Liquid-gas state regularities as a manifestation of global isomorphism with the Ising model

Authors

  • L. A. Bulavin Department of Molecular Physics, Taras Shevchenko National University of Kyiv, 2 Academician Glushkov Prosp., 03022 Kyiv, Ukraine https://orcid.org/0000-0002-8063-6441
  • V. L. Kulinskyi Faculty of Mathematics, Physics and Information Technologies, Odesa I. I. Mechnikov National University, 2 V. Zmijenka St., 65026 Odesa, Ukraine; Department of Physics and Mathematics, Odesa National University of Technology, 112 Kanatna St., 65039 Odesa, Ukraine https://orcid.org/0000-0002-5139-843X
  • A. M. Katts Faculty of Mathematics, Physics and Information Technologies, Odesa I. I. Mechnikov National University, 2 V. Zmijenka St., 65026 Odesa, Ukraine https://orcid.org/0009-0009-3656-9446
  • A. M. Maslechko Faculty of Mathematics, Physics and Information Technologies, Odesa I. I. Mechnikov National University, 2 V. Zmijenka St., 65026 Odesa, Ukraine https://orcid.org/0000-0002-1965-4499

DOI:

https://doi.org/10.5488/cmp.28.23603

Keywords:

liquid-gas phase transition, critical phenomena, Ising model

Abstract

Liquid-gas equilibrium is considered using the global isomorphism with the Ising-like (lattice gas) model. Such an approach assumes the existence of the order parameter in terms of which the symmetry of binodal is restored not only in the vicinity of the critical point (critical isomorphism) but also globally in the whole coexistence region. We show how the empirical law of the rectilinear density diameter of the liquid-gas binodal allows us to derive a rather simple form of the isomorphism transformation between the fluid and lattice gas model of Ising-type. The relations for critical parameters which follow from such isomorphism are tested on a variety of fluid systems, both real and model ones. Moreover, we consider the phase equilibrium in polymer solutions and the Flory θ-point as the extreme state of such equilibrium within our approach. The most crucial testing in 2D case is using the Onsager exact solution of the Ising model, and we represent the results of our approach to the calculation of critical point parameters of monolayers for noble gases and the surface tension.

References

Landau L. D., Lifshitz E. M., Statistical Physics, Course of Theoretical Physics, Vol. 5, Pergamon Press, Oxford, 1980.

van der Waals J. D., The equation of state for gases and liquids. Nobel lecture, 1910, URL https://www.nobelprize.org/prizes/physics/1910/waals/lecture/.

Onsager L., Phys. Rev., 1944, 65, No. 3–4, 117–149. DOI: https://doi.org/10.1103/PhysRev.65.117

Baxter R. J., Exactly Solved Models in Statistical Mechanics, Dover, New York, 2007.

Zinn-Justin J., Quantum Field Theory and Critical Phenomena, International Series of Monographs on Physics, Vol. 171, Oxford University Press, Oxford, fifth edn., 2021. DOI: https://doi.org/10.1093/oso/9780198834625.001.0001

Hubbard J., Schofield P., Phys. Lett. A, 1972, 40, 245–246. DOI: https://doi.org/10.1016/0375-9601(72)90675-5

Yukhnovsky I. R., Holovko M. F., Statistical Mechanics of the Classical Equilibrium Systems, Naukova Dumka, Kyiv, 1980, (in Russian).

Hansen J.-P., McDonald I. R., Theory of simple liquids: with applications to soft matter, Academic Press, Elsevier, Oxford, Amstersdam, fourth edn., 2013. DOI: https://doi.org/10.1016/B978-0-12-387032-2.00012-X

Ben-Amotz D., Herschbach D. R., Isr. J. Chem., 1990, 30, 59–68. DOI: https://doi.org/10.1080/05679329008449006

Apfelbaum E., Vorob’ev V., J. Phys. Chem. B, 2008, 112, 13064–13069. DOI: https://doi.org/10.1021/jp8066487

Batschinski A., Ann. Phys., 1906, 324, 307–309. DOI: https://doi.org/10.1002/andp.19063240205

Mermin N. D., Rehr J. J., Phys. Rev. Lett., 1971, 26, No. 19, 1155–1156. DOI: https://doi.org/10.1103/PhysRevLett.26.1155

Artyukhovskaya L. M., Shimanskaya E. T., Shimansky Yu. I., Sov. Phys. JETP, 1973, 36, 1140.

Fisher M. E., Orkoulas G., Phys. Rev. Lett., 2000, 85, 696–699. DOI: https://doi.org/10.1103/PhysRevLett.85.696

Cailletet L., Mathias E., J. Phys. Theor. Appl., 1886, 5, No. 1, 549–564. DOI: https://doi.org/10.1051/jphystap:018860050054900

Paterson T., Bannerman M. N., Lue L., J. Chem. Phys., 2024, 160, No. 15. DOI: https://doi.org/10.1063/5.0192770

Apfelbaum E. M., Vorob’ev V. S., Chem. Phys. Lett., 2009, 467, 318–322. DOI: https://doi.org/10.1016/j.cplett.2008.11.060

Apfelbaum E., Vorob’ev V., J. Mol. Liq., 2017, 235, 149–154. DOI: https://doi.org/10.1016/j.molliq.2016.10.070

Desgranges C., Delhommelle J., Chem. Phys. Lett., 2017, 687, 9–13. DOI: https://doi.org/10.1016/j.cplett.2017.08.061

Kulinskii V., J. Phys. Chem. B, 2010, 114, No. 8, 2852–2855. DOI: https://doi.org/10.1021/jp911897k

Bulavin L., Kulinskii V., J. Phys. Chem. B, 2011, 115, No. 19, 6061–6068. DOI: https://doi.org/10.1021/jp201872f

Apfelbaum E., Vorob’ev V., Martynov G. A., J. Phys. Chem. B, 2006, 110, 8474–8480. DOI: https://doi.org/10.1021/jp057327c

Apfelbaum E., Vorob’ev V., J. Phys. Chem. B, 2009, 113, No. 11, 3521–3526. DOI: https://doi.org/10.1021/jp808817p

Linstrom P. J., Mallard W. G. (Eds.), NIST Chemistry WebBook, NIST Standard Reference Database 69, National Institute of Standards and Technology, Gaithersburg MD, 2025.

Flory P., Principles of Polymer Chemistry, Cornell University Press, 1953.

de Cloizaux J., Jannink G., Polymers in Solution. Their modelling and Structure, Claredon Oxford Press, 1990. DOI: https://doi.org/10.1093/oso/9780198520368.001.0001

Xia K., An X., Shen W., J. Chem. Phys., 1996, 105, No. 14, 6018–6025. DOI: https://doi.org/10.1063/1.472437

Liu A. J., Fisher M. E., Physica A, 1989, 156, No. 1, 35–76. DOI: https://doi.org/10.1016/0378-4371(89)90109-X

Sanchez I. C., J. Appl. Phys., 1985, 58, No. 8, 2871–2874. DOI: https://doi.org/10.1063/1.335859

Balescu R., Equilibrium and Nonequilibrium Statistical Physics, John Wiley & Sons, New York, 1975.

Glandt E. D., Fitts D. D., J. Chem. Phys., 1977, 66, No. 10, 4503–4508. DOI: https://doi.org/10.1063/1.433702

Høye J., Borge A., J. Chem. Phys., 1998, 108, 8830. DOI: https://doi.org/10.1063/1.476329

Abraham F. F., Phys. Rep., 1981, 80, No. 5, 340–374. DOI: https://doi.org/10.1016/0370-1573(81)90099-5

Loi Q., Xu H., Do D., Nicholson D., Colloids Surf., A, 2021, 622, 126690. DOI: https://doi.org/10.1016/j.colsurfa.2021.126690

Kulinskii V., J. Chem. Phys., 2010, 133, 131102. DOI: https://doi.org/10.1063/1.3457943

Patrykiejew A., Condens. Matter Phys., 2012, 15, 1–16. DOI: https://doi.org/10.5488/CMP.15.23601

Larher Y., Gilquin B., Phys. Rev. A, 1979, 20, 1599–1602. DOI: https://doi.org/10.1103/PhysRevA.20.1599

Pruteanu C. G., Loveday J. S., Ackland G. J., Proctor J. E., J. Phys. Chem. Lett., 2022, 13, No. 35, 8284–8289. DOI: https://doi.org/10.1021/acs.jpclett.2c02004

Santra M., Bagchi B., J. Chem. Phys., 2009, 131, No. 8, 084705. DOI: https://doi.org/10.1063/1.3206735

Zeng X. C., J. Chem. Phys., 1996, 104, No. 7, 2699–2704. DOI: https://doi.org/10.1063/1.470991

Nishimori H., Prog. Theor. Phys., 1981, 66, No. 4, 1169–1181. DOI: https://doi.org/10.1143/PTP.66.1169

Nishimori H., Prog. Theor. Phys., 1986, 76, No. 1, 305–306. DOI: https://doi.org/10.1143/PTP.76.305

Sak J., Vause C., J. Phys. A: Math. Gen., 1980, 13, No. 6, L217–L220. DOI: https://doi.org/10.1088/0305-4470/13/6/011

Patashinskii A. Z., Pokrovsky V. L., Fluctuation Theory of Critical Phenomena, Pergamon, Oxford, 1979.

Nicoll J. F., Phys. Rev. A, 1981, 24, No. 4, 2203–2220. DOI: https://doi.org/10.1103/PhysRevA.24.2203

Kulinskii V., Malomuzh N., J. Mol. Liq., 2011, 158, 166–169. DOI: https://doi.org/10.1016/j.molliq.2010.11.013

Bertrand C. E., Nicoll J. F., Anisimov M. A., Phys. Rev. E, 2012, 85, 031131. DOI: https://doi.org/10.1103/PhysRevE.85.031131

Yukhnovskii I. R., Kozlovskii M. P., Pylyuk I. V., Phys. Rev. B, 2002, 66, 134410. DOI: https://doi.org/10.1103/PhysRevB.66.134410

Kulinskii V., J. Chem. Phys., 2014, 141, No. 5, 054503. DOI: https://doi.org/10.1063/1.4891806

De Gennes P.-G., J. Phys., Lett., 1975, 36, No. 3, 55–57. DOI: https://doi.org/10.1051/jphyslet:0197500360305500

Published

2025-06-25

How to Cite

[1]
L. A. Bulavin, V. L. Kulinskyi, A. M. Katts, and A. M. Maslechko, “Liquid-gas state regularities as a manifestation of global isomorphism with the Ising model”, Condens. Matter Phys., vol. 28, no. 2, p. 23603, Jun. 2025, doi: 10.5488/cmp.28.23603.

Similar Articles

1-10 of 65

You may also start an advanced similarity search for this article.