Critical exponents of the Ising model with quenched structural disorder and long-range interactions at spatial dimension d = 3

Authors

  • D. Shapoval Yukhnovskii Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine; L4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, Europe https://orcid.org/0000-0003-1648-2035
  • M. Dudka Yukhnovskii Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine; L4 Collaboration and Doctoral College for the Statistical Physics of Complex Systems, Lviv-Leipzig-Lorraine-Coventry, Europe; Lviv Polytechnic National University, 79013 Lviv, Ukraine https://orcid.org/0000-0001-6971-8895

DOI:

https://doi.org/10.5488/cmp.28.43503

Keywords:

critical phenomena, Ising model, disordered systems, long-range interactions, renormalization group

Abstract

We analyse the critical properties of a weakly diluted (random) Ising model with the long-range interaction decaying with distance x as ∼ x - d - σ  in a d-dimensional space. It is known to belong to a new long-range random universality class for certain values of the decay parameter σ. Exploiting the field-theoretic renormalization group approach within the minimal subtraction scheme, we compute the three-loop renormalization group functions. On their basis, with the help of asymptotic series resummation methods, we estimate the correlation length critical exponent ν characterising the new universality class for d = 3 and for those values of σ for which long-range interactions are relevant for the critical behaviour.

References

Ising E., Z. Phys., 1925, 31, 253. DOI: https://doi.org/10.1007/BF02980577

Folk R., Berche B., Kenna R., Holovatch Yu., Ernst Ising’s Doctoral Thesis — One Hundred Years On, World Scientific, 2026. DOI: https://doi.org/10.1142/14565

Yukhnovskii I., Kozlovskii M., Pylyuk I., Microscopic Theory of Phase Transitions in the Three-Dimensional Systems, Eurosvit, Lviv, 2021, (in Ukrainian).

Yukhnovskii I., Foundations of Quantum Mechanics, Lybid’, Kyiv, 1995, (in Ukrainian).

Dauxois T., Ruffo S., Arimondo E., Wilkens M., In: Dynamics and Thermodynamics of Systems with Long-Range Interactions, Dauxois T., Ruffo S., Arimondo E., Wilkens M. (Eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 2002, 1–19. DOI: https://doi.org/10.1007/3-540-45835-2_1

Campa A., Dauxois T., Ruo S., Phys. Rep., 2009, 480, 57. DOI: https://doi.org/10.1016/j.physrep.2009.07.001

Campa A., Dauxois T., Fanelli D., Ruffo S., Physics of Long-Range Interacting Systems, Oxford Academic, Oxford, 2014. DOI: https://doi.org/10.1093/acprof:oso/9780199581931.001.0001

Mukamel D., Preprint arXiv:0905.1457, 2009.

Monroe C., Campbell W. C., Duan L.-M., Gong Z.-X., Gorshkov A. V., Hess P. W., Islam R., Kim K., Linke N. M., Pagano G., Richerme P., Senko C., Yao N. Y., Rev. Mod. Phys., 2021, 93, 025001. DOI: https://doi.org/10.1103/RevModPhys.93.025001

Bernien H., Schwartz S., Keesling A., Levine H., Omran A., Pichler H., Choi S., Zibrov A. S., Endres M., Greiner M., Vuletić V., Lukin M. D., Nature, 2017, 551, No. 7682, 579–584. DOI: https://doi.org/10.1038/nature24622

Yang F., Jiang S.-J., Zhou F., Phys. Rev. A, 2019, 99, 012119. DOI: https://doi.org/10.1103/PhysRevA.99.012119

Dyson F. J., Commun. Math. Phys., 1969, 12, 91. DOI: https://doi.org/10.1007/BF01645907

Fisher M. E., Ma S. K., Nickel B. G., Phys. Rev. Lett., 1972, 29, 917. DOI: https://doi.org/10.1103/PhysRevLett.29.917

Sak J., Phys. Rev. B, 1973, 8, 281. DOI: https://doi.org/10.1103/PhysRevB.8.281

Defenu N., Trombettoni A., Codello A., Phys. Rev. E, 2015, 92, 052113. DOI: https://doi.org/10.1007/JHEP05(2015)141

Luijten E., Blöte H. W. J., Phys. Rev. Lett., 2002, 89, 025703. DOI: https://doi.org/10.1103/PhysRevLett.89.025703

Behan C., J. Phys. A: Math. Theor., 2019, 52, 075401. DOI: https://doi.org/10.1088/1751-8121/aafd1b

Defenu N., Codello A., Ruffo S., Trombettoni A., J. Phys. A: Math. Theor., 2020, 53, 143001. DOI: https://doi.org/10.1088/1751-8121/ab6a6c

Benedetti D., Gurau R., Harribey S., Suzuki K., J. Phys. A: Math. Theor., 2020, 53, 445008. DOI: https://doi.org/10.1088/1751-8121/abb6ae

Belim S. V., Larionov I. B., Soloneckiy R. V., Phys. Met. Metallogr., 2016, 117, No. 11, 1079. DOI: https://doi.org/10.1134/S0031918X1611003X

Belim S. V., Larionov I. B., Moscow Univ. Phys. Bull., 2018, 73, 394. DOI: https://doi.org/10.3103/S0027134918040021

Suzuki M., Yamazaki Y., Igarashi G., Phys. Lett. A, 42, No. 4, 313. DOI: https://doi.org/10.1016/0375-9601(72)90437-9

Belim S. V., JETP Lett., 2003, 77, 112. DOI: https://doi.org/10.1134/1.1564231

Benedetti D., Gurau R., Harribey S., J. Phys. A: Math. Theor., 2025, 58, 129401. DOI: https://doi.org/10.1088/1751-8121/adbfe4

Holovatch Yu., Blavats’ka V., Dudka M., von Ferber C., Folk R., Yavorskii T., Int. J. Mod. Phys. B, 2002, 16, 4027. DOI: https://doi.org/10.1142/S0217979202014760

Yamazaki Y., Physica A, 1978, 90, 547. DOI: https://doi.org/10.1016/0378-4371(78)90008-0

Li M. X., Duc N. M., Phys. Status Solidi B, 1981, 107, No. 2, 403. DOI: https://doi.org/10.1002/pssb.2221070203

Theumann A., J. Phys. A: Math. Gen., 1981, 14, 2759. DOI: https://doi.org/10.1088/0305-4470/14/10/027

Belim S. V., JETP Lett., 2003, 77, 434. DOI: https://doi.org/10.1134/1.1587179

Chen Y., Li Z.-B., Fang H., He S.-S., Situ S.-P., Commun. Theor. Phys., 2001, 36, 469.

Chen Y., Phys. Rev. E, 2002, 66, 037104. DOI: https://doi.org/10.1103/PhysRevE.66.061304

Shapoval D., Dudka M., Holovatch Yu., Low Temp. Phys., 2022, 48, No. 12, 1049. DOI: https://doi.org/10.1063/10.0015114

Dudka M., Shapoval D., Holovatch Yu., J. Phys. Stud., 2024, 28, 2601. DOI: https://doi.org/10.30970/jps.28.2601

Affonso L., Bissacot R., Maia J., Preprint arXiv:2307.14150, 2023.

Ding J., Huang F., Maia J., Preprint arXiv:2412.19281, 2024.

Okuyama M., Ohzeki M., J. Stat. Phys., 2025, 192, 16. DOI: https://doi.org/10.1007/s10955-025-03399-9

Weir P. O., Read N., Kosterlitz J. M., Phys. Rev. B, 1987, 36, 5760. DOI: https://doi.org/10.1103/PhysRevB.36.5760

Agrawal R., Corberi F., Lippiello E., Puri S., Phys. Rev. E, 2023, 108, 044131. DOI: https://doi.org/10.1103/PhysRevE.108.044131

Tarjus G., Tissier M., Eur. Phys. J. B, 2020, 93, 50. DOI: https://doi.org/10.1140/epjb/e2020-100489-1

Bray A., J. Phys. C: Solid State Phys., 1986, 19, 6225. DOI: https://doi.org/10.1088/0022-3719/19/31/017

Kompaniets M. V., Kudlis A., Sokolov A. I., Phys. Rev. E, 2021, 103, 022134. DOI: https://doi.org/10.1103/PhysRevE.103.022134

Folk R., Holovatch Yu., Yavorskii T., Phys.-Usp., 2003, 46, No. 2, 169–191. DOI: https://doi.org/10.1070/PU2003v046n02ABEH001077

Brout R., Phys. Rev., 1959, 115, 824. DOI: https://doi.org/10.1103/PhysRev.115.824

Emery V. J., Phys. Rev. B, 1975, 11, 239. DOI: https://doi.org/10.1103/PhysRevB.11.239

Edwards S., Anderson P., J. Phys. F: Met. Phys., 1975, 5, 965. DOI: https://doi.org/10.1088/0305-4608/5/5/017

Dotsenko V., Introduction to the Replica Theory of Disordered Statistical Systems, Cambridge University Press, 2000. DOI: https://doi.org/10.1017/CBO9780511524592

Holovatch Yu., Condens. Matter Phys., 2006, 9, 237. DOI: https://doi.org/10.5488/CMP.9.2.237

Kleinert H., Schulte-Frohlinde V., Critical Properties of φ4-Theories, World Scientific, 2001. DOI: https://doi.org/10.1142/4733

Amit D. J., Martin-Mayor V., Field Theory, the Renormalization Group, and Critical Phenomena: Graphs to Computers, World Scientific Publishing Company, 2005. DOI: https://doi.org/10.1142/5715

Zinn-Justin J., Quantum Field Theory and Critical Phenomena, Oxford University Press, 2021. DOI: https://doi.org/10.1093/oso/9780198834625.001.0001

’t Hooft G., Veltman M., Nucl. Phys. B, 1972, 44, No. 1, 189–213. DOI: https://doi.org/10.1016/0550-3213(72)90279-9

’t Hooft G., Nucl. Phys. B, 1973, 61, 455. DOI: https://doi.org/10.1016/0550-3213(73)90376-3

Pelissetto A., Vicari E., Phys. Rep., 2002, 368, 549. DOI: https://doi.org/10.1016/S0370-1573(02)00219-3

Baker G., Graves-Morris P., Padé Approximants, 2nd edition, Cambridge University Press, 2009.

Holovatch Yu., Dudka M., Yavors’kii T., J. Phys. Stud., 2001, 5, 233. DOI: https://doi.org/10.30970/jps.05.233

Baker G., Nickel B., Green M., Meiron D., Phys. Rev. Lett., 1976, 36, 1351. DOI: https://doi.org/10.1103/PhysRevLett.36.1351

Baker G., Nickel B., Meiron D., Phys. Rev. B, 1978, 17, 13655. DOI: https://doi.org/10.1103/PhysRevB.17.1365

Delamotte B., Dudka M., Holovatch Yu., Mouhanna D., Phys. Rev. B, 2010, 82, 104432. DOI: https://doi.org/10.1103/PhysRevB.82.104432

Delamotte B., Dudka M., Holovatch Yu., Mouhanna D., Condens. Matter Phys., 2010, 13, 43703. DOI: https://doi.org/10.5488/CMP.13.43703

Kompaniets M. V., Panzer E., Phys. Rev. D, 2017, 96, 036016.

Álvarez G., Martín-Mayor V., Ruiz-Lorenzo J., J. Phys. A: Math. Gen., 2000, 33, 841. DOI: https://doi.org/10.1088/0305-4470/33/5/302

Blavats’ka V., Holovatch Yu., J. Phys. Stud., 2001, 5, 261. DOI: https://doi.org/10.30970/jps.05.261

Blavats’ka V., Holovatch Yu., J. Mol. Liq., 2003, 105, 221. DOI: https://doi.org/10.1016/S0167-7322(03)00057-6

Pelissetto A., Vicari E., Phys. Rev. B, 2000, 61, 6393. DOI: https://doi.org/10.1103/PhysRevB.62.6393

Le Guillou J., Zinn-Justin J., Phys. Rev. B, 1980, 21, 3976. DOI: https://doi.org/10.1103/PhysRevB.21.3976

Published

2025-12-22

Issue

Section

Сollection of the articles dedicated to the 100th anniversary of Prof. Ihor Yukhnovskii

Categories

How to Cite

[1]
D. Shapoval and M. Dudka, “Critical exponents of the Ising model with quenched structural disorder and long-range interactions at spatial dimension d = 3”, Condens. Matter Phys., vol. 28, no. 4, p. 43503, Dec. 2025, doi: 10.5488/cmp.28.43503.

Similar Articles

1-10 of 85

You may also start an advanced similarity search for this article.