.1021/jp5128332
Genheden S., Luchko T., Gusarov S., Kovalenko A., Ryde U., J. Phys. Chem. B, 2010, 114, 8505–8516. DOI: https://doi.org/10.1021/jp101461s
Stoyanov S. R., da Costa L. M., Gusarov S., Gray M. R., Stryker J. M., Tykwinski R. R., Tan X., Carneiro J. W. D. M., Seidl P. R., Kovalenko A., Spectroscopic characterization of the supramolecular aggregation interactions of petroleum asphaltenes in solution: A multiscale modeling investigation. In: Abstr. Papers Am. Chem. Soc., 2013, 245.
Stoyanov S. R., Gusarov S., Kuznicki S. M., Kovalenko A., J. Phys. Chem. C, 2008, 112, 6794–6810. DOI: https://doi.org/10.1021/jp075688h
Imai T., Hiraoka R., Kovalenko A., Hirata F., J. Am. Chem. Soc., 2005, 127, 15334–15335. DOI: https://doi.org/10.1021/ja054434b
Perkyns J. S., Pettitt B. M., J. Chem. Phys., 1992, 97, 7656–7666. DOI: https://doi.org/10.1063/1.463485
Percus J. K., Yevick G. J., Phys. Rev., 1958, 110, 1–13. DOI: https://doi.org/10.1103/PhysRev.110.1
Martynov G. A., Sarkisov G. N., Mol. Phys., 1983, 49, 1495–1504. DOI: https://doi.org/10.1080/00268978300102111
Ballone P., Pastore G., Galli G., Gazzillo D., Mol. Phys., 1986, 59, 275–290. DOI: https://doi.org/10.1080/00268978600102071
Kast S. M., Kloss T., J. Chem. Phys., 2008, 129, 236101. DOI: https://doi.org/10.1063/1.3041709
Perkyns J. S., Lynch G. C., Howard J. J., Pettitt B. M., J. Chem. Phys., 2010, 132, 064106. DOI: https://doi.org/10.1063/1.3299277
Stumpe M. C., Blinov N., Wishart D., Kovalenko A., Pande V. S., J. Phys. Chem. B, 2011, 115, 319–328. DOI: https://doi.org/10.1021/jp102587q
Kirkwood J. G., Buff F. P., J. Chem. Phys., 1951, 19, 774–777. DOI: https://doi.org/10.1063/1.1748352
Harano Y., Imai T., Kovalenko A., Kinoshita M., Hirata F., J. Chem. Phys., 2001, 114, 9506–9511. DOI: https://doi.org/10.1063/1.1369138
Imai T., Harano Y., Kovalenko A., Hirata F., Biopolymers, 2001, 59, 512–519. DOI: https://doi.org/10.1002/1097-0282(200112)59:7<512::AID-BIP1056>3.0.CO;2-C
Palmer D. S., Frolov A. I., Ratkova E. L., Fedorov M. V., J. Phys.: Condens. Matter, 2010, 22, 492101. DOI: https://doi.org/10.1088/0953-8984/22/49/492101
Luchko T., Blinov N., Limon G. C., Joyce K. P., Kovalenko A., J. Comput.-Aided Mol. Des., 2016, 30, 11151127. DOI: https://doi.org/10.1007/s10822-016-9947-7
Roy D., Blinov N., Kovalenko A., J. Phys. Chem. B, 2017, 121, 9268–9273. DOI: https://doi.org/10.1021/acs.jpcb.7b06375
Kovalenko A., Tenno S., Hirata F., J. Comput. Chem., 1999, 20, 928–936. DOI: https://doi.org/10.1002/(SICI)1096-987X(19990715)20:9<928::AID-JCC4>3.0.CO;2-X
Pulay P., Chem. Phys. Lett., 1980, 73, 393–398. DOI: https://doi.org/10.1016/0009-2614(80)80396-4
Saad Y., Schultz M. H., SIAM J. Sci. Stat. Comput., 1986, 7, No. 3, 856–869. DOI: https://doi.org/10.1137/0907058
Howard J. J., Perkyns J. S., Choudhury N., Pettitt B. M., J. Chem. Theory Comput., 2008, 4, 1928–1939. DOI: https://doi.org/10.1021/ct8002817
Minezawa N., Kato S., J. Chem. Phys., 2007, 126, 054511. DOI: https://doi.org/10.1063/1.2431809
Skinner B., Chen T., Loth M. S., Shklovskii B. I., Phys. Rev. E, 2011, 83, 056102–56111. DOI: https://doi.org/10.1103/PhysRevE.83.056102
Feng G., Jiang D., Cummings P. T., J. Chem. Theory Comput., 2012, 8, 1058–1063. DOI: https://doi.org/10.1021/ct200914j
Kovalenko A., Hirata F., J. Theor. Comput. Chem., 2002, 1, 381–406. DOI: https://doi.org/10.1142/S0219633602000282
Kovalenko A., Hirata F., J. Chem. Phys., 2001, 115, 8620–8633. DOI: https://doi.org/10.1063/1.1409954
Kovalenko A., Hirata F., Condens. Matter Phys., 2001, 4, 643–678. DOI: https://doi.org/10.5488/CMP.4.4.643
Tanimura A., Kovalenko A., Hirata F., Chem. Phys. Lett., 2003, 378, 638–646. DOI: https://doi.org/10.1016/S0009-2614(03)01336-8
Tanimura A., Kovalenko A., Hirata F., Langmuir, 2007, 23, 1507–1517. DOI: https://doi.org/10.1021/la061617i
Kovalenko A., J. Comput. Theor. Nanosci., 2004, 1, 398–411. DOI: https://doi.org/10.1166/jctn.2004.038
Kovalenko A., In: Springer Handbook of Electrochemical Energy, Breitkopf C., Swider-Lyons K. (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2017, 95–139. DOI: https://doi.org/10.1007/978-3-662-46657-5_5
Given J. A., Stell G., J. Chem. Phys., 1992, 7 4573. DOI: https://doi.org/10.1063/1.463883
Given J. A., Phys. Rev. A, 1992, 45, 816–824. DOI: https://doi.org/10.1103/PhysRevA.45.816
Given J. A., Stell G. R., Physica A, 1994, 209, 495–510. DOI: https://doi.org/10.1016/0378-4371(94)90200-3
Kovalenko A., Pure Appl. Chem., 2013, 85, 159–199. DOI: https://doi.org/10.1351/PAC-CON-12-06-03
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 A. Kovalenko

This work is licensed under a Creative Commons Attribution 4.0 International License.