Liquid-gas state regularities as a manifestation of global isomorphism with the Ising model
DOI:
https://doi.org/10.5488/cmp.28.23603Keywords:
liquid-gas phase transition, critical phenomena, Ising modelAbstract
Liquid-gas equilibrium is considered using the global isomorphism with the Ising-like (lattice gas) model. Such an approach assumes the existence of the order parameter in terms of which the symmetry of binodal is restored not only in the vicinity of the critical point (critical isomorphism) but also globally in the whole coexistence region. We show how the empirical law of the rectilinear density diameter of the liquid-gas binodal allows us to derive a rather simple form of the isomorphism transformation between the fluid and lattice gas model of Ising-type. The relations for critical parameters which follow from such isomorphism are tested on a variety of fluid systems, both real and model ones. Moreover, we consider the phase equilibrium in polymer solutions and the Flory θ-point as the extreme state of such equilibrium within our approach. The most crucial testing in 2D case is using the Onsager exact solution of the Ising model, and we represent the results of our approach to the calculation of critical point parameters of monolayers for noble gases and the surface tension.
References
Landau L. D., Lifshitz E. M., Statistical Physics, Course of Theoretical Physics, Vol. 5, Pergamon Press, Oxford, 1980.
van der Waals J. D., The equation of state for gases and liquids. Nobel lecture, 1910, URL https://www.nobelprize.org/prizes/physics/1910/waals/lecture/.
Onsager L., Phys. Rev., 1944, 65, No. 3–4, 117–149. DOI: https://doi.org/10.1103/PhysRev.65.117
Baxter R. J., Exactly Solved Models in Statistical Mechanics, Dover, New York, 2007.
Zinn-Justin J., Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, Vol. 171, Oxford University Press, Oxford, fifth edn., 2021. DOI: https://doi.org/10.1093/oso/9780198834625.001.0001
Hubbard J., Schofield P., Phys. Lett. A, 1972, 40, 245–246. DOI: https://doi.org/10.1016/0375-9601(72)90675-5
Yukhnovsky I. R., Holovko M. F., Statistical Mechanics of the Classical Equilibrium Systems, Naukova Dumka, Kyiv, 1980, (in Russian).
Hansen J.-P., McDonald I. R., Theory of simple liquids: with applications to soft matter, Academic Press, Elsevier, Oxford, Amstersdam, fourth edn., 2013. DOI: https://doi.org/10.1016/B978-0-12-387032-2.00012-X
Ben-Amotz D., Herschbach D. R., Isr. J. Chem., 1990, 30, 59–68. DOI: https://doi.org/10.1080/05679329008449006
Apfelbaum E., Vorob’ev V., J. Phys. Chem. B, 2008, 112, 13064–13069. DOI: https://doi.org/10.1021/jp8066487
Batschinski A., Ann. Phys., 1906, 324, 307–309. DOI: https://doi.org/10.1002/andp.19063240205
Mermin N. D., Rehr J. J., Phys. Rev. Lett., 1971, 26, No. 19, 1155–1156. DOI: https://doi.org/10.1103/PhysRevLett.26.1155
Artyukhovskaya L. M., Shimanskaya E. T., Shimansky Yu. I., Sov. Phys. JETP, 1973, 36, 1140.
Fisher M. E., Orkoulas G., Phys. Rev. Lett., 2000, 85, 696–699. DOI: https://doi.org/10.1103/PhysRevLett.85.696
Cailletet L., Mathias E., J. Phys. Theor. Appl., 1886, 5, No. 1, 549–564. DOI: https://doi.org/10.1051/jphystap:018860050054900
Paterson T., Bannerman M. N., Lue L., J. Chem. Phys., 2024, 160, No. 15. DOI: https://doi.org/10.1063/5.0192770
Apfelbaum E. M., Vorob’ev V. S., Chem. Phys. Lett., 2009, 467, 318–322. DOI: https://doi.org/10.1016/j.cplett.2008.11.060
Apfelbaum E., Vorob’ev V., J. Mol. Liq., 2017, 235, 149–154. DOI: https://doi.org/10.1016/j.molliq.2016.10.070
Desgranges C., Delhommelle J., Chem. Phys. Lett., 2017, 687, 9–13. DOI: https://doi.org/10.1016/j.cplett.2017.08.061
Kulinskii V., J. Phys. Chem. B, 2010, 114, No. 8, 2852–2855. DOI: https://doi.org/10.1021/jp911897k
Bulavin L., Kulinskii V., J. Phys. Chem. B, 2011, 115, No. 19, 6061–6068. DOI: https://doi.org/10.1021/jp201872f
Apfelbaum E., Vorob’ev V., Martynov G. A., J. Phys. Chem. B, 2006, 110, 8474–8480. DOI: https://doi.org/10.1021/jp057327c
Apfelbaum E., Vorob’ev V., J. Phys. Chem. B, 2009, 113, No. 11, 3521–3526. DOI: https://doi.org/10.1021/jp808817p
Linstrom P. J., Mallard W. G. (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database 69, National Institute of Standards and Technology, Gaithersburg MD, 2025.
Flory P., Principles of Polymer Chemistry, Cornell University Press, 1953.
de Cloizaux J., Jannink G., Polymers in Solution. Their modelling and Structure, Claredon Oxford Press, 1990. DOI: https://doi.org/10.1093/oso/9780198520368.001.0001
Xia K., An X., Shen W., J. Chem. Phys., 1996, 105, No. 14, 6018–6025. DOI: https://doi.org/10.1063/1.472437
Liu A. J., Fisher M. E., Physica A, 1989, 156, No. 1, 35–76. DOI: https://doi.org/10.1016/0378-4371(89)90109-X
Sanchez I. C., J. Appl. Phys., 1985, 58, No. 8, 2871–2874. DOI: https://doi.org/10.1063/1.335859
Balescu R., Equilibrium and Nonequilibrium Statistical Physics, John Wiley & Sons, New York, 1975.
Glandt E. D., Fitts D. D., J. Chem. Phys., 1977, 66, No. 10, 4503–4508. DOI: https://doi.org/10.1063/1.433702
Høye J., Borge A., J. Chem. Phys., 1998, 108, 8830. DOI: https://doi.org/10.1063/1.476329
Abraham F. F., Phys. Rep., 1981, 80, No. 5, 340–374. DOI: https://doi.org/10.1016/0370-1573(81)90099-5
Loi Q., Xu H., Do D., Nicholson D., Colloids Surf., A, 2021, 622, 126690. DOI: https://doi.org/10.1016/j.colsurfa.2021.126690
Kulinskii V., J. Chem. Phys., 2010, 133, 131102. DOI: https://doi.org/10.1063/1.3457943
Patrykiejew A., Condens. Matter Phys., 2012, 15, 1–16. DOI: https://doi.org/10.5488/CMP.15.23601
Larher Y., Gilquin B., Phys. Rev. A, 1979, 20, 1599–1602. DOI: https://doi.org/10.1103/PhysRevA.20.1599
Pruteanu C. G., Loveday J. S., Ackland G. J., Proctor J. E., J. Phys. Chem. Lett., 2022, 13, No. 35, 8284–8289. DOI: https://doi.org/10.1021/acs.jpclett.2c02004
Santra M., Bagchi B., J. Chem. Phys., 2009, 131, No. 8, 084705. DOI: https://doi.org/10.1063/1.3206735
Zeng X. C., J. Chem. Phys., 1996, 104, No. 7, 2699–2704. DOI: https://doi.org/10.1063/1.470991
Nishimori H., Prog. Theor. Phys., 1981, 66, No. 4, 1169–1181. DOI: https://doi.org/10.1143/PTP.66.1169
Nishimori H., Prog. Theor. Phys., 1986, 76, No. 1, 305–306. DOI: https://doi.org/10.1143/PTP.76.305
Sak J., Vause C., J. Phys. A: Math. Gen., 1980, 13, No. 6, L217–L220. DOI: https://doi.org/10.1088/0305-4470/13/6/011
Patashinskii A. Z., Pokrovsky V. L., Fluctuation Theory of Critical Phenomena, Pergamon, Oxford, 1979.
Nicoll J. F., Phys. Rev. A, 1981, 24, No. 4, 2203–2220. DOI: https://doi.org/10.1103/PhysRevA.24.2203
Kulinskii V., Malomuzh N., J. Mol. Liq., 2011, 158, 166–169. DOI: https://doi.org/10.1016/j.molliq.2010.11.013
Bertrand C. E., Nicoll J. F., Anisimov M. A., Phys. Rev. E, 2012, 85, 031131. DOI: https://doi.org/10.1103/PhysRevE.85.031131
Yukhnovskii I. R., Kozlovskii M. P., Pylyuk I. V., Phys. Rev. B, 2002, 66, 134410. DOI: https://doi.org/10.1103/PhysRevB.66.134410
Kulinskii V., J. Chem. Phys., 2014, 141, No. 5, 054503. DOI: https://doi.org/10.1063/1.4891806
De Gennes P.-G., J. Phys., Lett., 1975, 36, No. 3, 55–57. DOI: https://doi.org/10.1051/jphyslet:0197500360305500
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 L. A. Bulavin, V. L. Kulinskyi, A. M. Katts, A. M. Maslechko

This work is licensed under a Creative Commons Attribution 4.0 International License.