Differential geometry, a possible avenue for thermal ablation in oncology?
DOI:
https://doi.org/10.5488/cmp.27.33201Keywords:
differential geometry, bioheat transport, thermal ablationAbstract
We report a model for hyperthermia therapies based on heat diffusion in a biological tissue containing a topological defect. Biological tissues behave like active liquid crystals with the presence of topological defects which are likely to anchor tumors during the metastatic phase of cancer evolution and the therapy challenge is to destroy the cancer cells without damaging surrounding healthy tissues. The defect creates an effective non-Euclidean geometry for low-energy excitations, modifying the bio-heat equation. Applications to protocols of thermal ablation for various biological tissues (liver, prostate, and skin) is analyzed and discussed.
References
World Health Organization Cancer: Fact Sheets, 2020, [online], URL https://www.who.int/news-room/fact-sheets/detail/cancer.
Chu K. F., Dupuy D. E., Nat. Rev. Cancer, 2014, 14, 199–208. DOI: https://doi.org/10.1038/nrc3672
Brace C., IEEE Pulse, 2011, 2, 28–38. DOI: https://doi.org/10.1109/MPUL.2011.942603
Markezana A., Ahmed M., Kumar G., Zorde-Khvalevsky E., Rozenblum N., Galun E., Goldberg S. N., Int. J. Hyperthermia, 2020, 37, 119–129. DOI: https://doi.org/10.1080/02656736.2020.1714084
Fumeron S., Berche B., Eur. Phys. J. Spec. Top., 2023, 232, 1813–1833. DOI: https://doi.org/10.1140/epjs/s11734-023-00803-x
Bouligand Y., In: Physics of defects. Summer School Proceedings, Vol. 35, Balian R., Kléman M., Poirier J. P. (Eds.), North-Holland Publ. Co., 1981, 777–811.
Doostmohammadi A., Adamer M. F., Thampi S. P., Yeomans J. M., Nat. Commun., 2016, 7, 10557. DOI: https://doi.org/10.1038/ncomms10557
Doostmohammadi A., Ladoux B., Trends Cell Biol., 2022, 32, 140–150. DOI: https://doi.org/10.1016/j.tcb.2021.09.012
Ardaševa A., Doostmohammadi A., Nat. Rev. Phys., 2022, 4, 354–356. DOI: https://doi.org/10.1038/s42254-022-00469-9
Saw T. B., Doostmohammadi A., Nier V., Kocgozlu L., Thampi S., Toyama Y., Marcq P., Lim C. T., Yeomans J. M., Ladoux B., Nature, 2017, 544, 212–216. DOI: https://doi.org/10.1038/nature21718
Zhang J., Yang N., Kreeger P. K., Notbohm J., APL Bioeng., 2021, 5, 036103. DOI: https://doi.org/10.1063/5.0047523
Gatenby R. A., Maini P. K., Nature, 2003, 421, 321. DOI: https://doi.org/10.1038/421321a
Jackson T., Komarova N., Swanson K., Am. Math. Mon., 2014, 121, 840–856. DOI: https://doi.org/10.4169/amer.math.monthly.121.09.840
Rockne R. C., Hawkins-Daarud A., Swanson K. R., Sluka J. P., Glazier J. A., Macklin P., Hormuth II D. A., Jarrett A. M., Lima E. A. B. F., Oden J. T., Phys. Biol., 2019, 16, 041005. DOI: https://doi.org/10.1088/1478-3975/ab1a09
Bull J. A., Byrne H. M., Proc. IEEE, 2022, 110, 523–540. DOI: https://doi.org/10.1109/JPROC.2021.3136715
Pennes H. H., J. Appl. Physiol., 1948, 1, 93–122. DOI: https://doi.org/10.1152/jappl.1948.1.2.93
Andreozzi A., Brunese L., Iasiello M., Tucci C., Vanoli G. P., Ann. Biomed. Eng., 2019, 47, 676–693. DOI: https://doi.org/10.1007/s10439-018-02177-x
Tucci C., Trujillo M., Berjano E., Iasiello M., Andreozzi A., Vanoli G. P., Sci. Rep., 2021, 11, 5272. DOI: https://doi.org/10.1038/s41598-021-84546-6
Smerlak M., New J. Phys., 2012, 14, 023019. DOI: https://doi.org/10.1088/1367-2630/14/2/023019
Katanaev M. O., Volovich I. V., Ann. Phys., 1992, 216, 1–28. DOI: https://doi.org/10.1016/0003-4916(52)90040-7
Sátiro C., Moraes F., Eur. Phys. J. E, 2006, 20, 173–178. DOI: https://doi.org/10.1140/epje/i2005-10127-2
Pantel K., Brakenhoff R. H., Nat. Rev. Cancer, 2004, 4, 448–456. DOI: https://doi.org/10.1038/nrc1370
Gracia M., Theis S., Proag A., Gay G., Benassayag C., Suzanne M., Nat. Commun., 2019, 10, 2951. DOI: https://doi.org/10.1038/s41467-019-10720-0
Warren J. S. A., Xiao Y., Lamar J. M., Cancers, 2018, 10, 115. DOI: https://doi.org/10.3390/cancers10040115
Cheng Y., Mao M., Lu Y., Biomarker Res., 2022, 10, 34. DOI: https://doi.org/10.1186/s40364-022-00365-5
Provenzano P. P., Eliceiri K. W., Campbell J. M., Inman D. R., White J. G., Keely P. J., BMC Med., 2006, 4, 38. DOI: https://doi.org/10.1186/1741-7015-4-38
Elosegui-Artola A., Andreu I., Beedle A. E. M., Lezamiz A., Uroz M., Kosmalska A. J., Oria R., Kechagia J. Z., Rico-Lastres P., Le Roux A. L., Shanahan C. M., Trepat X., Navajas D., Garcia-Manyes S., Roca-Cusachs P., Cell, 2017, 171, 1397–1410. DOI: https://doi.org/10.1016/j.cell.2017.10.008
Hogan C., Dupré-Crochet S., Norman M., Kajita M., Zimmermann C., Pelling A. E., Piddini E., Baena-López L. A., Vincent J. P., Itoh Y., Hosoya H., Pichaud F., Fujita Y., Nat. Cell Biol., 2009, 11, 460–467. DOI: https://doi.org/10.1038/ncb1853
Camargo F. D., Gokhale S., Johnnidis J. B., Fu D., Bell G. W., Jaenisch R., Brummelkamp T. R., Curr. Biol., 2007, 17, 2054–2060. DOI: https://doi.org/10.1016/j.cub.2007.10.039
Lamar J. M., Stern P., Liu H., Schindler J. W., Jiang Z. G., Hynes R. O., Proc. Natl. Acad. Sci. U.S.A., 2012, 109, E2441–E2450. DOI: https://doi.org/10.1073/pnas.1212021109
Wang J., Ma L., Weng W., Qiao Y., Zhang Y., He J., Wang H., Xiao W., Li L., Chu Q., Pan Q., Yu Y., Sun F., Hepatology, 2013, 58, 1011–1020. DOI: https://doi.org/10.1002/hep.26420
Marti P., Stein C., Blumer T., Abraham Y., Dill M. T., Pikiolek M., Orsini V., Jurisic G., Megel P., Makowska Z., Agarinis C., Tornillo L., Bouwmeester T., Ruffner H., Bauer A., Parker C. N., Schmelzle T., Terracciano L. M., Heim M. H., Tchorz J. S., Hepatology, 2015, 62, 1497–1510. DOI: https://doi.org/10.1002/hep.27992
Shen J., Cao B., Wang Y., Ma C., Zeng Z., Liu L., Li X., Tao D., Gong J., Xie D., J. Exp. Clin. Cancer Res., 2018, 37, 175. DOI: https://doi.org/10.1186/s13046-018-0850-z
Shankar S., Scharrer L. V. D., Bowick M. J., Marchetti M. C., Preprint arXiv:2212.00666, 2022.
Zhang X., Abdelrahman A., Vollmar B., Zechner D., Int. J. Mol. Sci., 2018, 19, 3770. DOI: https://doi.org/10.3390/ijms19123770
Annunziata C. M., Kohn E. C., J. Natl. Cancer Inst., 2013, 105, 1430–1431. DOI: https://doi.org/10.1093/jnci/djt255
Ablin R. J., Soanes W. A., Gonder M. J., Cryobiology, 1971, 8, 271–279. DOI: https://doi.org/10.1016/0011-2240(71)90050-2
Bilby B. A., Bullough R., Smith E., Proc. R. Soc. London, Ser. A, 1955, 231, 263. DOI: https://doi.org/10.1098/rspa.1955.0171
Kröner E., Kontinums Theories der Versetzungen und Eigenspanungen, Springer Verlag, Berlin-Heidelberg, 1958, (in German). DOI: https://doi.org/10.1007/978-3-642-94719-3
Joets A., Ribotta R., Opt. Commun., 1994, 107, 200–204. DOI: https://doi.org/10.1016/0030-4018(94)90020-5
Epstein M., Śniatycki J., J. Elast., 1992, 27, 45–56. DOI: https://doi.org/10.1007/BF00057859
Babich V. M., Geophys. J. Int., 1994, 118, 379–383. DOI: https://doi.org/10.1111/j.1365-246X.1994.tb03969.x
Červený V., Stud. Geophys. Geod., 2002, 46, 567–588. DOI: https://doi.org/10.1023/A:1019599204028
Arnowitt R., Deser S., Misner C. W., Gen. Relativ. Gravitation, 2008, 40, 1997–2027. DOI: https://doi.org/10.1007/s10714-008-0661-1
Gourgoulhon E., 3 + 1 Formalism in General Relativity: Bases of Numerical Relativity, Springer, 2012. DOI: https://doi.org/10.1007/978-3-642-24525-1
Smerlak M., Phys. Rev. E, 2012, 85, 041134. DOI: https://doi.org/10.1103/PhysRevE.85.041134
Manapany A., Moueddene L., Berche B., Fumeron S., Eur. Phys. J. B, 2022, 95, 118. DOI: https://doi.org/10.1140/epjb/s10051-022-00384-z
Hirst L. S., Charras G., Nature, 2017, 544, 164–165. DOI: https://doi.org/10.1038/544164a
Wissler E. H., J. Appl. Physiol., 1998, 85, 35–41. DOI: https://doi.org/10.1152/jappl.1998.85.1.35
Khaled A. R. A., Vafai K., Int. J. Heat Mass Transfer, 2003, 46, 4989–5003. DOI: https://doi.org/10.1016/S0017-9310(03)00301-6
Arkin H., Xu L. X., Holmes K. R., IEEE Trans. Biomed. Eng., 1994, 41, 97–107. DOI: https://doi.org/10.1109/10.284920
El-Nabulsi R. A., J. R. Soc. Interface, 2021, 18, 20210564. DOI: https://doi.org/10.1098/rsif.2021.0564
Yang J., Sun Y., SN Appl. Sci., 2021, 3, 61. DOI: https://doi.org/10.1007/s42452-020-04080-4
Barnoon P., Ashkiyan M., J. Magn. Magn. Mater., 2020, 513, 167245. DOI: https://doi.org/10.1016/j.jmmm.2020.167245
Kabiri A., Talaee M. R., Heat Mass Transfer, 2019, 55, 2199. DOI: https://doi.org/10.1007/s00231-019-02562-9
Guntur S. R., Lee K., Paeng D. G., Coleman A. J., Choi M. J., Ultrasound Med. Biol., 2013, 39, 1771. DOI: https://doi.org/10.1016/j.ultrasmedbio.2013.04.014
Lopresto V., Argentieri A., Pinto R., Cavagnaro M., Phys. Med. Biol., 2019, 64, 105016. DOI: https://doi.org/10.1088/1361-6560/ab1663
Mohammadi A., Bianchi L., Asadi S., Saccomandi P., Sensors, 2021, 21, 4236. DOI: https://doi.org/10.3390/s21124236
Pearce J. A., Int. J. Hyperthermia, 2013, 29, 262. DOI: https://doi.org/10.3109/02656736.2013.786140
Hao D., Nourbakhsh M., Biology, 2021, 10, 526. DOI: https://doi.org/10.3390/biology10060526
van Rhoon G. C., Samaras T., Yarmolenko P. S., Dewhirst M. W., Neufeld E., Kuster N., Eur. Radiol., 2013, 23, 2215. DOI: https://doi.org/10.1007/s00330-013-2825-y
Valentim C. A., Rabi J. A., David S. A., Biosystems, 2021, 204, 104377. DOI: https://doi.org/10.1016/j.biosystems.2021.104377
Alinei-Poiana T., Dulf E. H., Kovacs L., Sci. Rep., 2023, 13, 10083. DOI: https://doi.org/10.1038/s41598-023-37196-9
Vieira L. C., Costa R. S., Valério D., Fractal Fract., 2023, 7, 595. DOI: https://doi.org/10.3390/fractalfract7080595
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 A. Manapany, L. Didier, L. Moueddene, B. Berche, S. Fumeron
This work is licensed under a Creative Commons Attribution 4.0 International License.