Molecular dynamics simulations of water-ethanol mixtures. I. Composition trends in thermodynamic properties

Authors

  • D. Benavides Bautista Instituto de Ciencias Básicas y Ingeniería, Universidad Autónoma de Estado de Hidalgo, Pachuca de Soto, Hidalgo 42039, México
  • M. Aguilar Instituto de de Química, Universidad Nacional Autónoma de México, Circuito Exterior, 04510, Cd. Mx., México https://orcid.org/0000-0003-3850-1188
  • O. Pizio Instituto de de Química, Universidad Nacional Autónoma de México, Circuito Exterior, 04510, Cd. Mx., México https://orcid.org/0000-0001-8333-4652

DOI:

https://doi.org/10.5488/cmp.27.23201

Keywords:

molecular dynamics, water-ethanol mixtures, surface tension, dielectric constant, partial molar volumes

Abstract

We explored the composition dependence of a rather comprehensive set of properties of liquid water-ethanol mixtures by using the isobaric-isothermal molecular dynamics computer simulations. The united atom non-polarizable model from the TraPPE data basis for the ethanol molecule  combined with the TIP4P-2005 and SPC/E  water  models is considered.  We restrict our calculations to  atmospheric pressure, 0.1013 MPa, and room temperature, 298.15 K. Composition trends of the behavior of density, excess mixing volume, apparent molar volumes are described. On the other hand, the excess mixing  enthalpy and partial molar enthalpies of  species are reported. Besides, we explore  the coefficient of isobaric thermal expansion, isothermal heat capacity, adiabatic bulk modulus and heat capacity  at constant pressure.  In addition, the self-diffusion coefficients of species,  the static dielectric constant and the surface tension are described. We intend to get insights into  peculiarities of mixing of species in the mixture  upon changes of ethanol molar fraction. The quality of predictions of the models is critically evaluated by detailed comparisons with experimental  results. Then, necessary improvements of the modelling are discussed.

References

Stewart G. W., Morrow R. M., Phys. Rev., 1927, 30, 232. DOI: https://doi.org/10.1103/PhysRev.30.232

Raman C .V., Sogani C. M., Nature, 1927, 119, 601. DOI: https://doi.org/10.1038/119601a0

Harris K. R., Newitt P. J., J. Phys. Chem. B, 1998, 102, 8874. DOI: https://doi.org/10.1021/jp9820370

Petong P., Pottel R., Kaatze U., J. Phys. Chem. A, 2000, 104, 7420. DOI: https://doi.org/10.1021/jp001393r

Benson G. C., D’Arcy P. J., Kiyohara O., J. Solution Chem., 1980, 9, 931. DOI: https://doi.org/10.1007/BF00646404

Costigan M. J., Hodges L. J., Marsh K. N., Stokes R. H., Tuxford C. W., Aust. J. Chem., 1980, 33, 2103. DOI: https://doi.org/10.1071/CH9802103

Liltorp K., Westh P., Koga Y., Can. J. Chem., 2005, 83, 420. DOI: https://doi.org/10.1139/v05-050

Tanaka S. H., Yoshihara H. I., Wen-Chi Ho A., Lau F. W., Westh P., Koga Y., Can. J. Chem., 1996, 74, 713. DOI: https://doi.org/10.1139/v96-077

Grolier J.-P. E., Wilhelm E., Fluid Phase Equilib., 1981, 6, 283. DOI: https://doi.org/10.1016/0378-3812(81)85011-X

Sato M., Ike Y., Kano J., Kojima S., AIP Conf. Proc., 2006, 832, 291.

Gotsulskiy V. Ya., Malomuzh N. P., Chechko V. E., Russ. J. Phys. Chem. A, 2015, 9, 207. DOI: https://doi.org/10.1134/S0036024415020119

Chechko V. E., Gotsulsky V. Ya., Malomuzh M. P., Condens. Matter Phys., 2013, 16, 23006. DOI: https://doi.org/10.5488/CMP.16.23006

Vega C., Abascal J. L. F., Phys. Chem. Chem. Phys., 2011, 13, 19663. DOI: https://doi.org/10.1039/c1cp22168j

Gonzalez-Salgado D., Vega C., J. Chem. Phys., 2016, 145, 034508. DOI: https://doi.org/10.1063/1.4958320

Saiz L., Padro J. A., Guardia E., J. Phys. Chem. B, 1997, 101, 78. DOI: https://doi.org/10.1021/jp961786j

Padro J. A., Saiz L., Guardia E., J. Mol. Struct., 1997, 416, 243. DOI: https://doi.org/10.1016/S0022-2860(97)00038-0

Zangi R., ACS Omega, 2018, 3, 18089. DOI: https://doi.org/10.1021/acsomega.8b03132

Shuttleworth E. E., Apostolo R. F. G., Camp P. J., Conner J. M., Harrison B., Jack F., Clark-Nicolas J., J. Mol. Liq., 2023, 383, 122152. DOI: https://doi.org/10.1016/j.molliq.2023.122152

Wensink E. J. W., Hoffmann A. C., van Maaren P. J., van der Spoel D., J. Chem. Phys., 2003, 119, 7308. DOI: https://doi.org/10.1063/1.1607918

Berendsen H. J. C., Grigera J. R., Straatsma T. P., J. Phys. Chem., 1987, 91, 6269. DOI: https://doi.org/10.1021/j100308a038

Abascal J. L. F., Vega C., J. Chem. Phys., 2005, 123, 234505. DOI: https://doi.org/10.1063/1.2121687

Mijaković M., Kežić B., Zoranić L., Sokolić F., Asenbaum A., Pruner C., Wilhelm E., Perera A., J. Mol. Liq., 2011, 164, 66. DOI: https://doi.org/10.1016/j.molliq.2011.06.009

Mijaković M., Polok K. D., Kežić B., Sokolić F., Perera A., Zoranić L., Mol. Simul., 2015, 41, 699. DOI: https://doi.org/10.1080/08927022.2014.923567

Požar M., Lovrinčević B., Zoranić L., Primorać T., Sokolić F., Perera A., Phys. Chem. Chem. Phys., 2016, 18, 23971. DOI: https://doi.org/10.1039/C6CP04676B

Gereben O., Pusztai L., J. Phys. Chem B, 2015, 119, 3070. DOI: https://doi.org/10.1021/jp510490y

Gereben O., Pusztai L., J. Mol. Liq., 2016, 220, 836. DOI: https://doi.org/10.1016/j.molliq.2016.05.035

Pothoczki S., Pusztai L., Bakó I., J. Phys. Chem. B, 2018, 122, 6790. DOI: https://doi.org/10.1021/acs.jpcb.8b02493

Jorgensen W. L., J. Phys. Chem., 1986, 90, 1276. DOI: https://doi.org/10.1021/j100398a015

Jorgensen W. L., Maxwell D., Tirado-Rives S., J. Am. Chem. Soc., 1996, 118, 11225. DOI: https://doi.org/10.1021/ja9621760

Chen B., Potoff J. J., Siepmann J. I., J. Phys. Chem. B, 2001, 105, 3093. DOI: https://doi.org/10.1021/jp003882x

Ghosh R., Bagchi B., J. Phys. Chem. B, 2016, 120, 12568. DOI: https://doi.org/10.1021/acs.jpcb.6b06001

Guevara-Carrion G., Vrabec J., Hasse H., J. Chem. Phys., 2011, 134, 074508. DOI: https://doi.org/10.1063/1.3515262

Zhong Y., Patel S., J. Phys. Chem., 2009, 113, 767. DOI: https://doi.org/10.1021/jp807053p

Galicia-Andrés E., Pusztai L., Temleitner L., Pizio O., J. Mol. Liq., 2015, 209, 586. DOI: https://doi.org/10.1016/j.molliq.2015.06.045

Spoel D., Lindahl E., Hess B., Groenhof B., Mark A. E., Berendsen H. J. C., J. Comput. Chem., 2005, 118, 1701.

Pečar D., Doleček V., Fluid Phase Equilib., 2005, 230, 36. DOI: https://doi.org/10.1016/j.fluid.2004.11.019

Hervello M. F., Sanchez A., J. Chem. Eng. Data, 2007, 52, 752. DOI: https://doi.org/10.1021/je060335h

Torres R. B., Marchiore A., Volpe P., J. Chem. Thermodyn., 2006, 38, 526. DOI: https://doi.org/10.1016/j.jct.2005.07.012

Cruz Sanchez M., Aguilar M., Pizio O., Condens. Matter Phys., 2020, 23, 34601. DOI: https://doi.org/10.5488/CMP.23.34601

Alejandre J., Chapela G. A., Saint-Martin H., Mendoza N. Phys. Chem. Chem. Phys., 2011, 13, 19728. DOI: https://doi.org/10.1039/c1cp20858f

Tanaka Y., Yamamoto T., Satomi Y., Kubota H., Makita T., Rev. Phys. Chem. Jpn., 1977, 47, No. 1, 12–24.

Ashbaugh H. S., Barnett J. W., Saltzman A., Langrehr M. E., Houser H., J. Chem. Phys., 2016, 145, 201102. DOI: https://doi.org/10.1063/1.4971205

Lara J., Desnoyers J. E., J. Solution Chem., 1981, 10, 465. DOI: https://doi.org/10.1007/BF00652081

Cardona J., Sweatman M. B., Lue L., J. Phys. Chem. B, 2018, 122, 1505. DOI: https://doi.org/10.1021/acs.jpcb.7b12220

Price W. S., Ide H., Arata Y., J. Phys. Chem. A, 2003, 107, 4784. DOI: https://doi.org/10.1021/jp027257z

Neumann M., Mol. Phys., 1983, 50, 841. DOI: https://doi.org/10.1080/00268978300102721

Aguilar M., Dominguez H., Pizio O., Condens. Matter Phys., 2022, 25, 33202. DOI: https://doi.org/10.5488/CMP.25.33202

Wohlfarth C., In: Static Dielectric Constants of Pure Liquids and Binary Liquid Mixtures. Supplement to IV/6, Lechner M. D. (Ed.), 2008, 3–24. DOI: https://doi.org/10.1007/978-3-662-48168-4_23

Sato T., Buchner R., J. Phys. Chem., 2004, 108, 5007. DOI: https://doi.org/10.1021/jp035255o

Fuentes-Azcatl R., Alejandre J., J. Phys. Chem. B, 2014, 118, 1263. DOI: https://doi.org/10.1021/jp410865y

Khare R., Sum A. K., Nath S. K., de Pablo J. J., J. Phys. Chem. B, 2004, 108, 10071. DOI: https://doi.org/10.1021/jp048144d

Mendez-Bermúdez J. G., Dominguez H., Pusztai L., Guba S., Horvath B., Szalai I., J. Mol. Liq., 2016, 219, 354. DOI: https://doi.org/10.1016/j.molliq.2016.02.053

Tarek M., Tobias D. J., Klein M. L., Physica A, 1996, 231, 117. DOI: https://doi.org/10.1016/0378-4371(95)00450-5

Hyde A. E., Ohshio M., Nguyen C. V., Yusa S., Yamada N. L., Phan C. M., J. Mol. Liq., 2019, 290, 111005. DOI: https://doi.org/10.1016/j.molliq.2019.111005

Kirschner J., Gomes A. H. A., Marinho R. R. T., Bjorneholm O., Agren H., Carravetta V., Ottosson N., Naves de Brito A., Bakker H. J., Phys. Chem. Chem. Phys., 2021, 23, 11568. DOI: https://doi.org/10.1039/D0CP06387H

Fischer N. M., van Maaren P. J., Ditz J. C., Yildirim A., van der Spoel D., J. Chem. Theory Comput., 2015, 11, 2938. DOI: https://doi.org/10.1021/acs.jctc.5b00190

Vazquez G., Alvarez E., Navaza J. M., J. Chem. Eng. Data, 1995, 40, 611. DOI: https://doi.org/10.1021/je00019a016

Vega C., de Miguel E., J. Chem. Phys., 2007, 126, 154707. DOI: https://doi.org/10.1063/1.2715577

Obeidat A., Al-Salman R., Abu-Ghazleh H., AIP Adv., 2018, 8, 075321. DOI: https://doi.org/10.1063/1.5040852

Galicia-Andres E., Dominguez H., Pusztai L., Pizio O., J. Mol. Liq., 2015, 212, 70. DOI: https://doi.org/10.1016/j.molliq.2015.08.061

Idrissi A., Jedlovszky P., J. Mol. Liq., 2021, 338, 116777. DOI: https://doi.org/10.1016/j.molliq.2021.116777

García-Melgarejo V., Nuñez-Rojas E., Alejandre J., J. Mol. Liq., 2021, 323, 114576. DOI: https://doi.org/10.1016/j.molliq.2020.114576

Banerjee S., Ghosh R., Bagchi B., J. Phys. Chem. B, 2012, 116, 3713. DOI: https://doi.org/10.1021/jp2085439

Mukherjee S., Deshmukh A. A., Mondal S., Gopal B., Bagchi B., J. Phys. Chem. B, 2019, 123, 10365. DOI: https://doi.org/10.1021/acs.jpcb.9b07689

Dias Pereira C. I., de Freitas C. F., Lazarotto Braga T., Braga G., Sonchini Goncalves T., Tessaro A. L., Graton Mikcha J. M., Hioka N., Caetano W., Dyes Pigm., 2022, 197, 109887. DOI: https://doi.org/10.1016/j.dyepig.2021.109887

Pineda-Amaya A., Ocaña-Rios I., Garcia-Aguilera M. E., Nolasco-Cancino H., Quiroz-Garcia B., Esturau-Escofet N., Ruiz-Terán F., Chem. Pap., 2021, 75, 4249. DOI: https://doi.org/10.1007/s11696-021-01660-5

Patsahan T., Pizio O., Condens. Matter Phys., 2023, 26, 33605. DOI: https://doi.org/10.5488/CMP.26.33605

Published

2024-06-28

Issue

Section

Articles

Categories

How to Cite

[1]
D. Benavides Bautista, M. Aguilar, and O. Pizio, “Molecular dynamics simulations of water-ethanol mixtures. I. Composition trends in thermodynamic properties”, Condens. Matter Phys., vol. 27, no. 2, p. 23201, Jun. 2024, doi: 10.5488/cmp.27.23201.

Similar Articles

1-10 of 39

You may also start an advanced similarity search for this article.