Differential geometry, a possible avenue for thermal ablation in oncology?

Authors

  • A. Manapany Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France; L4 collaboration, Leipzig-Lorraine-Lviv-Coventry, Europe https://orcid.org/0000-0002-7138-0659
  • L. Didier Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France
  • L. Moueddene Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France; L4 collaboration, Leipzig-Lorraine-Lviv-Coventry, Europe
  • B. Berche Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France; L4 collaboration, Leipzig-Lorraine-Lviv-Coventry, Europe https://orcid.org/0000-0002-4254-807X
  • S. Fumeron Laboratoire de Physique et Chimie Théoriques, CNRS - Université de Lorraine, UMR 7019, Nancy, France

DOI:

https://doi.org/10.5488/cmp.27.33201

Keywords:

differential geometry, bioheat transport, thermal ablation

Abstract

We report a model for hyperthermia therapies based on heat diffusion in a biological tissue containing a topological defect. Biological tissues behave like active liquid crystals with the presence of topological defects which are likely to anchor tumors during the metastatic phase of cancer evolution and the therapy challenge is to destroy the cancer cells without damaging surrounding healthy tissues. The defect creates an effective non-Euclidean geometry for low-energy excitations, modifying the bio-heat equation. Applications to protocols of thermal ablation for various biological tissues (liver, prostate, and skin) is analyzed and discussed.

References

World Health Organization Cancer: Fact Sheets, 2020, [online], URL https://www.who.int/news-room/fact-sheets/detail/cancer.

Chu K. F., Dupuy D. E., Nat. Rev. Cancer, 2014, 14, 199–208. DOI: https://doi.org/10.1038/nrc3672

Brace C., IEEE Pulse, 2011, 2, 28–38. DOI: https://doi.org/10.1109/MPUL.2011.942603

Markezana A., Ahmed M., Kumar G., Zorde-Khvalevsky E., Rozenblum N., Galun E., Goldberg S. N., Int. J. Hyperthermia, 2020, 37, 119–129. DOI: https://doi.org/10.1080/02656736.2020.1714084

Fumeron S., Berche B., Eur. Phys. J. Spec. Top., 2023, 232, 1813–1833. DOI: https://doi.org/10.1140/epjs/s11734-023-00803-x

Bouligand Y., In: Physics of defects. Summer School Proceedings, Vol. 35, Balian R., Kléman M., Poirier J. P. (Eds.), North-Holland Publ. Co., 1981, 777–811.

Doostmohammadi A., Adamer M. F., Thampi S. P., Yeomans J. M., Nat. Commun., 2016, 7, 10557. DOI: https://doi.org/10.1038/ncomms10557

Doostmohammadi A., Ladoux B., Trends Cell Biol., 2022, 32, 140–150. DOI: https://doi.org/10.1016/j.tcb.2021.09.012

Ardaševa A., Doostmohammadi A., Nat. Rev. Phys., 2022, 4, 354–356. DOI: https://doi.org/10.1038/s42254-022-00469-9

Saw T. B., Doostmohammadi A., Nier V., Kocgozlu L., Thampi S., Toyama Y., Marcq P., Lim C. T., Yeomans J. M., Ladoux B., Nature, 2017, 544, 212–216. DOI: https://doi.org/10.1038/nature21718

Zhang J., Yang N., Kreeger P. K., Notbohm J., APL Bioeng., 2021, 5, 036103. DOI: https://doi.org/10.1063/5.0047523

Gatenby R. A., Maini P. K., Nature, 2003, 421, 321. DOI: https://doi.org/10.1038/421321a

Jackson T., Komarova N., Swanson K., Am. Math. Mon., 2014, 121, 840–856. DOI: https://doi.org/10.4169/amer.math.monthly.121.09.840

Rockne R. C., Hawkins-Daarud A., Swanson K. R., Sluka J. P., Glazier J. A., Macklin P., Hormuth II D. A., Jarrett A. M., Lima E. A. B. F., Oden J. T., Phys. Biol., 2019, 16, 041005. DOI: https://doi.org/10.1088/1478-3975/ab1a09

Bull J. A., Byrne H. M., Proc. IEEE, 2022, 110, 523–540. DOI: https://doi.org/10.1109/JPROC.2021.3136715

Pennes H. H., J. Appl. Physiol., 1948, 1, 93–122. DOI: https://doi.org/10.1152/jappl.1948.1.2.93

Andreozzi A., Brunese L., Iasiello M., Tucci C., Vanoli G. P., Ann. Biomed. Eng., 2019, 47, 676–693. DOI: https://doi.org/10.1007/s10439-018-02177-x

Tucci C., Trujillo M., Berjano E., Iasiello M., Andreozzi A., Vanoli G. P., Sci. Rep., 2021, 11, 5272. DOI: https://doi.org/10.1038/s41598-021-84546-6

Smerlak M., New J. Phys., 2012, 14, 023019. DOI: https://doi.org/10.1088/1367-2630/14/2/023019

Katanaev M. O., Volovich I. V., Ann. Phys., 1992, 216, 1–28. DOI: https://doi.org/10.1016/0003-4916(52)90040-7

Sátiro C., Moraes F., Eur. Phys. J. E, 2006, 20, 173–178. DOI: https://doi.org/10.1140/epje/i2005-10127-2

Pantel K., Brakenhoff R. H., Nat. Rev. Cancer, 2004, 4, 448–456. DOI: https://doi.org/10.1038/nrc1370

Gracia M., Theis S., Proag A., Gay G., Benassayag C., Suzanne M., Nat. Commun., 2019, 10, 2951. DOI: https://doi.org/10.1038/s41467-019-10720-0

Warren J. S. A., Xiao Y., Lamar J. M., Cancers, 2018, 10, 115. DOI: https://doi.org/10.3390/cancers10040115

Cheng Y., Mao M., Lu Y., Biomarker Res., 2022, 10, 34. DOI: https://doi.org/10.1186/s40364-022-00365-5

Provenzano P. P., Eliceiri K. W., Campbell J. M., Inman D. R., White J. G., Keely P. J., BMC Med., 2006, 4, 38. DOI: https://doi.org/10.1186/1741-7015-4-38

Elosegui-Artola A., Andreu I., Beedle A. E. M., Lezamiz A., Uroz M., Kosmalska A. J., Oria R., Kechagia J. Z., Rico-Lastres P., Le Roux A. L., Shanahan C. M., Trepat X., Navajas D., Garcia-Manyes S., Roca-Cusachs P., Cell, 2017, 171, 1397–1410. DOI: https://doi.org/10.1016/j.cell.2017.10.008

Hogan C., Dupré-Crochet S., Norman M., Kajita M., Zimmermann C., Pelling A. E., Piddini E., Baena-López L. A., Vincent J. P., Itoh Y., Hosoya H., Pichaud F., Fujita Y., Nat. Cell Biol., 2009, 11, 460–467. DOI: https://doi.org/10.1038/ncb1853

Camargo F. D., Gokhale S., Johnnidis J. B., Fu D., Bell G. W., Jaenisch R., Brummelkamp T. R., Curr. Biol., 2007, 17, 2054–2060. DOI: https://doi.org/10.1016/j.cub.2007.10.039

Lamar J. M., Stern P., Liu H., Schindler J. W., Jiang Z. G., Hynes R. O., Proc. Natl. Acad. Sci. U.S.A., 2012, 109, E2441–E2450. DOI: https://doi.org/10.1073/pnas.1212021109

Wang J., Ma L., Weng W., Qiao Y., Zhang Y., He J., Wang H., Xiao W., Li L., Chu Q., Pan Q., Yu Y., Sun F., Hepatology, 2013, 58, 1011–1020. DOI: https://doi.org/10.1002/hep.26420

Marti P., Stein C., Blumer T., Abraham Y., Dill M. T., Pikiolek M., Orsini V., Jurisic G., Megel P., Makowska Z., Agarinis C., Tornillo L., Bouwmeester T., Ruffner H., Bauer A., Parker C. N., Schmelzle T., Terracciano L. M., Heim M. H., Tchorz J. S., Hepatology, 2015, 62, 1497–1510. DOI: https://doi.org/10.1002/hep.27992

Shen J., Cao B., Wang Y., Ma C., Zeng Z., Liu L., Li X., Tao D., Gong J., Xie D., J. Exp. Clin. Cancer Res., 2018, 37, 175. DOI: https://doi.org/10.1186/s13046-018-0850-z

Shankar S., Scharrer L. V. D., Bowick M. J., Marchetti M. C., Preprint arXiv:2212.00666, 2022.

Zhang X., Abdelrahman A., Vollmar B., Zechner D., Int. J. Mol. Sci., 2018, 19, 3770. DOI: https://doi.org/10.3390/ijms19123770

Annunziata C. M., Kohn E. C., J. Natl. Cancer Inst., 2013, 105, 1430–1431. DOI: https://doi.org/10.1093/jnci/djt255

Ablin R. J., Soanes W. A., Gonder M. J., Cryobiology, 1971, 8, 271–279. DOI: https://doi.org/10.1016/0011-2240(71)90050-2

Bilby B. A., Bullough R., Smith E., Proc. R. Soc. London, Ser. A, 1955, 231, 263. DOI: https://doi.org/10.1098/rspa.1955.0171

Kröner E., Kontinums Theories der Versetzungen und Eigenspanungen, Springer Verlag, Berlin-Heidelberg, 1958, (in German). DOI: https://doi.org/10.1007/978-3-642-94719-3

Joets A., Ribotta R., Opt. Commun., 1994, 107, 200–204. DOI: https://doi.org/10.1016/0030-4018(94)90020-5

Epstein M., Śniatycki J., J. Elast., 1992, 27, 45–56. DOI: https://doi.org/10.1007/BF00057859

Babich V. M., Geophys. J. Int., 1994, 118, 379–383. DOI: https://doi.org/10.1111/j.1365-246X.1994.tb03969.x

Červený V., Stud. Geophys. Geod., 2002, 46, 567–588. DOI: https://doi.org/10.1023/A:1019599204028

Arnowitt R., Deser S., Misner C. W., Gen. Relativ. Gravitation, 2008, 40, 1997–2027. DOI: https://doi.org/10.1007/s10714-008-0661-1

Gourgoulhon E., 3 + 1 Formalism in General Relativity: Bases of Numerical Relativity, Springer, 2012. DOI: https://doi.org/10.1007/978-3-642-24525-1

Smerlak M., Phys. Rev. E, 2012, 85, 041134. DOI: https://doi.org/10.1103/PhysRevE.85.041134

Manapany A., Moueddene L., Berche B., Fumeron S., Eur. Phys. J. B, 2022, 95, 118. DOI: https://doi.org/10.1140/epjb/s10051-022-00384-z

Hirst L. S., Charras G., Nature, 2017, 544, 164–165. DOI: https://doi.org/10.1038/544164a

Wissler E. H., J. Appl. Physiol., 1998, 85, 35–41. DOI: https://doi.org/10.1152/jappl.1998.85.1.35

Khaled A. R. A., Vafai K., Int. J. Heat Mass Transfer, 2003, 46, 4989–5003. DOI: https://doi.org/10.1016/S0017-9310(03)00301-6

Arkin H., Xu L. X., Holmes K. R., IEEE Trans. Biomed. Eng., 1994, 41, 97–107. DOI: https://doi.org/10.1109/10.284920

El-Nabulsi R. A., J. R. Soc. Interface, 2021, 18, 20210564. DOI: https://doi.org/10.1098/rsif.2021.0564

Yang J., Sun Y., SN Appl. Sci., 2021, 3, 61. DOI: https://doi.org/10.1007/s42452-020-04080-4

Barnoon P., Ashkiyan M., J. Magn. Magn. Mater., 2020, 513, 167245. DOI: https://doi.org/10.1016/j.jmmm.2020.167245

Kabiri A., Talaee M. R., Heat Mass Transfer, 2019, 55, 2199. DOI: https://doi.org/10.1007/s00231-019-02562-9

Guntur S. R., Lee K., Paeng D. G., Coleman A. J., Choi M. J., Ultrasound Med. Biol., 2013, 39, 1771. DOI: https://doi.org/10.1016/j.ultrasmedbio.2013.04.014

Lopresto V., Argentieri A., Pinto R., Cavagnaro M., Phys. Med. Biol., 2019, 64, 105016. DOI: https://doi.org/10.1088/1361-6560/ab1663

Mohammadi A., Bianchi L., Asadi S., Saccomandi P., Sensors, 2021, 21, 4236. DOI: https://doi.org/10.3390/s21124236

Pearce J. A., Int. J. Hyperthermia, 2013, 29, 262. DOI: https://doi.org/10.3109/02656736.2013.786140

Hao D., Nourbakhsh M., Biology, 2021, 10, 526. DOI: https://doi.org/10.3390/biology10060526

van Rhoon G. C., Samaras T., Yarmolenko P. S., Dewhirst M. W., Neufeld E., Kuster N., Eur. Radiol., 2013, 23, 2215. DOI: https://doi.org/10.1007/s00330-013-2825-y

Valentim C. A., Rabi J. A., David S. A., Biosystems, 2021, 204, 104377. DOI: https://doi.org/10.1016/j.biosystems.2021.104377

Alinei-Poiana T., Dulf E. H., Kovacs L., Sci. Rep., 2023, 13, 10083. DOI: https://doi.org/10.1038/s41598-023-37196-9

Vieira L. C., Costa R. S., Valério D., Fractal Fract., 2023, 7, 595. DOI: https://doi.org/10.3390/fractalfract7080595

Published

2024-09-24

How to Cite

[1]
A. Manapany, L. Didier, L. Moueddene, B. Berche, and S. Fumeron, “Differential geometry, a possible avenue for thermal ablation in oncology?”, Condens. Matter Phys., vol. 27, no. 3, p. 33201, Sep. 2024, doi: 10.5488/cmp.27.33201.

Similar Articles

1-10 of 19

You may also start an advanced similarity search for this article.