Molecular dynamics simulations of water-ethanol mixtures. I. Composition trends in thermodynamic properties
DOI:
https://doi.org/10.5488/cmp.27.23201Keywords:
molecular dynamics, water-ethanol mixtures, surface tension, dielectric constant, partial molar volumesAbstract
We explored the composition dependence of a rather comprehensive set of properties of liquid water-ethanol mixtures by using the isobaric-isothermal molecular dynamics computer simulations. The united atom non-polarizable model from the TraPPE data basis for the ethanol molecule combined with the TIP4P-2005 and SPC/E water models is considered. We restrict our calculations to atmospheric pressure, 0.1013 MPa, and room temperature, 298.15 K. Composition trends of the behavior of density, excess mixing volume, apparent molar volumes are described. On the other hand, the excess mixing enthalpy and partial molar enthalpies of species are reported. Besides, we explore the coefficient of isobaric thermal expansion, isothermal heat capacity, adiabatic bulk modulus and heat capacity at constant pressure. In addition, the self-diffusion coefficients of species, the static dielectric constant and the surface tension are described. We intend to get insights into peculiarities of mixing of species in the mixture upon changes of ethanol molar fraction. The quality of predictions of the models is critically evaluated by detailed comparisons with experimental results. Then, necessary improvements of the modelling are discussed.
References
Stewart G. W., Morrow R. M., Phys. Rev., 1927, 30, 232. DOI: https://doi.org/10.1103/PhysRev.30.232
Raman C .V., Sogani C. M., Nature, 1927, 119, 601. DOI: https://doi.org/10.1038/119601a0
Harris K. R., Newitt P. J., J. Phys. Chem. B, 1998, 102, 8874. DOI: https://doi.org/10.1021/jp9820370
Petong P., Pottel R., Kaatze U., J. Phys. Chem. A, 2000, 104, 7420. DOI: https://doi.org/10.1021/jp001393r
Benson G. C., D’Arcy P. J., Kiyohara O., J. Solution Chem., 1980, 9, 931. DOI: https://doi.org/10.1007/BF00646404
Costigan M. J., Hodges L. J., Marsh K. N., Stokes R. H., Tuxford C. W., Aust. J. Chem., 1980, 33, 2103. DOI: https://doi.org/10.1071/CH9802103
Liltorp K., Westh P., Koga Y., Can. J. Chem., 2005, 83, 420. DOI: https://doi.org/10.1139/v05-050
Tanaka S. H., Yoshihara H. I., Wen-Chi Ho A., Lau F. W., Westh P., Koga Y., Can. J. Chem., 1996, 74, 713. DOI: https://doi.org/10.1139/v96-077
Grolier J.-P. E., Wilhelm E., Fluid Phase Equilib., 1981, 6, 283. DOI: https://doi.org/10.1016/0378-3812(81)85011-X
Sato M., Ike Y., Kano J., Kojima S., AIP Conf. Proc., 2006, 832, 291.
Gotsulskiy V. Ya., Malomuzh N. P., Chechko V. E., Russ. J. Phys. Chem. A, 2015, 9, 207. DOI: https://doi.org/10.1134/S0036024415020119
Chechko V. E., Gotsulsky V. Ya., Malomuzh M. P., Condens. Matter Phys., 2013, 16, 23006. DOI: https://doi.org/10.5488/CMP.16.23006
Vega C., Abascal J. L. F., Phys. Chem. Chem. Phys., 2011, 13, 19663. DOI: https://doi.org/10.1039/c1cp22168j
Gonzalez-Salgado D., Vega C., J. Chem. Phys., 2016, 145, 034508. DOI: https://doi.org/10.1063/1.4958320
Saiz L., Padro J. A., Guardia E., J. Phys. Chem. B, 1997, 101, 78. DOI: https://doi.org/10.1021/jp961786j
Padro J. A., Saiz L., Guardia E., J. Mol. Struct., 1997, 416, 243. DOI: https://doi.org/10.1016/S0022-2860(97)00038-0
Zangi R., ACS Omega, 2018, 3, 18089. DOI: https://doi.org/10.1021/acsomega.8b03132
Shuttleworth E. E., Apostolo R. F. G., Camp P. J., Conner J. M., Harrison B., Jack F., Clark-Nicolas J., J. Mol. Liq., 2023, 383, 122152. DOI: https://doi.org/10.1016/j.molliq.2023.122152
Wensink E. J. W., Hoffmann A. C., van Maaren P. J., van der Spoel D., J. Chem. Phys., 2003, 119, 7308. DOI: https://doi.org/10.1063/1.1607918
Berendsen H. J. C., Grigera J. R., Straatsma T. P., J. Phys. Chem., 1987, 91, 6269. DOI: https://doi.org/10.1021/j100308a038
Abascal J. L. F., Vega C., J. Chem. Phys., 2005, 123, 234505. DOI: https://doi.org/10.1063/1.2121687
Mijaković M., Kežić B., Zoranić L., Sokolić F., Asenbaum A., Pruner C., Wilhelm E., Perera A., J. Mol. Liq., 2011, 164, 66. DOI: https://doi.org/10.1016/j.molliq.2011.06.009
Mijaković M., Polok K. D., Kežić B., Sokolić F., Perera A., Zoranić L., Mol. Simul., 2015, 41, 699. DOI: https://doi.org/10.1080/08927022.2014.923567
Požar M., Lovrinčević B., Zoranić L., Primorać T., Sokolić F., Perera A., Phys. Chem. Chem. Phys., 2016, 18, 23971. DOI: https://doi.org/10.1039/C6CP04676B
Gereben O., Pusztai L., J. Phys. Chem B, 2015, 119, 3070. DOI: https://doi.org/10.1021/jp510490y
Gereben O., Pusztai L., J. Mol. Liq., 2016, 220, 836. DOI: https://doi.org/10.1016/j.molliq.2016.05.035
Pothoczki S., Pusztai L., Bakó I., J. Phys. Chem. B, 2018, 122, 6790. DOI: https://doi.org/10.1021/acs.jpcb.8b02493
Jorgensen W. L., J. Phys. Chem., 1986, 90, 1276. DOI: https://doi.org/10.1021/j100398a015
Jorgensen W. L., Maxwell D., Tirado-Rives S., J. Am. Chem. Soc., 1996, 118, 11225. DOI: https://doi.org/10.1021/ja9621760
Chen B., Potoff J. J., Siepmann J. I., J. Phys. Chem. B, 2001, 105, 3093. DOI: https://doi.org/10.1021/jp003882x
Ghosh R., Bagchi B., J. Phys. Chem. B, 2016, 120, 12568. DOI: https://doi.org/10.1021/acs.jpcb.6b06001
Guevara-Carrion G., Vrabec J., Hasse H., J. Chem. Phys., 2011, 134, 074508. DOI: https://doi.org/10.1063/1.3515262
Zhong Y., Patel S., J. Phys. Chem., 2009, 113, 767. DOI: https://doi.org/10.1021/jp807053p
Galicia-Andrés E., Pusztai L., Temleitner L., Pizio O., J. Mol. Liq., 2015, 209, 586. DOI: https://doi.org/10.1016/j.molliq.2015.06.045
Spoel D., Lindahl E., Hess B., Groenhof B., Mark A. E., Berendsen H. J. C., J. Comput. Chem., 2005, 118, 1701.
Pečar D., Doleček V., Fluid Phase Equilib., 2005, 230, 36. DOI: https://doi.org/10.1016/j.fluid.2004.11.019
Hervello M. F., Sanchez A., J. Chem. Eng. Data, 2007, 52, 752. DOI: https://doi.org/10.1021/je060335h
Torres R. B., Marchiore A., Volpe P., J. Chem. Thermodyn., 2006, 38, 526. DOI: https://doi.org/10.1016/j.jct.2005.07.012
Cruz Sanchez M., Aguilar M., Pizio O., Condens. Matter Phys., 2020, 23, 34601. DOI: https://doi.org/10.5488/CMP.23.34601
Alejandre J., Chapela G. A., Saint-Martin H., Mendoza N. Phys. Chem. Chem. Phys., 2011, 13, 19728. DOI: https://doi.org/10.1039/c1cp20858f
Tanaka Y., Yamamoto T., Satomi Y., Kubota H., Makita T., Rev. Phys. Chem. Jpn., 1977, 47, No. 1, 12–24.
Ashbaugh H. S., Barnett J. W., Saltzman A., Langrehr M. E., Houser H., J. Chem. Phys., 2016, 145, 201102. DOI: https://doi.org/10.1063/1.4971205
Lara J., Desnoyers J. E., J. Solution Chem., 1981, 10, 465. DOI: https://doi.org/10.1007/BF00652081
Cardona J., Sweatman M. B., Lue L., J. Phys. Chem. B, 2018, 122, 1505. DOI: https://doi.org/10.1021/acs.jpcb.7b12220
Price W. S., Ide H., Arata Y., J. Phys. Chem. A, 2003, 107, 4784. DOI: https://doi.org/10.1021/jp027257z
Neumann M., Mol. Phys., 1983, 50, 841. DOI: https://doi.org/10.1080/00268978300102721
Aguilar M., Dominguez H., Pizio O., Condens. Matter Phys., 2022, 25, 33202. DOI: https://doi.org/10.5488/CMP.25.33202
Wohlfarth C., In: Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. Supplement to IV/6, Lechner M. D. (Ed.), 2008, 3–24. DOI: https://doi.org/10.1007/978-3-662-48168-4_23
Sato T., Buchner R., J. Phys. Chem., 2004, 108, 5007. DOI: https://doi.org/10.1021/jp035255o
Fuentes-Azcatl R., Alejandre J., J. Phys. Chem. B, 2014, 118, 1263. DOI: https://doi.org/10.1021/jp410865y
Khare R., Sum A. K., Nath S. K., de Pablo J. J., J. Phys. Chem. B, 2004, 108, 10071. DOI: https://doi.org/10.1021/jp048144d
Mendez-Bermúdez J. G., Dominguez H., Pusztai L., Guba S., Horvath B., Szalai I., J. Mol. Liq., 2016, 219, 354. DOI: https://doi.org/10.1016/j.molliq.2016.02.053
Tarek M., Tobias D. J., Klein M. L., Physica A, 1996, 231, 117. DOI: https://doi.org/10.1016/0378-4371(95)00450-5
Hyde A. E., Ohshio M., Nguyen C. V., Yusa S., Yamada N. L., Phan C. M., J. Mol. Liq., 2019, 290, 111005. DOI: https://doi.org/10.1016/j.molliq.2019.111005
Kirschner J., Gomes A. H. A., Marinho R. R. T., Bjorneholm O., Agren H., Carravetta V., Ottosson N., Naves de Brito A., Bakker H. J., Phys. Chem. Chem. Phys., 2021, 23, 11568. DOI: https://doi.org/10.1039/D0CP06387H
Fischer N. M., van Maaren P. J., Ditz J. C., Yildirim A., van der Spoel D., J. Chem. Theory Comput., 2015, 11, 2938. DOI: https://doi.org/10.1021/acs.jctc.5b00190
Vazquez G., Alvarez E., Navaza J. M., J. Chem. Eng. Data, 1995, 40, 611. DOI: https://doi.org/10.1021/je00019a016
Vega C., de Miguel E., J. Chem. Phys., 2007, 126, 154707. DOI: https://doi.org/10.1063/1.2715577
Obeidat A., Al-Salman R., Abu-Ghazleh H., AIP Adv., 2018, 8, 075321. DOI: https://doi.org/10.1063/1.5040852
Galicia-Andres E., Dominguez H., Pusztai L., Pizio O., J. Mol. Liq., 2015, 212, 70. DOI: https://doi.org/10.1016/j.molliq.2015.08.061
Idrissi A., Jedlovszky P., J. Mol. Liq., 2021, 338, 116777. DOI: https://doi.org/10.1016/j.molliq.2021.116777
García-Melgarejo V., Nuñez-Rojas E., Alejandre J., J. Mol. Liq., 2021, 323, 114576. DOI: https://doi.org/10.1016/j.molliq.2020.114576
Banerjee S., Ghosh R., Bagchi B., J. Phys. Chem. B, 2012, 116, 3713. DOI: https://doi.org/10.1021/jp2085439
Mukherjee S., Deshmukh A. A., Mondal S., Gopal B., Bagchi B., J. Phys. Chem. B, 2019, 123, 10365. DOI: https://doi.org/10.1021/acs.jpcb.9b07689
Dias Pereira C. I., de Freitas C. F., Lazarotto Braga T., Braga G., Sonchini Goncalves T., Tessaro A. L., Graton Mikcha J. M., Hioka N., Caetano W., Dyes Pigm., 2022, 197, 109887. DOI: https://doi.org/10.1016/j.dyepig.2021.109887
Pineda-Amaya A., Ocaña-Rios I., Garcia-Aguilera M. E., Nolasco-Cancino H., Quiroz-Garcia B., Esturau-Escofet N., Ruiz-Terán F., Chem. Pap., 2021, 75, 4249. DOI: https://doi.org/10.1007/s11696-021-01660-5
Patsahan T., Pizio O., Condens. Matter Phys., 2023, 26, 33605. DOI: https://doi.org/10.5488/CMP.26.33605
Downloads
Published
License
Copyright (c) 2024 D. Benavides Bautista, M. Aguilar, O. Pizio
This work is licensed under a Creative Commons Attribution 4.0 International License.