The local structure, electronic and optical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3: first-principles study

Authors

DOI:

https://doi.org/10.5488/cmp.27.23702

Keywords:

local structure, bandgap, density of states, optical properties

Abstract

Pb(Mg1/3Nb2/3)O3-PbTiO3 perovskite-based crystals attract considerable scientific interest due to their interesting properties and possible use in piezoelectricity and photovoltaics. To understand the local structure and fundamental properties of such materials, in this work, we focused on the study within the density functional theory of structural, electronic, and optical properties of Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3. Using GGA(PBEsol) approximation for structure optimization gives a good agreement with experimental data. Through the variation in Hubbard U parameters to GGA(PBEsol) functional, we achieve the bandgap for the Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3 which is in good agreement with the experimental results. The study of the bond populations showed that the Mg-O bond demonstrates no covalency, whereas there is a significant Ti-O and Nb-O covalent bonding. Such different bonding characteristics must be responsible for the relaxor properties of Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3 compound. In addition, the investigations of the optical properties of the Pb[(Mg1/3Nb2/3)0.75Ti0.25]O3 by adopting Hubbard U corrections, modifying the error of the GGA approximation, and confirming the electronic analysis, were performed.

References

Luo H., Xu G., Xu H., Wang P., Yin Z., Jpn. J. Appl. Phys., 2000, 39, 5581. DOI: https://doi.org/10.1143/JJAP.39.5581

Kutnjak Z., Petzelt J., Blinc R., Nature, 2006, 441, 956. DOI: https://doi.org/10.1038/nature04854

Algueró M., Moure A., Pardo L., Holc J., Kosec M., Acta Mater., 2006, 54, 501–511. DOI: https://doi.org/10.1016/j.actamat.2005.09.020

Bokov A. A., Ye Z. G., Appl. Phys. Lett., 2000, 77, 1888. DOI: https://doi.org/10.1063/1.1310629

Noheda B., Cox D. E., Shirane G., Gao J., Ye Z. G., Phys. Rev. B, 2002, 66, 054104

Ye Z. G., Curr. Opin. Solid State Mater. Sci., 2002, 6, 35–44. DOI: https://doi.org/10.1016/S1359-0286(02)00019-0

Semak S., Kapustianyk V., Eliyashevskyy Yu., Bovgyra O., Kovalenko M., Mostovoi U., Doudin B., Kundys B., J. Phys.: Condens. Matter, 2023, 35, 094001. DOI: https://doi.org/10.1088/1361-648X/aca579

Tu C. S., Wang F. T., Chien R. R., Schmidt H. V., Hung C. M., Tseng C. T., Appl. Phys. Lett., 2006, 88, 032902.

Liew W. H., Chen Y., Alexe M., Yao K., Small, 2022, 18, 2106275. DOI: https://doi.org/10.1002/smll.202106275

Makhort A. S., Schmerber G.,Kundys B., Mater.Res. Express, 2019, 6, 066313. DOI: https://doi.org/10.1088/2053-1591/ab0758

Makhort A. S., Chevrier F., Kundys D., Doudin B., Kundys B., Phys. Rev. Mater., 2018, 2, 012401.

Bokov A. A., Ye Z. G., Phys. Rev. B, 2002, 66, 094112.

Shvartsman V. V., Kholkin A. L., Raevski I. P., Raevskaya S. I., Savenko F. I., Emelyanov A. S., J. Appl. Phys., 2013, 113, 187208.

Li J., Yin R., Su X., Wu H. H., Li J., Qin S., Sun S., Chen J., Su Y., Qiao L., Guo D., Bai Y., Acta Mater., 2020, 182, 250–256. DOI: https://doi.org/10.1016/j.actamat.2019.11.017

Li J., Li J.,Wu H. H., Zhou O., Chen J., Lookman T., Su Y., Qiao L., Bai Y., ACS Appl. Mater. Interfaces, 2021, 13, 38467–38476. DOI: https://doi.org/10.1021/acsami.1c07714

Tan T., Takenaka H., Xu C., Duan W., Grinberg I., Rappe A. M., Phys. Rev. B, 2018, 97, 174101.

Li C., Xu B., Lin D., Zhang S., Bellaiche L., Shrout T. R., Li F., Phys. Rev. B, 2020, 101, 140102(R). DOI: https://doi.org/10.1103/PhysRevB.101.140102

Grinberg I., Rappe A. M., Phys. Rev. B, 2004, 70, 220101(R).

Takenaka H., Grinberg I., Shin Y. H., Rappe A. M., Ferroelectrics, 2014, 469, 1–13. DOI: https://doi.org/10.1080/00150193.2014.948341

Grinberg I., Suchomel M. R., Davies P. K., Rappe A. M., J. Appl. Phys., 2005, 98, 094111 DOI: https://doi.org/10.1063/1.2128049

Grinberg I., Cooper V. R., Rappe A. M., Phys. Rev. B, 2004, 69, 144118. DOI: https://doi.org/10.1103/PhysRevB.69.144118

Clark S. J., Segall M. D., Pickard C. J., Hasnip P. J., Probert M. I. J., Refson K., Payne M. C., Z. Kristallogr., 2005, 220, 567–570. DOI: https://doi.org/10.1524/zkri.220.5.567.65075

Bovgyra O. V., Kovalenko M. V., In: Proceedings of the Conference “2015 International Young Scientists Forum on Applied Physics” (Dnipropetrovsk, 2015), IEEE, New York, 2015, 1–4.

Bovgyra O., Kozachenko O., Kovalenko M., Kapustianyk V., Appl. Nanosci., 2023, 13, 5003–5010. DOI: https://doi.org/10.1007/s13204-022-02662-9

Bovgyra O. V., Kovalenko M. V., J. Nano- Electron. Phys., 2016, 8, 02031. DOI: https://doi.org/10.21272/jnep.8(2).02031

Kapustianyk V., Semak S., Chornii Yu., Bovgyra O., Kovalenko M., Physica B, 2022, 639, 413929. DOI: https://doi.org/10.1016/j.physb.2022.413929

Davies P. K., Akbas M. A., J. Phys. Chem. Solids, 2000, 61, 159–166. DOI: https://doi.org/10.1016/S0022-3697(99)00275-9

Sepliarsky M., Cohen R. E., J. Phys.: Condens. Matter, 2011, 23, 435902. DOI: https://doi.org/10.1088/0953-8984/23/43/435902

Makhort A., Gumeniuk R., Dayen J. F., Dunne P., Burkhardt U., Viret M., Doudin B., Kundys B., Adv. Opt. Mater., 2022, 10, 2102353. DOI: https://doi.org/10.1002/adom.202102353

Grinberg I., Rappe A. M., Phase Transitions, 2007, 80, 351–368. DOI: https://doi.org/10.1080/01411590701228505

Zhang Y., Sun J., Perdew J. P., Wu X., Phys. Rev. B, 2017, 96, 035143. DOI: https://doi.org/10.1103/PhysRevB.96.035143

Wan X., Chan H. L. W., Choy C. L., Zhao X., Luo H., J. Appl. Phys., 2004, 96, 1387.

Derkaoui I., Achehboune M., Eglitis R. I., Popov A. I., Rezzouk A., Materials, 2023, 16, 4302. DOI: https://doi.org/10.3390/ma16124302

Yang K., Wang C. L., Li J. C., Integr. Ferroelectr., 2006, 78, 113–117. DOI: https://doi.org/10.1080/10584580600660033

Park S. G., Magyari-Köpe B., Nishi Y., Phys. Rev. B, 2010, 82, 115109.

Kovalenko M., Bovgyra O., Franiv A., Dzikovskyi V., Mater. Today: Proc., 2021, 35, 604–608. DOI: https://doi.org/10.1016/j.matpr.2019.11.274

Bovgyra O., Kovalenko M., Dzikovskyi V., Moroz M., In: Proceedings of the Conference “2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON)” (Lviv, 2019), IEEE, 2019, 726–731.

Bovgyra O.,Kovalenko M., Bovhyra R., DzikovskyiV., J. Phys. Stud., 2019, 23, 4301. DOI: https://doi.org/10.30970/jps.23.4301

Derkaoui I., Achehboune M., Boukhoubza I., El Adnani Z., Rezzouk A., Comput. Mater. Sci., 2023, 217, 111913. DOI: https://doi.org/10.1016/j.commatsci.2022.111913

Shirane G., Pepinsky R., Frazer B. C., Acta Crystallogr., 1956, 9, 131–140. DOI: https://doi.org/10.1107/S0365110X56000309

Ambrosch-Draxl C., Sofo J. O., Comput. Phys. Commun., 2006, 175, 1–14. DOI: https://doi.org/10.1016/j.cpc.2006.03.005

Adachi S., Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors, JohnWiley & Sons, 2009. DOI: https://doi.org/10.1002/9780470744383

Published

2024-06-28

Issue

Section

Articles

Categories

How to Cite

[1]
M. Kovalenko, O. Bovgyra, V. Kapustianyk, and O. Kozachenko, “The local structure, electronic and optical properties of Pb(Mg1/3Nb2/3)O3-PbTiO3: first-principles study”, Condens. Matter Phys., vol. 27, no. 2, p. 23702, Jun. 2024, doi: 10.5488/cmp.27.23702.

Similar Articles

21-30 of 41

You may also start an advanced similarity search for this article.